• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitivity Studies for Monitoring Tropospheric Ozone from Space Using the Ultraviolet, Visible, and Polarization Bands

    2014-03-30 07:53:58CAIZhaoNanLIUYiandLIUXiong

    CAI Zhao-Nan, LIU Yi, and LIU Xiong

    1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

    Sensitivity Studies for Monitoring Tropospheric Ozone from Space Using the Ultraviolet, Visible, and Polarization Bands

    CAI Zhao-Nan1, LIU Yi1, and LIU Xiong2

    1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

    The authors analyzed the retrieval sensitivity of tropospheric ozone using simulated the Global Ozone Monitoring Experiment-2 (GOME-2) measurements. The retrieval sensitivity was evaluated by the degree of freedom for signal (DFS). The combination of the ultraviolet (UV), UV polarization (UVPOL), and visible (VIS) bands enhances DFS of tropospheric ozone and improves the vertical resolution of the retrieved ozone profile. UVPOL reduces the dependence on solar zenith angle, mainly increases the sensitivity in upper troposphere. Polarization increased the DFS by 20% on the eastern side of the GOME-2 orbit, with little improvement on the western side because the increase in DFS due to polarization is dependent on the relative azimuth angle. The inclusion of the visible band reduces significantly the dependence on viewing geometry, and mainly increases the DFS in the lower troposphere (0?6 km) by a factor of two. It was possible to retrieve several independent pieces of tropospheric ozone information from GOME-2 UV/UVPOL/VIS measurements, especially in the lower troposphere.

    tropospheric ozone, retrieval sensitivity, GOME-2

    1 Introduction

    Ozone is an important trace gas in the troposphere. Tropospheric ozone plays important roles: as an air pollutant, greenhouse gas, and the primary source of hydroxyl radicals. The ozone profile from the troposphere to stratosphere can be retrieved from backscattered ultraviolet (UV) measurements due to wavelength-dependent ozone absorption.

    A space-based spectrometer with an adequate signal-to-noise ratio (SNR) and sufficient spectral resolution offers the possibility to monitor tropospheric ozone using ozone absorption in the Huggins band (Chance et al., 1997). Observations from space can provide ozone information globally. After careful wavelength and radiometric calibration and extensive improvement to the forwardmodel, Liu et al. (2005, 2010) demonstrated that valuable tropospheric ozone information can be retrieved from the global ozone monitoring experiment (GOME) and ozone monitoring instrument (OMI) UV measurements. Whatever retrieval method is used, the retrieval sensitivity to tropospheric ozone is limited for using UV measurements only from GOME, OMI, and GOME-2 (Liu et al., 2005, 2010; Cai et al., 2012).

    The solar radiance reflected by the atmosphere is generally polarized. The strong absorption of ozone in the Huggins band reduces the possibility of photons' being multiply scattered in the lower atmosphere. The sensitivity of polarization to tropospheric ozone reaches a maximum value in the troposphere. In addition to UV radiance, the inclusion of polarization measurements (UVPOL) can increase tropospheric ozone sensitivity in the free and upper troposphere (Hasekamp and Landgraf, 2002). Natraj et al. (2011) proposed to improve the vertical sensitivity in the retrieval of tropospheric ozone information using a multi-spectra approach from geostationary orbit and suggested that the combination of visible (VIS) and UV measurements significantly enhances the sensitivity for low-level (0?2 km) ozone. A limited number of atmospheric were investigated, and the dependence of sensitivity on observation geometry was not included. Cuesta et al. (2013) improved the information obtained for lowermost ozone (0?3 km) by combining the thermal infrared (TIR) measurements of the Infrared Atmospheric Sounding Interferometer (IASI) and UV measurements of GOME-2.

    Four main GOME-2 channels measure backscattered UV/VIS radiance from 270 to 790 nm with a spectral resolution (full width at half maximum, FWHM) of 0.24?0.53 nm. This covers the Hartley and Huggins bands in the UV and the Chappuis band in the VIS. Moreover, polarization-sensitive instruments such as GOME-2 require a polarization correction of radiance. The polarization measurement devices (PMD) of GOME-2 measure light polarized parallel and perpendicular to the reference plane for four wavelengths (312.7, 318.0, 325.3, and 332.6 nm) in the Huggins ozone absorption band. Thus the GOME-2 instrument can provide UV, VIS, and UVPOL measurements in the same field of view (FOV).

    In this study, we focused on the retrieval sensitivity for the combination of UV, VIS, and UVPOL measurementsfrom simulated GOME-2 measurements. The simulated spectra were generated by a forward model based on the GOME-2 instrument configuration and sunsynchronous low earth orbit (LEO) geometries. The sensitivity dependencies on viewing geometry are discussed.

