• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation and Simulation of Abnormal Transmittance over Yangbajing, Tibet

    2014-03-30 07:53:56WANGLeiDiDaRenandHUOJuan

    WANG Lei-Di, Lü Da-Ren, and HUO Juan

    1Key Laboratory of Middle Atmosphere and Global Environmental Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    Observation and Simulation of Abnormal Transmittance over Yangbajing, Tibet

    WANG Lei-Di1,2, Lü Da-Ren1, and HUO Juan1

    1Key Laboratory of Middle Atmosphere and Global Environmental Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    Defining abnormal transmittance as the case where the magnitude of the shortwave flux transmittance is greater than 1.0, the authors used surface solar irradiance and all-sky images obtained at the Yangbajing site in Tibet to analyze the reasons for the occurrence of abnormal shortwave flux transmittance. Based on the International Intercomparision of Three-Dimensional Radiation Code (I3RC) Monte Carlo community model of three-dimensional radiative transfer, the authors also performed simulations at a nonabsorbing wavelength and an absorbing wavelength through a stratocumulus and a cumulus field. The results showed the detection of abnormal transmittance on more than half the days, and the maximum transmittance was 1.34. The probability of the occurrence of abnormal transmittance appeared to be largest in summer, and on a daily basis was mainly at about noon local time. Abnormal transmittance mainly appeared when clear sky and clouds co-existed, especially at the edges of broken clouds and nearby regions with clear-sky conditions. The flux transmittance decreased as the solar zenith angle increased.

    three-dimensional clouds, shortwave flux transmittance, Monte Carlo model, Tibet

    1 Introduction

    Solar radiation is a significant source of heat on the Earth’s surface and in the atmosphere, and the effects of clouds on solar radiation are important for the radiative energy budget since clouds play a critical role in regulating surface shortwave irradiance. The Earth’s average cloud fraction is about two-thirds (Maddux et al., 2010). However, the impact of clouds on solar radiative transfer remains largely unknown.

    Solar radiative flux is strongly affected by the macrophysical and microphysical properties of the cloud. In their study, Davis and Marshak (2010) encountered many challenging problems affecting solar radiation transport inthe Earth’s cloudy atmosphere stemming from the spatial complexity of real clouds and physical complexity of multiple-scattering processes. Many studies have shown that shortwave fluxes simulated by the independent column/pixel approximation (ICA/IPA) technique have obvious errors compared with those of three-dimensional radiation models, and the magnitude of the error is large relative to that of the cloud type and solar zenith angle (Benner and Evans, 2001; Scheirer and Macke, 2003; Pincus et al., 2005; Gimeno et al., 2012). Therefore, it is crucial to understand the effects of cloud 3D structures on solar radiation.

    Generally, the presence of clouds reduces the downward shortwave surface radiation, but clouds may also enhance radiation in specific sky conditions, and may even cause solar radiation at the surface to surpass the level of extraterrestrial global radiation (Segal and Davis, 1992; Thiel et al., 1997; Pfister et al., 2003; Yang et al., 2010). However, few detailed studies have been performed on the temporal and spatial distribution of this phenomenon. In this study we investigated the shortwave flux transmittance,T(the ratio of the surface horizontal solar radiation to extraterrestrial radiation) (Liou, 2002). Generally, the level of transmittance is between 0.0 and 1.0. First, we used one-year in situ data of highly temporal total solar radiation and all-sky images obtained from the Yangbajing site to obtain an intuitive understanding of the phenomenon of abnormal transmittance. Next, we simulated the shortwave radiation flux being transferred through a stratocumulus field and a cumulus field using a state-of-the-art International Intercomparision of Three-Dimensional Radiation Code (I3RC) Community Monte Carlo model. Finally, we attempted to better understand the cloud 3D effect on the shortwave flux.

    2 Materials and methods

    2.1 In situ data

    The Yangbajing site ((30.088°N, 90.540°E); 4350 m), which is annexed to the Chinese Academy of Sciences, is located on the south side of Nyainqentanglha Mountain, which is in the center of the Tibetan Plateau. The radiation and automatic weather instruments were installed by scientists at the Institute of Atmospheric Physics, ChineseAcademy of Sciences, with the radiative flux having a 1-min resolution and the all-sky images having a 3-min resolution. The values of surface shortwave irradiance were measured by a Chinese-made TBQ-2-B-I pyranometer with a sensitivity of 10.22 μV (W m?2)?1. This kind of solar pyranometer is comparable to other pyranometers, and is widely used in meteorological stations. The instrument associated with the solar pyranometer had also been tested on the rooftop of the No. 40 building at the Institute of Atmospheric Physics before installation at the Yangbajing site.

    For the best data of solar radiation, daily quality assurance checks are essential. At the beginning, we used the method recommended by the World Meteorological Organization (WMO), which involves plotting the solar radiation data against solar time to determine the general quality of the global solar radiation data. Then, we adopted the following quality control procedures based on a suggestion from Geger et al. (2002): First, each observed daily (hourly) sumGd(Gh) should be less than the daily (hourly) extraterrestrial irradiation received by a horizontal plane located at the same geographical coordinates. Second, the daily (hourly) irradiation should only exceed by a small amount the daily (hourly) irradiationGd(Gh) likely to be observed under exceptionally clear skies with a high atmospheric transparency. And third, the daily (hourly) sumGd(Gh) should be greater than a minimum value expected in continuous overcast conditions. For quality control purposes, 349 observation days produced results that were suitable for our study.

