• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Projections of Global Mean Surface Temperature Under Future Emissions Scenarios Using a New Predictive Technique

    2014-03-30 07:53:55WANGGeLiandYANGPeiCai

    WANG Ge-Li and YANG Pei-Cai

    Key Laboratory of Middle Atmosphere and Global Environment Observations, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    Projections of Global Mean Surface Temperature Under Future Emissions Scenarios Using a New Predictive Technique

    WANG Ge-Li and YANG Pei-Cai

    Key Laboratory of Middle Atmosphere and Global Environment Observations, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    Using numerical model simulations, global surface temperature is projected to increase by 1°C to 4°C during the 21st century, primarily as a result of increasing concentrations of greenhouse gases. In the present study, a predictive technique incorporating driving forces into an observation time series was used to project the global mean surface temperature under four representative scenarios of future emissions over the 21st century.

    climate prediction, driving forces, projection

    1 Introduction

    Predictions of temperature rise during the 21st century are uncertain. This is because the sensitivity of the climate system to changing atmospheric greenhouse gas concentrations, as well as the rate of ocean heat uptake, are poorly quantified; and also because future influences on the climate of anthropogenic, as well as natural origin, are difficult to predict (Stott and Kettleborough, 2002).

    The Intergovernmental Panel on Climate Change (IPCC), in their Special Report on Emissions Scenarios (SRES), has developed a wide range of future emissions scenarios. Multi-model averages and assessed ranges for surface warming are presented in Fig. 1. In the IPCC (2007) report, approximate CO2equivalent concentrations corresponding to the computed radiative forcing due to anthropogenic greenhouse gases and aerosols in 2100 for the SRES B1, A1T, B2, A1B, A2, and A1FI illustrative marker scenarios are approximately 600, 700, 800, 850, 1250, and 1550 ppm, respectively. Scenarios B1, A1B, A2, and 20C have been the focus of model intercomparison studies and many of these results are assessed in the report. Models predict that by 2100 the global mean surface temperature change will be 1.0°C to 4°C.

    Climate models are mathematically-based models that attempt to calculate the climate, its variability, and its systematic changes on a first-principles basis. On timescales of 10-50 years (and longer), decadal climate forecasts are difficult to make with general circulation climate models due to their many uncertainties, such as model resolution and land-use or vegetation feedback (Gao et al.,2003, 2006; Jiang et al., 2011).

    A compatible approach to numerical model simulations for assessing recent climate change and forecasting future change is the direct analysis of surface temperature observations. We incorporated external forces to establish a nonlinear time series prediction to develop global surface temperature projections for the 21st century under the same scenarios as SRES provided by IPCC (2007).

    The following section gives a brief introduction to the algorithm for establishing the prediction model. Results from prediction experiments on global temperature variation incorporating greenhouse gas emissions defined by SRES and solar irradiation are presented next. We finish by providing a brief discussion of the results.

    2 Method

    The dynamics of the reconstructed trajectory is equivalent to that of the original system that generated the time series, and it is now common practice to use this time series and its successive time shifts (delays) as coordinates of a vector time series, based on this trajectory, enabling the establishment of a model to predict the future state of the system.

    For convenience, we assume a non-stationary process composed of three series,and,, with the former being the state variable (global temperature variation in this study), and the latter two for external forcings (solar irradiance and greenhouse gas emissions). With a selected time lag,τ, we embed the time series in anm1+m2+ m2dimensional phase space and express the reconstructed state trajectory as

    or simply as

    Figure 1 Scenarios for Green House Gases (GHG) emissions from 2000 to 2100 (in the absence of additional climate policies) and projections of surface temperatures. Left panel: Global GHG emissions (in GtCO2-eq) in the absence of climate policies: six illustrative Special Report on Emissions Scenarios (SRES) marker scenarios (colored lines) and the 80th percentile range of recent scenarios published since SRES (post-SRES) (gray shaded area). Dashed lines show the full range of post-SRES scenarios. The emissions include CO2, CH4, N2O, and F-gases. Right panel: Solid lines are multi-model global averages of surface warming for scenarios A2, A1B, and B1, shown as continuations of the 20th century simulations. These projections also take into account emissions of short-lived GHGs and aerosols. The pink line is not a scenario, but represents Atmosphere-Ocean General Circulation Model (AOGCM) simulations, where atmospheric concentrations are held constant at year-2000 values (from IPCC (2007)).