    2 Forward model and analysis tools

    2.1 Radiative transfer model and inputs

    The full Stokes vectorI,Q(0°/90° polarization),U(± 45° polarization),V(circular polarization), and their analytic weighting functions with respect to atmospheric or surface parameters were calculated using the Vector LInearized Discrete Ordinate Radiative Transfer model (VLIDORT) version 2.4, which is a fully linearized multiple scattering multi-layer radiative transfer model (Spurr, 2006).

    VLIDORT was used to simulate the upwelling radiance on the top of the atmosphere and provide weighting functions with respect to the ozone profile, surface albedo, total water vapor column, and NO2column. Following the definition of GOME-2, the polarization of light is described by stocks fractionq=Q/Iand the weighting functions ofqare then calculated from the chain rules.

    The improved high-resolution (0.04 nm FWHM) solar reference spectrum was taken from (Chance and Kurucz, 2010). A priori ozone profiles and their standard deviations were taken from climatology data (McPeters et al., 2007). For the first guess, we considered a pure Rayleigh scattering atmosphere without scattering of aerosol and cloud.

    2.2 Instrument parameters

    Table 1 summarizes the spectral configurations used in the sensitivity study. For the UV band, according to the ozone profile retrieval (Cai et al., 2012), two sub-bands (290?307 nm and 324?340 nm) with a high SNR and good quality radiometric calibration in were chosen. The SNR was estimated from GOME-2 measurements with an independent SNR calculator (refer to Cai et al. (2012) for more detail). As an approximation, we assumed Gaussian slit functions as the instrument line shapes (ILS) for UV and VIS bands and assumed tophat Gaussian slit functions for the UVPOL band. The simulated spectra were generated as follows. First, radiance and the associated weighting functions were calculated using a forward model in a finer wavelength grid and were then convolved to the instrument resolution. Finally, the oversampled spectra/weighting functions were interpolated to the instrument coarse wavelength grid. Solar zenith angle (SZA), viewingzenith angle (VZA), and relative azimuth angle (RAA) were taken from real GOME-2 orbit.

    Table 1 Spectral configuration for the ultraviolet (UV), UV polarization (UVPOL), and visible (VIS) bands.

    2.3 Analysis tools

    The inverse model is based on the optimal estimation technique (Rodger, 2000). Inverse problems are usually non-linear and ill posed. An optimal solution is the average of the a priori informationxaand measurementsxweighted by a priori error and measurement noise, respectively. Then, the retrieved state ?xcan be written as:

    whereAis the averaging kernel matrix, andIis the identity matrix.

    The averaging kernelAis given by

    whereSais the a priori covariance matrix,Syis the measurement error covariance matrix,Kis the weighting function matrix of the forward model with respect to the state vector, andGis the contribution function matrix. The retrieval statexacontains ozone columns in 24 layers, first order surface albedo for each fitting window, total water vapor column, and total O4column. The a priori covariance matrix was constructed assuming a correlation length of 6 km.

    A row ofAat a given layer indicates the sensitivity of retrieval at that layer to the variations at all layers. The trace ofAis the total degree of freedom for signal (DFS), which describes the number of independent pieces of information from measurements.

    For the purpose of sensitivity analysis, the linear estimate is a good and fast approximation of the non-linear retrieval. It allows rapid assessment of the retrieval characteristics.

    3 Results

    We examined the DFS of the tropospheric ozone column (0?12 km, noted as DFS12) and the ozone column in the lower troposphere (0?6 km, noted as DFS06) for four scenarios: UV only, UV+UVPOL, UV+VIS, and UV+UVPOL+VIS (Fig. 1). For the UV-only retrievals, the tropospheric ozone sensitivity varies greatly with SZA, but showes little dependence on VZA and RAA. The inclusion of polarization information in addition to UV radiance information can increase the tropospheric ozone sensitivity. Figures 1a and 1d show that the inclusion of UVPOL, compared with UV-only retrievals, reduces the dependence on SZA and significantly increases DFS12 for higher SZA, but not too much in the low-level troposphere. It should be noted that for GOME-2 there are only five broad bands of polarization measurement; the DFS can be improved further by including polarization with much higher spectral resolution. The inclusion of UVPOL shows a dependence on RAA, mainly because the degree of polarization is generally dominated by the single scattering of molecules, i.e., the scattering angle. For the example presented in Fig. 1c, the scattering angle was 90° for RAA = 0°, where the degree of polarization was largest. The UVPOL had a small dependence on VZA.