    2.2 Three-dimensional Monte Carlo model

    Monte Carlo radiative transfer solves the radiative transfer equation by sampling the trajectories of a large number of photons. In this study we used the I3RC Monte Carlo community model of 3D radiative transfer (I3RC-community-monte-carlo), together with the March 2009 Cornish-Gilliflower release, which is available online at http://code.google.com/p/i3rc-monte-carlo-model. The I3RC-community-monte-carlo model, which studies the interaction of monochromatic radiation with cloudy atmospheres, can calculate radiative fluxes and radiances at the boundaries, column absorption, and flux divergence throughout the domain, while providing both scene average values and complete fields. The I3RC-community-monte-carlo model has been tested for all of the I3RC phase I cases (http://i3rc.gsfc. nasa.gov/ cases_new.html), and has been found to be somewhat superior for computing the downwelling flux, and is much more efficient at computing domain-average fluxes and flux divergence profiles than the Spherical Harmonic Discrete Ordinate Method (SHDOM) (Cahalan et al., 2005; Pincus and Evans, 2009). In our study, the simulation used 109photons to guarantee precision, based on a suggestion from Evans and Marshak (2005).

    The I3RC Community Monte Carlo radiative transfer code contains a series of modules and several programs, and at the heart of the model is a monochromatic integrator (Pincus and Evans, 2009). The simulations mainly included the following seven steps:

    1) Define the single scattering phase function for one or more drop sizes and store this in an object representing the phase table;

    2) Define the spatial domain of the problem to create a new object of type domain;

    3) Define the cloud fields by storing the three-dimensionally varying extinction and single scattering albedo in the domain;,

    4) Set up the radiative transfer problem by giving the 3D cloud fields to an object of type integrator;

    5) Seed the random number generator;

    6) Specify the solar illumination;

    7) Compute the radiative transfer and record the results.

    2.3 Three-dimensional cloud fields

    In this study we used a stratocumulus field (Moeng et al., 1996) and a cumulus field (Stevens and Lenschow, 2001), both of which were produced by large-eddy simulations as the input of the Monte Carlo model. The important parameters to parameterize the cloud optical properties are the liquid water content and effective particle radius. The two water clouds provided a complete 3D description of the liquid water content and an effective particle radius with high resolutions and good representativeness, which were just what the model inputs needed. The stratocumulus cloud field consisted of 64×64×16 (x×y×z) cells with a grid size of 55×55×25 (units: m), while the cumulus cloud field consisted of 100×100×36 (x×y×z) cells with a grid size of 66.7×66.7×40 (units: m).

    3 Results and discussion

    3.1 Observation

    We first analyzed the shortwave flux transmittance,T, between 1000 and 1900 (Beijing time) BT at every minute (for the Yangbajing site, BT is about two hours later than local solar time, which means that it was around 0800 local solar time in Yangbajing when it was 1000 in Beijing). Table 1 shows the numeric distribution of the abnormal transmittance, andnis the number of occurrences of abnormal transmittance between 1000 and 1900 BT in a single day (total of 540 samples). In order to avoid the random error introduced by calculations, and to ensure the viability of the analysis data, we omitted 43 days for whichnwas≤5. For 21.49% of the days (75 days),nwas detected to be between 10 and 30, which accounted for the largest part of the whole year, followed bynbeing between 30 and 50 on 49 days. For six days,nwas greater than 90; these days were 23 May, 28 May, 10 June, 24 June, 17 July, and 11 October 2009. For example, on 10 June,nwas 151, which is a rare occurrence, and which may only happen in unique regions such as the Tibetan Plateau. The peculiar conditions of the Tibetan Plateau, such as high altitude, low aerosol concentration, and low atmospheric optical depth, leadto high values of downward shortwave radiation. In addition, the Tibetan Plateau has intense topography, which can induce convective orographic clouds (Kurosaki and Kimura, 2002). Furthermore, clouds may enhance incoming solar radiation at the surface. Therefore, the phenomenon of abnormal transmittance is usually observed over the Tibetan Plateau but rarely observed at low altitude regions.

    Table 1 Number of days and the corresponding percentage of the year for which the phenomenon of abnormal transmittanceToccurs in a one-year period.

    Figure 1 shows some cloud images at the moment of the appearance of abnormal transmittance. Figures 2a-d illustrate the daily variation of the shortwave flux transmittance per minute in the first four days of the six days whennsurpassed 90. Three-dimensional clouds have a large influence on the transport of solar radiation, causing significant fluctuations in the flux transmittance over time. Clouds may make surface solar radiation levels exceed the expected extraterrestrial value, while they generally reduce the incoming solar radiation at the surface. Under both clear and overcast conditions,Tconforms to the regulations, remaining below 1.0. However,Twill be greater than 1.0 under some cloud conditions where clear sky and cloud coexist, especially under broken clouds when the direct solar radiation component is almost unaffected and the diffuse radiation increases. The peak value ofTwas around 1.34 during the observation.

    Figure 1 Sky images taken during the phenomenon of abnormal transmittance.