    wherefpis some desired mapping, assumed to be a quadratic polynomial in this study;is the fitting error; and p is the prediction step, which was considered as 1 in the present study.The next task is to find the cost function,, when it reaches its minimum value. For more details, refer to the studies of Farmer and Sidorowich (1987), Casdagli (1989), and Yang et al. (2000). The above approach is successful in improving prediction when forcings are included in “ideal” stationary systems, such as the Lorenz system, a logistic model, or global temperature over seasonal timescales, including the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO), the El Ni?o/Southern Oscillation (ENSO), and the North Pacific Index (NPI), variability, which suggests that these major climate modes or forcings play a significant role in influencing the global temperature over decadal time scales (Wang and Yang, 2010; Wang et al., 2012). In the present study, the approach was extended to project the global temperature throughout the rest of the 21st century.

    3 Results

    Using the above approach, and recent data comprising 160 years of global annual mean surface temperature variations, a projection of global temperature variations for the 21st century was produced. The aim of the 20-year (1991-2010) annual temperature variation prediction experiment was to illustrate and test the new approach. Data were divided into two parts: the preceding 140 points were applied to construct the predictive model, and the following 20 points were used to test the accuracy of the prediction. The global mean surface air temperature variation was predicted for 1991-2010. The parameters used for building the model were assigned the following values: the time lag,τ, was 1; the embedding dimensions ofTiandm1were taken from 3 to 7; and the embedding dimensions of all four of the driving forces ofm2were set to be either 0 (for external forcings not considered) or in the range from 3 to 5 (for external forcings considered). The results were averaged over the embedding dimensions, and the prediction results of the global mean surface air temperature variation with or without driving forces and observation values are shown in Fig. 2. Figure 2a gives the comparison between observation and prediction for this period; Fig. 2b gives the error between the observation and prediction depending on the prediction step; and Fig. 2c shows the dependence of the root- mean-square error (RMSE) on the prediction steps during the period 1991-2010 with or without considering external forcings. It can be seen that the RMSE values that incorporate forcings were much lower than those without forcings, and also the growth in the error rate for prediction steps with forcings was lower than that without forcings. This illustrates again that the introduction of driving forces to prediction models can yield an obvious improvement in their accuracy, and also gives us the confidence to project the global temperature variation under the different scenarios.

    Experiments were performed to project the global mean temperature variation over the 21st century under four representative scenarios for future greenhouse gas emissions (B1, A1B, A2, 20C) provided by IPCC (2007) and solar radiation data provided by the Active Cavity Radiometer Irradiance Monitor Satellite (ACRIM, which monitors total solar irradiance). It was assumed that solar activity will obey an 11-yr period over the next 100 years. Figure 3 shows the externalforcings taken into account in the study; the same global greenhouse gas emissions for different scenarios were used in the experiments (see left graph). However, for the solar activity, the 11-yr period variability was assumed from 2010 to 2100, relying on the last 11 values from ACRIM (see right panel of Fig. 3).

    Figure 2 (a) Predictive comparison between observation and prediction during 1991 to 2010; (b) Error observation and prediction; (c) RMSE dependent on prediction steps with or without forcings input.

    The parameters used for building the model were all set to the same values as the above experiments. The projection results under different scenarios (B1, A1B, A2, 20C) are shown in Fig. 4. It can be seen that the results have the same trend as the results in IPCC (2007), but the magnitude of the warming over the 21st century is not as high as the results in IPCC (2007). Our results suggest that the global mean surface temperature variation may increase by 0°C to 1.5°C during the 21st century under the four different scenarios.

    4 Discussion

    Figure 3 External forcings controlled in the experiments. The left panel shows the same scenarios for global greenhouse gas emissions as IPCC (2007). The right panel shows the solar activity considered in this study; the solid line represents observations by Active Cavity Radiometer Irradiance Monitor Satellite (ACRIM); the dashed line is the assumption over the remainder of the century.

    Figure 4 Projection of global mean temperature variation over the 21st century.

    During the 20th century, the global surface temperature increased by 0.7°C, and it is projected to increase by a further 1°C to 4°C during the 21st century, primarily as a result of increasing concentrations of greenhouse gases (IPCC, 2007). The IPCC points out that continued greenhouse gas emissions at or above current rates will cause further warming and induce many changes in the global climate system during the 21st century, which are very likely be larger than those observed during the 20th century. In the present reported work, we attempted to develop a compatible approach to numerical model simulations to project global mean temperatures under four representative scenarios of future emissions over the 21st century using global temperature time series. The results suggest that global mean temperatures may rise by 0°C to 1.5°C under the four representative scenarios of future emissions. It is also noted that this approach is needed for a further study on new emissions scenarios of the Representative Concentration Pathways.