    Figure 1 The degree of freedom for signal (DFS) of ((a), (b), (c)) the tropospheric ozone column and ((d), (e), (f)) the lower tropospheric ozone column as a function of solar zenith angle (SZA), viewing zenith angle (VZA) and relative azimuth angle (RAA) for four scenarios: UV, UV+UVPOL, UV+VIS, and UV+UVPOL+VIS.

    The inclusion of VIS reduces significantly the dependence on SZA and increases significantly sensitivity in the low-level troposphere. VIS increases the DFS12 by 50% and increases the ozone information in the lower troposphere (DFS06) by a factor of ~ two.

    Figure 2 shows the retrieval averaging kernels at a large SZA for each layer. UV-only retrieval loses sensitivity in the low-level troposphere. UV+UVPOL improves the DFS in the free and upper troposphere but had little effect in the lowermost troposphere because the increasing possibility of multiple scattering decreases the degree of polarization (DOP) in that region and thus reduce the information contained. UV+VIS increases significantly the sensitivity of ozone in the boundary layer even for large SZA. Because photons at longer wavelength can penetrate to the near surface; thus, the backscattered VIS measurement containes ozone information in the boundary layer. The inclusion of the UVPOL and VIS bands gives a narrower FWHM of the averaging kernels, i.e., it improves the vertical resolution of the retrieved profile. In the analysis, we assumed a first order wavelength-dependent surface albedo and retrieved the albedo offset and slope to characterize the albedo. These parameters were correlated with tropospheric ozone and reduced the sensitivity in the lower troposphere, especially in the VIS band.

    GOME-2 covers the UV, UVPOL, and VIS bands in one instrument. These bands are consistent in their viewing geometry, FOV. It has been shown that the improvement in retrieval sensitivity to tropospheric ozone by using a multi-spectra approach depends on observation geometries (Fig. 1). To further investigate the feasibility of using GOME-2 multi-band measurements in principle, we calculated DFS12 for GOME-2 pixels with SZA, VZA, and RAA taken from one orbit of GOME-2 (orbit number 9265). Figure 3a shows the difference in DFS12 between UV+UVPOL and UV-only retrievals. For SZA < 65°, DFS12 increases by ~ 20% for the pixels of the easternside of the orbit and by 5% in the western pixels, with almost no increase for the nadir pixels. This is mainly due to the change in relative azimuth angle between solar and satellite angles. GOME-2 has a morning orbit, with a local crossing time of 9:30 a.m. The pixels of the eastern side have the largest DOP, whereas on the other side, the DOP is much smaller due to the geometry are close to being fully backscattering. For a SZA > 65°, there is a significant improvement in the DFS12.

    Figure 2 Averaging kernel for high SZA = 70° and off-nadir viewing direction VZA = 25° using, and RAA = 90°: (a) UV, (b) UV+UVPOL, and (c) UV+VIS. The averaging kernelAvalues have been normalized by the a priori error. Different colors indicate the altitude of the averaging kernels.

    Figure 3 The increase in DFS12 compared with UV-only retrievals by using (a) UV+UVPOL, (b) UV+VIS, and (c) UV+UVPOL+VIS for one the Global Ozone Monitoring Experiment-2 (GOME-2) orbit on 1 August 2008.

    Figure 3b shows the difference in DFS12 between UV+VIS and UV-only retrievals. The increase in the DFS12 is generally around 40%, and is larger than 60% for higher SZAs. The inclusion of the VIS band does not show much cross-track dependence.

    4 Conclusions

    Tools for GOME-2 measurement simulation and linear error analysis for tropospheric ozone retrieval have been developed. The differences in DFS between UV, UV+UVPOL, UV+VIS, and UV+VIS+UVPOL were compared. The DFS analysis revealed that the inclusion of polarization and visible measurements in addition to the UV band improves the retrieval sensitivity to tropospheric ozone and the vertical resolution of the retrieved ozone profile. The inclusion of GOME-2 polarization measurements increases the ozone information in the middle and upper troposphere and decreases the dependence of DFS on SZA. For GOME-2, the increase in DFS12 by using UV and UVPOL is strongly cross-track dependent. The increase is as much as 20% for eastern-side scans and almost zero for nadir scans. The DFS for lower tropospheric ozone increases by a factor of two when the combination of UV and VIS bands is used. The VIS band significantly enhances the sensitivity in the boundary layer. Both UVPOL and VIS improves the DFS at higher SZAs.

    Acknowledgements. This work was supported by National Natural Science Foundation of China (Grant Nos. 41205018 and 41375035).

    Cai, Z., Y. Liu, X. Liu, et al., 2012: Characterization and correction of Global Ozone Monitoring Experiment 2 ultraviolet measurements and application to ozone profile retrievals,J. Geophys. Res., 117, D07305, doi:10.1029/2011JD017096.