    Figure 2e illustrates the seasonal distribution of the abnormal transmittance. The largest amount of abnormal transmittance occurs in summer, accounting for about 36%, which corresponds with the fact that cloud activities are exuberant and vibrational in summer. This is followed by spring, which accounts for 24%; autumn, which accounts for 20%; and winter, which accounts for 19%. Figure 2f shows the annual mean diurnal cycle of the hourly probability density distribution ofT. On a daily timescale, the percentage substantially increases with time, and becomes a maximum of 15% at 1400-1459 BT, before decreasing gradually over time. The above research partly corresponds to the cloud amount statistics over Yangbajing (Huo and Lu, 2012). For the Yangbajing site, cloud amounts are higher in summer than in winter, and cloud frequencies are the highest during the afternoons in summer. Cloud amounts gradually increase throughout the morning and reach a peak in the late afternoon, after which they decrease gradually (Huo and Lu, 2012). We observed that the variation ofTis not always consistent with that of the cloud amount. This is because the macrophysical and microphysical properties of clouds also have a large effect on solar radiation; however, these effects are not easily quantified.

    Figure 2 Temporal distribution of the abnormal transmittance,T.

    3.2 Simulation

    In this study, to ensure better accuracy for examining the interplay of clouds and solar radiation, we performed simulations at a nonabsorbing wavelength in the visible spectrum (0.675 μm) and an absorbing wavelength in the near-infrared spectrum (2.13 μm) without considering the atmosphere. In order to convert the cloud water content to optical properties, we assumed that the cloud water was divided into droplets whose sizes follow a gamma droplet size distribution with an effective variance of 0.1. The Henyey-Greenstein scattering phase function with an asymmetry parameter of 0.85 was assumed throughout the cloud. For all calculations, the sun azimuth was set to 0° (in this study, 0° means that the sun’s rays are directed from the direction of increasingx), and the surface albedo was set to zero. The flux was normalized to 1 on a horizontal plane.

    Figure 3 shows two cloud fields. The largest value of the liquid water content was 4.26 g m?3for stratocumulus and 1.82 g m?3for cumulus clouds. With respect to the effective particle radius, the maximum was 24.18 μm for stratocumulus, and 14.44 μm for cumulus clouds. This paper only demonstrates the cloud optical depth at 0.67 μm, since the cloud optical depth in the visible and nearinfrared spectrum shows little change.

    Figure 4 shows the distributions of the shortwave fluxtransmittance of stratocumulus clouds. Figures 4a-d are at 0.675 μm, and Figs. 4e-h are at 2.13 μm. For each simulation at a certain wavelength, the solar zenith angle was 0° for Figs. 4a and 4e, 30° for Figs. 4b and 4f, 45° for Figs. 4c and 4g, and 60° for Figs. 4d and 4h. For the regions with white color, the transmittance was greater than 1.0, which means that the enhancement of the radiation caused by cloud cover is more evident than the reduced effect.Tat 0.675 μm was 0.727, 0.686, 0.631, and 0.543, respectively, andTat 2.13 μm was 0.556, 0.512, 0.457, and 0.375, respectively. It is obvious thatTdecreases as the solar zenith angle increases. At the same time, the cloud absorption strengthens with the increase of the solar zenith angle in the absorptive wavelength (not shown).

    Figure 3 (a, b) Liquid water content (g m?3), (c, d) effective particle radius (μm), and (e, f) optical depth at 0.67 μm of (a, c, e) stratocumulus and (b, d, f) cumulus. Note: the photographs corresponding to the cloud optical depth at 0.67 μm were adopted from I3RC: http://i3rc.gsfc. nasa.gov/cases_new.html.

    Figure 4 Shortwave flux transmittance of stratocumulus at (a-d) 0.675 μm and (e-h) 2.13 μm. Solar zenith angle: (a, e) 0°, (b, f) 30°, (c, g) 45°, and (d, h) 60°.

    When the solar zenith angle is 0°, the cloud field is in direct sunlight, and the I3RC-community-monte-carlo model is ideal for the simulation. The shortwave flux transmittance results agree well with the distribution pattern of the cloud optical depth. As the solar zenith angle increases, the shaded areas caused by the clouds become larger, and mutual influences internal to the clouds are more important, so the effects of the clouds’inhomogeneity on the solar radiation transfer become more obvious. As the solar zenith angle increases, the congruent relationship betweenTand the cloud optical depth becomes obscure, and the distribution ofTbecomes more uniform.

    The abnormal transmittance mainly presents at the edges of broken clouds and nearby clear-sky regions because of enhancements in the diffused radiation. For the stratocumulus clouds, the maximum transmittance was about 1.67 at 0.675 μm and 1.55 at 2.13 μm. For the 0.675 μm case, when the solar zenith angle was 0°, about 15% of the grid cells presented the abnormal transmittance, followed by 12% for an angle of 30°, 10% for 45°, and 5% for 60°. However, for the absorbing wavelength (2.13 μm), about 11% of the grid cells presented the abnormal transmittance when the solar zenith angle was 0°, followed by 9% for an angle of 30°, 7% for 45°, and 3% for 60°.

    Figure 5 displays the distribution of the shortwave flux transmittance for cumulus clouds. Figures 5a-d are at 0.675 μm, and Figs. 5e-h are at 2.13 μm. The maximum transmittance was about 1.30 at 0.675 μm and 1.23 at 2.13 μm. More than 70% of the grid cells displayed abnormal transmittance when the sun was high. The fluctuations of the cloud tops are very obvious, so there is always multiple scattering of light among the different cloud tops. As the solar zenith angle increases, more photons may enter the cloud fields from their sides, and photons lower in the cloud need to change direction only slightly to begin traveling upward so that transmission is decreased.