    Chance, K., and R. L. Kurucz, 2010: An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared,J. Quant. Spectrosc. Radiat. Transf., 111(9), 1289-1295.

    Chance, K. V., J. P. Burrows, D. Perner, et al., 1997: Satellite measurements of atmospheric ozone profiles, including tropospheric ozone, from ultraviolet/visible measurements in the nadir geometry: A potential method to retrieve tropospheric ozone,J. Quant. Spectrosc. Radiat. Transf., 57(4), 467-476.

    Cuesta, J., M. Eremenko, X. Liu, et al., 2013: Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe,Atmos. Chem. Phys., 13(19), 9675-9693.

    Hasekamp, O. P., and J. Landgraf, 2002: Tropospheric ozone information from satellite-based polarization measurements,J.Geophys. Res., 107(D17), 4326, doi:10.1029/2001JD001346.

    Liu, X., P. K. Bhartia, K. Chance, et al., 2010: Ozone profile retrievals from the Ozone Monitoring Instrument,Atmos. Chem. Phys., 10(5), 2521-2537.

    Liu, X., K. Chance, C. E. Sioris, et al., 2005: Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation,J. Geophys. Res., 110(D20), D20307, doi:10.1029/2005JD006240.

    McPeters, R. D., G. J. Labow, and J. A. Logan, 2007: Ozone climatological profiles for satellite retrieval algorithms,J. Geophys. Res., 112(D5), D05308, doi:10.1029/2005JD006823.

    Natraj, V., X. Liu, S. Kulawik, et al., 2011: Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements,Atmos. Environ., 45(39), 7151-7165.

    Rodgers, C. D., 2000:Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, Singapore, 238pp.

    Spurr, R. J. D., 2006: VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media,J. Quant. Spectrosc. Radiat. Transf., 102(2), 316-342.

    :Cai, Z.-N, Y. Liu, and X. Liu, 2014: Sensitivity studies for monitoring tropospheric ozone from space using the ultraviolet and visible and the polarization bands,Atmos. Oceanic Sci. Lett., 7, 198-202,

    10. 3878/j.issn.1674-2834.13.0092.

    Received 25 November 2013; revised 3 January 2014; accepted 3 January 2014; published 16 May 2014

    CAI Zhao-Nan, caizhaonan@mail.iap.ac.cn

    久久人人爽av亚洲精品天堂| 法律面前人人平等表现在哪些方面 | 日韩 欧美 亚洲 中文字幕| 丝瓜视频免费看黄片| 精品福利观看| 中文字幕高清在线视频| www.熟女人妻精品国产| 高潮久久久久久久久久久不卡| 久久国产亚洲av麻豆专区| 久久综合国产亚洲精品| 亚洲国产欧美网| 热99国产精品久久久久久7| 亚洲国产精品成人久久小说| 亚洲成人免费电影在线观看| 亚洲国产成人一精品久久久| 人人妻,人人澡人人爽秒播| 一个人免费看片子| 国产伦理片在线播放av一区| 亚洲国产日韩一区二区| 人妻一区二区av| a级片在线免费高清观看视频| 久久中文看片网| 90打野战视频偷拍视频| 美女高潮到喷水免费观看| 少妇被粗大的猛进出69影院| 日本欧美视频一区| 国产真人三级小视频在线观看| 日韩制服丝袜自拍偷拍| 建设人人有责人人尽责人人享有的| 免费一级毛片在线播放高清视频 | 成年人午夜在线观看视频| 欧美久久黑人一区二区| 久久这里只有精品19| 亚洲黑人精品在线| 久久久水蜜桃国产精品网| 亚洲伊人色综图| 欧美97在线视频| 男女床上黄色一级片免费看| 国产一区二区三区在线臀色熟女 | 免费在线观看日本一区| 色婷婷av一区二区三区视频| 欧美精品人与动牲交sv欧美| 岛国毛片在线播放| 少妇精品久久久久久久| 黑人巨大精品欧美一区二区mp4| 亚洲国产欧美网| 色视频在线一区二区三区| 性少妇av在线| 欧美精品一区二区免费开放| 中文字幕人妻丝袜制服| 亚洲第一青青草原| 女人高潮潮喷娇喘18禁视频| 一级a爱视频在线免费观看| 男男h啪啪无遮挡| √禁漫天堂资源中文www| 亚洲情色 制服丝袜| 两人在一起打扑克的视频| 超色免费av| 香蕉丝袜av| 精品少妇黑人巨大在线播放| 亚洲第一av免费看| 国产无遮挡羞羞视频在线观看| 亚洲自偷自拍图片 自拍| 国产精品一区二区免费欧美 | 久久精品国产a三级三级三级| 丝瓜视频免费看黄片| 久久国产精品男人的天堂亚洲| 精品亚洲乱码少妇综合久久| 在线观看人妻少妇| 麻豆乱淫一区二区| av电影中文网址| 欧美久久黑人一区二区| 大片电影免费在线观看免费| 免费观看a级毛片全部| 午夜老司机福利片| 黄片大片在线免费观看| 精品国产乱码久久久久久小说| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久久久久婷婷小说| 国产免费福利视频在线观看| 成年人免费黄色播放视频| 一区福利在线观看| 亚洲精品一区蜜桃| 巨乳人妻的诱惑在线观看| 捣出白浆h1v1| 日韩欧美一区二区三区在线观看 | 成年人免费黄色播放视频| avwww免费| 国产深夜福利视频在线观看| 狂野欧美激情性bbbbbb| 欧美乱码精品一区二区三区| 成人影院久久| 亚洲国产欧美在线一区| 视频区图区小说| 永久免费av网站大全| 高清黄色对白视频在线免费看| 黄色视频,在线免费观看| 午夜福利,免费看| 热99久久久久精品小说推荐| 无遮挡黄片免费观看| 亚洲专区中文字幕在线| 久久久久久免费高清国产稀缺| 丝袜脚勾引网站| 国产成人a∨麻豆精品| 老司机在亚洲福利影院| 国产成人a∨麻豆精品| 精品一区二区三区av网在线观看 | 天堂中文最新版在线下载| 桃红色精品国产亚洲av| 天天操日日干夜夜撸| 免费观看人在逋| 国产一区二区三区在线臀色熟女 | 大香蕉久久网| 大香蕉久久网| 99国产精品免费福利视频| 少妇被粗大的猛进出69影院| 国产真人三级小视频在线观看| 精品亚洲成a人片在线观看| 日韩制服丝袜自拍偷拍| 老熟妇仑乱视频hdxx| 亚洲精品在线美女| 亚洲五月色婷婷综合| 九色亚洲精品在线播放| 欧美日韩精品网址| 九色亚洲精品在线播放| 亚洲国产日韩一区二区| 人妻 亚洲 视频| 久热这里只有精品99| 国产av一区二区精品久久| 国产主播在线观看一区二区| 国产又色又爽无遮挡免| 日韩欧美一区二区三区在线观看 | 在线看a的网站| 久久人妻熟女aⅴ| 免费高清在线观看视频在线观看| a在线观看视频网站| 国产精品成人在线| 成年人黄色毛片网站| 精品熟女少妇八av免费久了| 视频区图区小说| 亚洲免费av在线视频| 中文精品一卡2卡3卡4更新| 人妻久久中文字幕网| 欧美av亚洲av综合av国产av| 亚洲成人免费av在线播放| 久久久国产欧美日韩av| 丝袜喷水一区| 波多野结衣av一区二区av| 另类亚洲欧美激情| 中文字幕人妻丝袜制服| 