    4 Conclusion

    Using in situ data obtained at Yangbajing, we analyzed the appearance of the phenomenon whereby the surface global solar irradiance surpasses the extraterrestrial irradiance. Abnormal transmittance was observed on more than 54% of the days, and the peak value ofTwas around 1.34 during the observation. The number of occurrences of the abnormal transmittance during daytime reached as high as 151 for a single day, which shows that the impact of cloud 3D structures on solar radiation transfer is very significant in the Tibetan Plateau. The probability that the abnormal transmittance will appear is largest in summer, followed by spring, autumn, and winter. On a daily timescale, the abnormal transmittance occurs mostly around noon, local time.

    Figure 5 Shortwave flux transmittance of cumulus at (a-d) 0.675 μm and (e-h) 2.13 μm. Solar zenith angle: (a, e) 0°, (b, f) 30°, (c, g) 45°, and (d, h) 60°.

    In addition, the simulated results also showed that the abnormal transmittance commonly occurs in conditions where clear sky and clouds coexist, especially at the edges of broken clouds and near to regions with clear sky. The flux transmittance decreases as the solar zenith angle increases. For to the stratocumulus cloud, when the solar zenith angle was 0°, about 15% of the grid cells at 0.675 μm presented an abnormal transmittance, while about 11% did so at 2.13 μm. For the cumulus cloud, more than 70% of the grid cells displayed abnormal transmittance.

    This study used only virtual clouds as the model input. In the future, we may try to build a true cloud field based on ground observation and satellite products, and then use them as the model inputs to perform additional studies.

    Acknowledgements. The authors would like to thank Prof. Tamas VARNAI and Prof. Robert PINCUS for their many suggestions and discussions on the Monte Carlo model. This research is supported by the National Natural Science Foundation of China (Grant No. 41275040).

    Benner, T. C., and K. F. Evans, 2001: Three-dimensional solar radiative transfer in small tropical cumulus fields derived from high-resolution imagery,J. Geophys. Res., 106(D14), 14975-14914.

    Cahalan, R. F., L. Oreopoulos, A. Marshak, et al., 2005: The I3RC: Bringing together the most advanced radiative transfer tools for cloudy atmospheres,Bull. Amer. Meteor. Soc., 86(9), 1275-1293.

    Davis, A. B., and A. Marshak, 2010: Solar radiation transport in the cloudy atmosphere: A 3D perspective on observations and climate impacts,Rep. Prog. Phys., 73(2), 026801, doi:10.1088/ 0034-4885/73/2/026801.

    Evans, K. F., and A. Marshak, 2005: Numerical methods, in:3D Radiative Transfer in Cloudy Atmospheres, Davis, A. B., and A. Marshak (Eds.), Springer, Berlin, 261-274.

    Geger, M., L. Diabate, L. Menard, et al., 2002: A web service for controlling the quality of measurements of global solar irradiation,Solar Energy, 73(6), 475-480.

    Gimeno García, S., T. Trautmann, and V. Venema, 2012: Reduction of radiation biases by incorporating the missing cloud variability via downscaling techniques: A study using the 3-D MoCaRT model,Atmos. Meas. Tech. Discuss., 5(1), 1543-1573.

    Huo, J., and D. R. Lu, 2012: Cloud amount analysis at Yangbajing of Tibet in 2009-2010 using all-sky images,Climatic Environ. Res.(in Chinese), 17 (4), 393-399.

    Kurosaki, Y., and F. Kimura, 2002: Relationship between topography and daytime cloud activity around Tibetan Plateau,J. Meteor. Soc. Japan, 80(6), 1139-1355.

    Liou, K. N., 2002:An Introduction to Atmospheric Radiation(2nd ed.), Academic Press, Boston, 583pp.

    Maddux, B., S. A. Ackeman, and S. Platnick, 2010: Viewing geometry dependencies in MODIS cloud products,J. Atmos. Oceanic Technol., 27(9), 1519-1528.

    Moeng, C. H., W. R. Cotton, B. Stevens, et al., 1996: Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes,Bull. Amer. Meteor. Soc., 77(2), 261-278.

    Pfister, G., R. L. Mckenzie, J. B. Liley, et al., 2003: Cloud coverage based on all-sky imaging and its impact on surface solar irradiance,J. Appl. Meteor., 42(10), 1421-1434.

    Pincus, R., and K. F. Evans., 2009: Computational cost and accuracy in calculating three-dimensional radiative transfer: Results for new implementations of Monte Carlo and SHDOM,J. Atmos. Sci., 66, 3131-3146.

    Pincus, R., C. Hannay, and K. F. Evans, 2005: The accuracy of determining three-dimensional radiative transfer effects in cumulus clouds using ground-based profiling instruments,J. Atmos. Sci., 62(7), 2284-2293.

    Scheirer, R., and A. Macke, 2003: Cloud inhomogeneity and broadband solar fluxes,J. Geophys. Res., 108(D19), doi:10.1029/2002 JD003321.

    Segal, M, and J. Davis, 1992: The impact of deep cumulus reflection on the ground-level global irradiance,J. Appl. Meteor., 31 (2), 217-222.

    Stevens, B., and D. H. Lenschow, 2001: Observations, experiments, and large eddy simulation,Bull. Amer. Meteor., 82(2), 283-294.