啪啪无遮挡十八禁网站| 久久久久国内视频| 午夜老司机福利片| 在线av久久热| 日日夜夜操网爽| 窝窝影院91人妻| 夜夜骑夜夜射夜夜干| 免费在线观看视频国产中文字幕亚洲 | 亚洲午夜精品一区,二区,三区| 男人爽女人下面视频在线观看| 久久久久国产精品人妻一区二区| 99热全是精品| 欧美日韩亚洲高清精品| 国产亚洲精品第一综合不卡| 男女无遮挡免费网站观看| 精品一品国产午夜福利视频| 精品人妻在线不人妻| 五月开心婷婷网| 欧美人与性动交α欧美精品济南到| 久久国产精品人妻蜜桃| 黄色视频在线播放观看不卡| 一级黄色大片毛片| 9热在线视频观看99| 久久人人爽人人片av| 动漫黄色视频在线观看| 纯流量卡能插随身wifi吗| 亚洲全国av大片| 99久久人妻综合| 巨乳人妻的诱惑在线观看| 亚洲成人国产一区在线观看| 国产又色又爽无遮挡免| 波多野结衣av一区二区av| 天天影视国产精品| 日韩欧美一区视频在线观看| 亚洲男人天堂网一区| 久久精品人人爽人人爽视色| 亚洲av电影在线进入| 丝袜美腿诱惑在线| 天天操日日干夜夜撸| 十八禁人妻一区二区| 久久香蕉激情| 极品人妻少妇av视频| 成人三级做爰电影| 国产精品一区二区在线不卡| av在线播放精品| 无限看片的www在线观看| 777久久人妻少妇嫩草av网站| 国产亚洲av高清不卡| 亚洲国产成人一精品久久久| 午夜免费成人在线视频| 久久久精品区二区三区| 亚洲av成人不卡在线观看播放网 | 久久性视频一级片| 一区二区av电影网| 亚洲avbb在线观看| 黑人欧美特级aaaaaa片| 欧美成人午夜精品| 亚洲专区中文字幕在线| 国产在线观看jvid| 91麻豆精品激情在线观看国产 | 91国产中文字幕| 一区二区av电影网| 777米奇影视久久| 青春草亚洲视频在线观看| 久久99热这里只频精品6学生| 欧美乱码精品一区二区三区| 97人妻天天添夜夜摸| 老熟妇仑乱视频hdxx| 天天躁狠狠躁夜夜躁狠狠躁| 美女脱内裤让男人舔精品视频| 男女免费视频国产| 热99国产精品久久久久久7| 韩国精品一区二区三区| 91av网站免费观看| av网站在线播放免费| 亚洲欧美日韩另类电影网站| 亚洲精品粉嫩美女一区| 午夜老司机福利片| 国产精品久久久久成人av| 久久精品熟女亚洲av麻豆精品| 超色免费av| 人人妻人人添人人爽欧美一区卜| 亚洲 国产 在线| 欧美日韩亚洲综合一区二区三区_| 国产激情久久老熟女| 丰满饥渴人妻一区二区三| 成人免费观看视频高清| 亚洲免费av在线视频| 欧美日韩av久久| 久久中文看片网| 国产av又大| 国产免费一区二区三区四区乱码| 国产精品免费视频内射| 精品亚洲成国产av| 视频区欧美日本亚洲| 欧美亚洲 丝袜 人妻 在线| 一本色道久久久久久精品综合| 免费在线观看日本一区| 国产老妇伦熟女老妇高清| 日韩制服丝袜自拍偷拍| 精品乱码久久久久久99久播| 亚洲美女黄色视频免费看| av网站在线播放免费| 日日夜夜操网爽| 久久人人爽人人片av| 欧美精品高潮呻吟av久久| 视频区欧美日本亚洲| 久久九九热精品免费| 人妻久久中文字幕网| 99久久99久久久精品蜜桃| 亚洲精品国产av蜜桃| 男女床上黄色一级片免费看| 一区在线观看完整版| 精品一区二区三区av网在线观看 | 真人做人爱边吃奶动态| 国产精品1区2区在线观看. | 成人黄色视频免费在线看| 久久久精品94久久精品| 手机成人av网站| 乱人伦中国视频| 国产成人精品无人区| 成人国产av品久久久| 各种免费的搞黄视频| 一区二区三区四区激情视频| 亚洲精品中文字幕在线视频| 国产又色又爽无遮挡免| 亚洲五月婷婷丁香| 亚洲av片天天在线观看| av在线app专区| 亚洲成av片中文字幕在线观看| 天堂中文最新版在线下载| 99精品久久久久人妻精品| 多毛熟女@视频| 91九色精品人成在线观看| 国产精品国产三级国产专区5o| 新久久久久国产一级毛片| 欧美黄色片欧美黄色片| 母亲3免费完整高清在线观看| 日韩一卡2卡3卡4卡2021年| 淫妇啪啪啪对白视频 | 国产日韩欧美亚洲二区| 久久久久精品人妻al黑| 麻豆av在线久日| 老司机午夜福利在线观看视频 | 最黄视频免费看| 欧美另类一区| 国产精品久久久久成人av| 亚洲成人免费电影在线观看| 日本欧美视频一区| 俄罗斯特黄特色一大片| 免费观看a级毛片全部| 精品一区在线观看国产| 国产精品1区2区在线观看. | 狠狠婷婷综合久久久久久88av| 国产熟女午夜一区二区三区| 免费av中文字幕在线| 热99国产精品久久久久久7| 老熟女久久久| 亚洲精品美女久久av网站| 大香蕉久久成人网| 亚洲精品国产一区二区精华液| 免费日韩欧美在线观看| av线在线观看网站| 久久久国产精品麻豆| 欧美日韩视频精品一区| 免费一级毛片在线播放高清视频 | av国产精品久久久久影院| 国产精品久久久久久精品古装| 欧美激情 高清一区二区三区| 交换朋友夫妻互换小说| 日韩中文字幕视频在线看片| 精品国产国语对白av| 男人舔女人的私密视频| 国产在线视频一区二区| 亚洲美女黄色视频免费看| 午夜福利影视在线免费观看| 伊人久久大香线蕉亚洲五| 国产三级黄色录像| 免费观看a级毛片全部| 国精品久久久久久国模美| 国产成人欧美| 精品国产一区二区三区久久久樱花| 中文字幕最新亚洲高清| 999久久久国产精品视频| 叶爱在线成人免费视频播放| 老司机午夜十八禁免费视频| 久久国产亚洲av麻豆专区| 免费在线观看影片大全网站| 国产91精品成人一区二区三区 | 欧美xxⅹ黑人| 日韩中文字幕视频在线看片| 我要看黄色一级片免费的| 亚洲伊人色综图| videosex国产| 国产成人av教育| 亚洲欧美日韩高清在线视频 | 欧美 日韩 精品 国产| 欧美在线一区亚洲| 亚洲国产欧美在线一区| 我要看黄色一级片免费的| 男女午夜视频在线观看| 午夜福利在线免费观看网站| 在线观看免费午夜福利视频| 精品少妇久久久久久888优播| 激情视频va一区二区三区| 美女高潮到喷水免费观看| 精品国产一区二区久久| 丝袜美足系列| 久久久欧美国产精品| 欧美精品一区二区大全| 一级片'在线观看视频| 夜夜骑夜夜射夜夜干| 午夜影院在线不卡| 免费观看人在逋| 桃花免费在线播放| 一本大道久久a久久精品| 国产日韩欧美亚洲二区| 日韩欧美免费精品| 亚洲成国产人片在线观看| 亚洲欧美清纯卡通| 一个人免费看片子| 国产伦人伦偷精品视频| 欧美一级毛片孕妇| 国产老妇伦熟女老妇高清| 成人av一区二区三区在线看 | 亚洲情色 制服丝袜| 婷婷成人精品国产| 亚洲性夜色夜夜综合| av网站在线播放免费| 日韩一区二区三区影片| 在线天堂中文资源库| 亚洲avbb在线观看| 麻豆乱淫一区二区| 成人免费观看视频高清| 日韩中文字幕视频在线看片| a 毛片基地| 欧美激情 高清一区二区三区| 国产一区二区三区av在线| 在线观看免费高清a一片| 亚洲午夜精品一区,二区,三区| avwww免费| 久久天躁狠狠躁夜夜2o2o| 女人精品久久久久毛片| 欧美乱码精品一区二区三区| 精品国产一区二区三区四区第35| a级毛片在线看网站| 久久人人爽av亚洲精品天堂| 成人国产一区最新在线观看| 中文字幕人妻丝袜制服| 久久久久精品国产欧美久久久 | 亚洲成人国产一区在线观看| 亚洲美女黄色视频免费看| 国产免费一区二区三区四区乱码| 国产xxxxx性猛交| 国产一区二区三区av在线| 99九九在线精品视频| 欧美97在线视频| 黄色片一级片一级黄色片| 99热全是精品| 亚洲av日韩精品久久久久久密| 91麻豆av在线| 在线观看www视频免费| 一个人免费在线观看的高清视频 | 又黄又粗又硬又大视频| 国产精品久久久人人做人人爽| 别揉我奶头~嗯~啊~动态视频 | 一个人免费在线观看的高清视频 | 一本久久精品| 国产淫语在线视频| 免费高清在线观看视频在线观看| 久久99热这里只频精品6学生| 亚洲伊人色综图| 久久久国产成人免费| 国产亚洲av高清不卡| 精品人妻熟女毛片av久久网站| 亚洲国产av新网站| a级毛片黄视频| 日本精品一区二区三区蜜桃| 人人妻人人澡人人看| 亚洲国产欧美网| 精品国产一区二区三区四区第35| 汤姆久久久久久久影院中文字幕| 亚洲精品av麻豆狂野| 午夜影院在线不卡| 汤姆久久久久久久影院中文字幕| 精品久久久精品久久久| 亚洲国产日韩一区二区| 国产成人免费观看mmmm| 精品福利观看| 欧美日本中文国产一区发布| 80岁老熟妇乱子伦牲交| 中文字幕另类日韩欧美亚洲嫩草| 国产成人啪精品午夜网站| 性色av一级| 日韩视频一区二区在线观看| 夫妻午夜视频| 久久久久久人人人人人| 欧美日韩亚洲综合一区二区三区_| 欧美中文综合在线视频| 老汉色∧v一级毛片| 99国产综合亚洲精品| 欧美国产精品一级二级三级| 亚洲国产成人一精品久久久| 免费女性裸体啪啪无遮挡网站| 亚洲专区中文字幕在线| 亚洲国产精品一区二区三区在线| 国产高清国产精品国产三级| 自线自在国产av| 亚洲精品自拍成人| 国产1区2区3区精品| 日韩电影二区| 亚洲熟女精品中文字幕| 老司机在亚洲福利影院| 