    Thiel, S., K. Steiner, and H. K. Seidlitz, 1997: Modification of global erythemally effective irradiance by clouds,Photochem. Photobiol., 65(6), 969-973.

    Yang, K., J. He, W. J. Tang, et al., 2010: On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau,Agric. Forest Meteor., 150, 38-46.

    :Wang, L.-D., D.-R. Lü, and J. Huo, 2014: Observation and simulation of abnormal transmittance over Yangbajing, Tibet,Atmos. Oceanic Sci. Lett., 7, 190-197,

    10.3878/j.issn.1674-2834.13.0086.

    Received 30 October 2013; revised 2 December 2013; accepted 30 December 2013; published 16 May 2014

    Lü Da-Ren, ludr@mail.iap.ac.cn

    久久久久久九九精品二区国产 | 19禁男女啪啪无遮挡网站| 色播亚洲综合网| aaaaa片日本免费| 日韩大尺度精品在线看网址| 每晚都被弄得嗷嗷叫到高潮| 哪里可以看免费的av片| 午夜老司机福利片| 搡老熟女国产l中国老女人| 少妇粗大呻吟视频| 亚洲精品国产精品久久久不卡| 久久午夜亚洲精品久久| 啦啦啦韩国在线观看视频| 久久香蕉精品热| 少妇被粗大的猛进出69影院| 男插女下体视频免费在线播放| 国产av一区在线观看免费| 婷婷亚洲欧美| 巨乳人妻的诱惑在线观看| 我要搜黄色片| 人妻久久中文字幕网| 99国产精品一区二区三区| 久久久国产欧美日韩av| 亚洲一码二码三码区别大吗| 国产精品久久电影中文字幕| 757午夜福利合集在线观看| 亚洲国产精品sss在线观看| 黄色视频,在线免费观看| 99热6这里只有精品| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 女生性感内裤真人,穿戴方法视频| 久久午夜亚洲精品久久| 99国产精品99久久久久| 亚洲av成人不卡在线观看播放网| 免费看美女性在线毛片视频| 又爽又黄无遮挡网站| 搡老熟女国产l中国老女人| 午夜福利在线在线| 精品久久久久久久毛片微露脸| 国产成人av教育| 看片在线看免费视频| 每晚都被弄得嗷嗷叫到高潮| 色综合站精品国产| 99久久国产精品久久久| 午夜日韩欧美国产| 国产成人系列免费观看| 色精品久久人妻99蜜桃| 高潮久久久久久久久久久不卡| 999久久久精品免费观看国产| 免费在线观看完整版高清| 俺也久久电影网| 成人18禁高潮啪啪吃奶动态图| 久久香蕉精品热| 黄片小视频在线播放| 男插女下体视频免费在线播放| xxx96com| www.自偷自拍.com| 亚洲九九香蕉| 精品久久久久久成人av| 熟女电影av网| 久久久国产精品麻豆| 中文字幕精品亚洲无线码一区| 国产成人精品久久二区二区免费| 99国产极品粉嫩在线观看| 亚洲人成77777在线视频| 老司机午夜十八禁免费视频| 欧美精品啪啪一区二区三区| 国产91精品成人一区二区三区| 日本一二三区视频观看| 在线国产一区二区在线| 日本五十路高清| 香蕉丝袜av| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩东京热| 日韩 欧美 亚洲 中文字幕| cao死你这个sao货| 亚洲av成人精品一区久久| 我的老师免费观看完整版| 亚洲精品国产精品久久久不卡| 国产麻豆成人av免费视频| 人人妻人人看人人澡| 人人妻人人澡欧美一区二区| 啪啪无遮挡十八禁网站| 淫妇啪啪啪对白视频| 日韩欧美 国产精品| 亚洲av日韩精品久久久久久密| 精品无人区乱码1区二区| 亚洲一区二区三区不卡视频| 久久精品国产亚洲av香蕉五月| a在线观看视频网站| 两个人看的免费小视频| 99国产极品粉嫩在线观看| 91av网站免费观看| 一本精品99久久精品77| 日韩欧美国产一区二区入口| 人成视频在线观看免费观看| 久久久精品大字幕| 嫩草影视91久久| 国产精品精品国产色婷婷| 狂野欧美激情性xxxx| 国产精品一区二区三区四区免费观看 | 最新美女视频免费是黄的| 国产午夜福利久久久久久| 黄色视频不卡| 婷婷丁香在线五月| 色哟哟哟哟哟哟| 琪琪午夜伦伦电影理论片6080| 在线观看免费日韩欧美大片| 麻豆一二三区av精品| 最好的美女福利视频网| 亚洲av熟女| 