女性生殖器流出的白浆| 国产精品一区二区免费欧美 | 99精品久久久久人妻精品| 国产无遮挡羞羞视频在线观看| 国产av精品麻豆| 青春草亚洲视频在线观看| 精品亚洲乱码少妇综合久久| 午夜福利在线观看吧| 91精品国产国语对白视频| 美女中出高潮动态图| av福利片在线| 午夜激情av网站| 女性生殖器流出的白浆| 亚洲欧洲日产国产| 18禁观看日本| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区久久| 他把我摸到了高潮在线观看 | 麻豆国产av国片精品| 亚洲欧美清纯卡通| 亚洲精品美女久久久久99蜜臀| 亚洲综合色网址| 久久人人97超碰香蕉20202| 18在线观看网站| 国产精品久久久久成人av| 91精品三级在线观看| 美女扒开内裤让男人捅视频| 好男人电影高清在线观看| 男女边摸边吃奶| 无限看片的www在线观看| 十八禁网站免费在线| 日韩中文字幕视频在线看片| 成人av一区二区三区在线看 | 超碰成人久久| 大香蕉久久网| 久久影院123| 国产日韩欧美在线精品| 精品熟女少妇八av免费久了| 亚洲精品第二区| 一级片免费观看大全| 97人妻天天添夜夜摸| 免费高清在线观看日韩| 欧美中文综合在线视频| av天堂在线播放| 成人黄色视频免费在线看| 777久久人妻少妇嫩草av网站| 91av网站免费观看| av国产精品久久久久影院| 国产精品久久久人人做人人爽| av一本久久久久| 久久狼人影院| 亚洲av男天堂| 欧美日韩亚洲高清精品| 久久久久国内视频| 欧美性长视频在线观看| 久久精品人人爽人人爽视色| 国产精品一区二区免费欧美 | 国产片内射在线| 午夜福利一区二区在线看| 欧美一级毛片孕妇| 亚洲精品中文字幕在线视频| 亚洲精华国产精华精| 国产成+人综合+亚洲专区| 成在线人永久免费视频| av电影中文网址| 视频区欧美日本亚洲| 淫妇啪啪啪对白视频 | 亚洲七黄色美女视频| 王馨瑶露胸无遮挡在线观看| 99re6热这里在线精品视频| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看| 亚洲成国产人片在线观看| 嫩草影视91久久| 69精品国产乱码久久久| 亚洲三区欧美一区| av网站免费在线观看视频| 搡老熟女国产l中国老女人| 19禁男女啪啪无遮挡网站| 久久热在线av| kizo精华| 男女国产视频网站| 精品人妻在线不人妻| 亚洲国产中文字幕在线视频| 免费少妇av软件| 最新在线观看一区二区三区| 国产深夜福利视频在线观看| 国产麻豆69| 欧美av亚洲av综合av国产av| 99久久精品国产亚洲精品| 亚洲伊人色综图| 黄色片一级片一级黄色片| 嫩草影视91久久| 国产成人一区二区三区免费视频网站| 黄色 视频免费看| 麻豆国产av国片精品| 蜜桃国产av成人99| 在线观看免费日韩欧美大片| 一区二区三区激情视频| 日韩人妻精品一区2区三区| 丝袜脚勾引网站| 精品福利永久在线观看| 久久久久网色| 高清黄色对白视频在线免费看| 超碰成人久久| 51午夜福利影视在线观看| 九色亚洲精品在线播放| av超薄肉色丝袜交足视频| 一级a爱视频在线免费观看| 国产精品 国内视频| 一区二区三区激情视频| 女警被强在线播放| 涩涩av久久男人的天堂| 久久久久久亚洲精品国产蜜桃av| 极品少妇高潮喷水抽搐| 国产精品亚洲av一区麻豆| 亚洲精品久久成人aⅴ小说| 久久综合国产亚洲精品| www.999成人在线观看| 日本av手机在线免费观看| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 他把我摸到了高潮在线观看 | 国产精品 欧美亚洲| 欧美黑人精品巨大| 一级片'在线观看视频| 欧美97在线视频| 熟女少妇亚洲综合色aaa.| 男女无遮挡免费网站观看| 国产亚洲欧美精品永久| 欧美97在线视频| 欧美另类亚洲清纯唯美| 成年动漫av网址| 国产男女内射视频| 精品一品国产午夜福利视频| 亚洲国产中文字幕在线视频| 1024香蕉在线观看| 日日摸夜夜添夜夜添小说| 欧美xxⅹ黑人| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版| a级毛片黄视频| 久久久久久久久久久久大奶| 欧美精品亚洲一区二区| 中国美女看黄片| 麻豆乱淫一区二区| 亚洲五月婷婷丁香| 999久久久精品免费观看国产| 一区在线观看完整版| 亚洲 国产 在线| e午夜精品久久久久久久| 亚洲国产毛片av蜜桃av|