国产高清videossex| 欧美三级亚洲精品| 亚洲精品粉嫩美女一区| 91麻豆av在线| 人妻夜夜爽99麻豆av| 九九热线精品视视频播放| 性欧美人与动物交配| 精品福利观看| 亚洲成人国产一区在线观看| 欧美日韩一级在线毛片| 欧美不卡视频在线免费观看| 久久中文看片网| 亚洲国产色片| 麻豆成人av视频| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添av毛片| av免费在线看不卡| 欧美丝袜亚洲另类| 99视频精品全部免费 在线| 一边亲一边摸免费视频| 成人亚洲精品av一区二区| 国内精品一区二区在线观看| 久久人人爽人人爽人人片va| 成人亚洲精品av一区二区| 高清午夜精品一区二区三区 | 亚洲欧美日韩东京热| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品456在线播放app| 变态另类成人亚洲欧美熟女| 久久久精品欧美日韩精品| 国产精品蜜桃在线观看 | 亚洲av熟女| 国产大屁股一区二区在线视频| 边亲边吃奶的免费视频| 久久韩国三级中文字幕| 赤兔流量卡办理| 精品久久久久久久久亚洲| 一本久久精品| 国产成人freesex在线| 91麻豆精品激情在线观看国产| 简卡轻食公司| 波野结衣二区三区在线| 国产一区二区三区在线臀色熟女| 直男gayav资源| 日韩欧美 国产精品| 在线观看美女被高潮喷水网站| 国产精品永久免费网站| 日本五十路高清| 色播亚洲综合网| 久久久精品大字幕| av在线观看视频网站免费| 卡戴珊不雅视频在线播放| 精品久久久噜噜| 日本与韩国留学比较| 一区二区三区免费毛片| 国产伦一二天堂av在线观看| 91麻豆精品激情在线观看国产| 国产麻豆成人av免费视频| 国产成人freesex在线| 国产精品,欧美在线| 可以在线观看的亚洲视频| 人妻制服诱惑在线中文字幕| 欧美性猛交黑人性爽| 中文字幕免费在线视频6| 不卡一级毛片| 日韩av在线大香蕉| 亚洲丝袜综合中文字幕| 亚洲综合色惰| 极品教师在线视频| 日韩av不卡免费在线播放| 亚洲国产精品成人综合色| 中文字幕久久专区| 久久久成人免费电影| 国产成人aa在线观看| 欧美不卡视频在线免费观看| АⅤ资源中文在线天堂| 在线播放国产精品三级| 91av网一区二区| 男插女下体视频免费在线播放| 在线播放无遮挡| 亚洲综合色惰| 国产精品蜜桃在线观看 | 能在线免费看毛片的网站| 亚洲人成网站在线观看播放| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 日产精品乱码卡一卡2卡三| 国产精品久久视频播放| 欧美变态另类bdsm刘玥| 爱豆传媒免费全集在线观看| 嘟嘟电影网在线观看| 国产成人精品久久久久久| 日本免费a在线| 亚洲av成人精品一区久久| 国产午夜精品久久久久久一区二区三区| 一本久久精品| 99久久九九国产精品国产免费| 九色成人免费人妻av| 精品日产1卡2卡| 国产精品综合久久久久久久免费| 91久久精品国产一区二区成人| 一级毛片aaaaaa免费看小| 少妇被粗大猛烈的视频| 99热这里只有是精品在线观看| 高清午夜精品一区二区三区 | 九九在线视频观看精品| av视频在线观看入口| 大又大粗又爽又黄少妇毛片口| 91av网一区二区| 国产片特级美女逼逼视频| 久久鲁丝午夜福利片| 国产成人福利小说| 国产色爽女视频免费观看| 国产精品福利在线免费观看| 成人性生交大片免费视频hd| 夜夜看夜夜爽夜夜摸| 午夜亚洲福利在线播放| 国产成人午夜福利电影在线观看| 久久人人爽人人爽人人片va| 国产又黄又爽又无遮挡在线| 少妇被粗大猛烈的视频| 欧美丝袜亚洲另类| 久久精品人妻少妇| 久久久色成人| 国产精品久久久久久久电影| 性插视频无遮挡在线免费观看| 欧美高清成人免费视频www| 色吧在线观看| 日本在线视频免费播放| 3wmmmm亚洲av在线观看| 成人鲁丝片一二三区免费| 寂寞人妻少妇视频99o| 久久6这里有精品| a级一级毛片免费在线观看| 免费av毛片视频| 干丝袜人妻中文字幕| 亚洲电影在线观看av| 日日干狠狠操夜夜爽| 亚洲第一电影网av| 欧美区成人在线视频| 中国国产av一级| 成人亚洲精品av一区二区| 网址你懂的国产日韩在线| 国产精品爽爽va在线观看网站| 观看免费一级毛片| 成人国产麻豆网| 日韩一区二区三区影片| 欧美一区二区精品小视频在线| 在线观看午夜福利视频| 三级经典国产精品| 女人十人毛片免费观看3o分钟| 波多野结衣巨乳人妻| 亚洲一级一片aⅴ在线观看| 婷婷色av中文字幕| 久久热精品热| 麻豆国产av国片精品| 国产精品1区2区在线观看.| 偷拍熟女少妇极品色| 国产精品电影一区二区三区| 亚洲国产欧洲综合997久久,| 十八禁国产超污无遮挡网站| 国产高清激情床上av| 啦啦啦啦在线视频资源| 日本五十路高清| 亚洲国产色片| 我的老师免费观看完整版| 日本爱情动作片www.在线观看| 99久久精品一区二区三区| 丰满人妻一区二区三区视频av| 一卡2卡三卡四卡精品乱码亚洲| 99国产极品粉嫩在线观看| 亚洲欧美日韩高清专用| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久久久久av不卡| 婷婷亚洲欧美| 日日摸夜夜添夜夜爱| 中国美白少妇内射xxxbb| 国产成人福利小说| 成人一区二区视频在线观看| 又粗又硬又长又爽又黄的视频 | 黄片无遮挡物在线观看| 成人av在线播放网站| 夜夜看夜夜爽夜夜摸| 夜夜爽天天搞| 人人妻人人澡人人爽人人夜夜 | 免费观看a级毛片全部| 人妻少妇偷人精品九色| 一进一出抽搐gif免费好疼| 春色校园在线视频观看| 国产亚洲精品久久久久久毛片| 日韩av在线大香蕉| 国产精品.久久久| 校园人妻丝袜中文字幕| 成人永久免费在线观看视频| 青青草视频在线视频观看| 午夜视频国产福利| 欧美性猛交黑人性爽| 青春草视频在线免费观看| 日韩制服骚丝袜av| 成人亚洲精品av一区二区| 日韩一本色道免费dvd| 禁无遮挡网站| 亚洲中文字幕日韩| 一本久久精品| 免费观看在线日韩| 一边摸一边抽搐一进一小说| 亚洲成人av在线免费| 狠狠狠狠99中文字幕| 亚洲成av人片在线播放无| 日韩三级伦理在线观看| 日韩欧美国产在线观看| 色噜噜av男人的天堂激情| 夜夜夜夜夜久久久久| 亚洲av中文av极速乱| 午夜爱爱视频在线播放| 国产乱人视频| 秋霞在线观看毛片| 自拍偷自拍亚洲精品老妇| 中文字幕精品亚洲无线码一区| 一区二区三区高清视频在线| 久久久色成人| 99久久久亚洲精品蜜臀av| 最近手机中文字幕大全| 日本成人三级电影网站| 色播亚洲综合网| 一个人看视频在线观看www免费| 成年女人永久免费观看视频| 国产激情偷乱视频一区二区| 国产亚洲91精品色在线| 日本三级黄在线观看| 精华霜和精华液先用哪个| 欧美3d第一页| 日韩中字成人| 日本三级黄在线观看| 热99在线观看视频| 国产精品久久电影中文字幕| 一区福利在线观看| 亚洲美女搞黄在线观看| 久久精品夜夜夜夜夜久久蜜豆| 成人亚洲精品av一区二区| 3wmmmm亚洲av在线观看| 国产精品伦人一区二区| 91av网一区二区| 一进一出抽搐动态| 亚洲精品自拍成人| 麻豆av噜噜一区二区三区| 只有这里有精品99| 蜜桃亚洲精品一区二区三区| avwww免费| 校园春色视频在线观看| 精品一区二区免费观看| 精品人妻一区二区三区麻豆| 免费不卡的大黄色大毛片视频在线观看 | 日韩成人av中文字幕在线观看| 国产成人一区二区在线| 成人午夜高清在线视频| av福利片在线观看| 国产亚洲av嫩草精品影院| av.在线天堂| 毛片女人毛片| 国产爱豆传媒在线观看| 欧美色欧美亚洲另类二区| 最好的美女福利视频网| 中出人妻视频一区二区| 草草在线视频免费看| 久久精品国产鲁丝片午夜精品| www.色视频.com| 一本精品99久久精品77| 亚洲av成人av| 午夜视频国产福利| 一级毛片久久久久久久久女| 色综合色国产| 99riav亚洲国产免费| 你懂的网址亚洲精品在线观看 | 日韩视频在线欧美| 久久久久久久午夜电影| 国产伦在线观看视频一区| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放 | 亚洲美女搞黄在线观看| 久久中文看片网| 99热这里只有是精品50| 国产精品日韩av在线免费观看| 午夜视频国产福利| 少妇裸体淫交视频免费看高清| 亚洲,欧美,日韩| 最近中文字幕高清免费大全6| www.av在线官网国产| 六月丁香七月| 欧美三级亚洲精品| 国产麻豆成人av免费视频| 久久久午夜欧美精品| 国产精品一二三区在线看| 亚洲欧美日韩无卡精品| 日本三级黄在线观看| 免费电影在线观看免费观看| 一级毛片aaaaaa免费看小| 丰满乱子伦码专区| 搞女人的毛片| 午夜福利在线观看吧| 国产熟女欧美一区二区| 人妻少妇偷人精品九色| 日本与韩国留学比较| 如何舔出高潮| av免费在线看不卡| a级一级毛片免费在线观看| 久久久精品欧美日韩精品| 特级一级黄色大片| 久久午夜福利片| 你懂的网址亚洲精品在线观看 | 99久久精品一区二区三区| 淫秽高清视频在线观看| 日韩,欧美,国产一区二区三区 | 亚洲第一电影网av| 国产亚洲91精品色在线| 国产精品不卡视频一区二区| 日日摸夜夜添夜夜爱| 在线观看免费视频日本深夜| 国产人妻一区二区三区在| 日产精品乱码卡一卡2卡三| 91精品国产九色| 久久精品国产亚洲av香蕉五月| 丝袜喷水一区| 淫秽高清视频在线观看| 黄色配什么色好看| 日本一二三区视频观看| 亚洲精品日韩在线中文字幕 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品av视频在线免费观看| 国产又黄又爽又无遮挡在线| 久久精品综合一区二区三区| 麻豆成人av视频| 91久久精品国产一区二区成人| 波多野结衣高清无吗| 国产美女午夜福利| 欧美色视频一区免费| 精品人妻偷拍中文字幕| 国产精品久久久久久久久免| 高清日韩中文字幕在线| 国产精品野战在线观看| 国产黄片视频在线免费观看| 欧美区成人在线视频| av女优亚洲男人天堂| 蜜臀久久99精品久久宅男| 人妻久久中文字幕网| 免费电影在线观看免费观看| 午夜免费男女啪啪视频观看| 女人十人毛片免费观看3o分钟| 插逼视频在线观看| 亚洲人与动物交配视频| 3wmmmm亚洲av在线观看| 国产成人a区在线观看| 成人特级av手机在线观看| 免费看光身美女| 18禁裸乳无遮挡免费网站照片| 国产精品综合久久久久久久免费| 一级av片app| 美女国产视频在线观看| 赤兔流量卡办理| 岛国在线免费视频观看| 国产极品精品免费视频能看的| 午夜激情福利司机影院| 日韩精品有码人妻一区| 大又大粗又爽又黄少妇毛片口| 青春草亚洲视频在线观看| 亚洲色图av天堂| 老司机影院成人| 国产三级中文精品| 内地一区二区视频在线| 亚洲内射少妇av| 亚洲在久久综合| 亚洲va在线va天堂va国产| 日韩人妻高清精品专区| 校园春色视频在线观看| 少妇的逼好多水| 久久久久久久久久成人| 男人的好看免费观看在线视频| 久久精品人妻少妇| 99热这里只有精品一区| 国产男人的电影天堂91| 国产免费男女视频| 久久国内精品自在自线图片| 久久99蜜桃精品久久| 99久久成人亚洲精品观看| 亚洲欧洲日产国产| 伦理电影大哥的女人| 麻豆国产av国片精品| 亚洲欧美日韩无卡精品| 国产在线精品亚洲第一网站| 国产精品女同一区二区软件| 在线观看66精品国产| 亚洲成人久久爱视频| 黄片wwwwww| 啦啦啦观看免费观看视频高清| 少妇裸体淫交视频免费看高清| 小说图片视频综合网站| 少妇熟女欧美另类| 99热网站在线观看| 日韩成人伦理影院| 一本久久精品| 久久人人精品亚洲av| 一本精品99久久精品77| 国产精品精品国产色婷婷| 亚洲成人av在线免费| 在线免费观看不下载黄p国产| 精品国产三级普通话版| 看片在线看免费视频| 卡戴珊不雅视频在线播放| 91久久精品电影网| 99热这里只有精品一区| 成年女人永久免费观看视频| 黄色一级大片看看| 精品人妻熟女av久视频| 亚洲欧美成人综合另类久久久 | 此物有八面人人有两片| 久久久久久久久久久丰满| 久久久久久大精品| 精品不卡国产一区二区三区| 欧美色欧美亚洲另类二区| 99热网站在线观看| 中国美白少妇内射xxxbb| 国产成人影院久久av| 久久久午夜欧美精品| 精品人妻一区二区三区麻豆| 国产精品精品国产色婷婷| 99视频精品全部免费 在线| 日本撒尿小便嘘嘘汇集6| 国产精品一及| 久久久久久久久久成人| 久久久色成人| 国产不卡一卡二| a级一级毛片免费在线观看| av卡一久久| 久久久午夜欧美精品| 一本精品99久久精品77| 亚洲av一区综合| 日本黄大片高清| 亚洲av不卡在线观看| 亚洲精品粉嫩美女一区| 亚洲av二区三区四区| 一级黄片播放器| av免费在线看不卡| 欧美激情国产日韩精品一区| 日本欧美国产在线视频| 少妇被粗大猛烈的视频| 亚洲av中文字字幕乱码综合| 国模一区二区三区四区视频| 日本与韩国留学比较| 成人美女网站在线观看视频| 成人午夜高清在线视频| ponron亚洲| 九九爱精品视频在线观看| 一级毛片电影观看 | 少妇高潮的动态图| 最近的中文字幕免费完整| 亚洲欧美成人综合另类久久久 | 不卡视频在线观看欧美| 在现免费观看毛片| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久久中文| 亚洲va在线va天堂va国产| 日本与韩国留学比较| 久久久a久久爽久久v久久| 69人妻影院| 波野结衣二区三区在线| 欧美色视频一区免费| 国产av在哪里看| 内地一区二区视频在线| 最近视频中文字幕2019在线8| 全区人妻精品视频| 热99re8久久精品国产| 婷婷色综合大香蕉| 男女那种视频在线观看| 女人十人毛片免费观看3o分钟| 91午夜精品亚洲一区二区三区| 精品人妻一区二区三区麻豆| 日韩成人av中文字幕在线观看| 一区二区三区高清视频在线| 国产av一区在线观看免费| 乱人视频在线观看| 我的老师免费观看完整版| 亚洲不卡免费看| 欧美一区二区亚洲| 男的添女的下面高潮视频| 天堂影院成人在线观看| 亚洲av第一区精品v没综合| 午夜福利高清视频| 国产大屁股一区二区在线视频| 狠狠狠狠99中文字幕| 亚洲精品日韩在线中文字幕 | 噜噜噜噜噜久久久久久91| 午夜福利在线观看免费完整高清在 | 99久久久亚洲精品蜜臀av| 久久久久久久久久久丰满| 我要搜黄色片| 精品人妻偷拍中文字幕| 最近最新中文字幕大全电影3| 亚洲av熟女| 久久99精品国语久久久| 啦啦啦韩国在线观看视频| 最后的刺客免费高清国语| 3wmmmm亚洲av在线观看|