    Nonlinear prediction is generally successful in identifying chaos and nonlinearity in data because it uses all available points, unlike other methods that exploit only a subset of available points in the attractor (Sugihara and May, 1990, Feng et al., 2012). Predictions of global mean temperature over a long timescale are very uncertain, both because the climate possesses significant internal variability, and also because the sensitivity of the climate system to natural and anthropogenic effects is difficult to predict.

    Such an approach as that presented here may provide a compatible and direct window to study external forcings of the climate. Work in this area is in progress and will be reported in future publications.

    Acknowledgements. This work was supported by the National Natural Science Foundation of China (Grant Nos. 40890052 and 41275087). The authors are grateful to the anonymous referee and editor for their valuable suggestions.

    Casdagli, M., 1989: Nonlinear prediction of chaotic time series,Phys. D, 35, 335-356.

    Farmer, J. D., and J. Sidorowich, 1987: Predicting chaotic time series,Phys. Rev. Lett., 59, 845-848.

    Feng, G. L., W. Hou, R. Zhi, et al., 2012: Detection, Diagnosis, and Predictability Research of Extreme Climate Events(in Chinese), Science Press, Beijing, 350pp.

    Gao, X. J., Y. Luo, Z. C. Zhao, et al, 2003: Simulation of the impacts of land use changes on climate in China by a regional climate model,Adv. Atmos. Sci., 20, 583-592.

    Gao, X. J., Y. Xu, Z. C. Zhao, et al., 2006: On the role of resolution and topography in the simulation of East Asia precipitation,Theor. Appl. Climatol., 86, 173-185, doi:10.1007/s00704-005-0214-4.

    IPCC, 2007:Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al. (Eds.), Cambridge University Press, Cambridge and New York, 104pp.

    Jiang, D., Y. Zhang, and X. Lang, 2011: Vegetation feedback under future global warming,Theor. Appl. Climatol., 106, 211-227.

    Stott, A., and A. Kettleborough, 2002: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise,Nature, 416(6882), 723-726.

    Sugihara, G., and R. May, 1990: Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series,Nature, 344, 734-741.

    Wang, G. L., and P. C. Yang, 2010: A recent approach incorporating external forces to predict nonstationary processes,Atmos. Oceanic Sci. Lett., 3, 151-154.

    Wang, G. L., P. C. Yang, X. J. Zhou, et al., 2012: Directional influences on global temperature prediction,Geophys. Res. Lett., 39, L13704, doi:10.1029/2012 GL052149.

    Yang, P. C., X. J. Zhou, and J. C. Bian, 2000: A nonlinear regional prediction experiment on a short-range climatic process of the atmospheric ozone,J. Geophys. Res., 105, 12253-12258.

    :Wang, G.-L., and P.-C. Yang, 2014: Projections of global mean surface temperature under future emissions scenarios using a new predictive technique,Atmos. Oceanic Sci. Lett., 7, 186-189,

    10.3878/j.issn.1674-2834.13.0101.

    Received 6 December 2013; revised 24 December 2013; accepted 24 December 2013; published 16 May 2014

    WANG Ge-Li, wgl@mail.iap.ac.cn

    欧美另类亚洲清纯唯美| 中文字幕人妻丝袜一区二区| 国产精品98久久久久久宅男小说| 波多野结衣巨乳人妻| 国产亚洲欧美98| 国产精品亚洲av一区麻豆| 美女扒开内裤让男人捅视频| 男男h啪啪无遮挡| aaaaa片日本免费| 欧美日韩亚洲综合一区二区三区_| or卡值多少钱| 久久久久久国产a免费观看| 国产精品免费一区二区三区在线| 亚洲av美国av| 一二三四社区在线视频社区8| 狠狠狠狠99中文字幕| 欧美一区二区精品小视频在线| 午夜久久久久精精品| 欧美另类亚洲清纯唯美| 免费一级毛片在线播放高清视频| 欧美人与性动交α欧美精品济南到| 搡老妇女老女人老熟妇| 国产一区二区三区视频了| av片东京热男人的天堂| 国产精品乱码一区二三区的特点| 脱女人内裤的视频| 淫妇啪啪啪对白视频| 看免费av毛片| 国产亚洲欧美98| 久久这里只有精品19| 国产黄色小视频在线观看| 国产三级在线视频| 亚洲精品在线美女| 精品不卡国产一区二区三区| 小说图片视频综合网站| 欧美精品亚洲一区二区| 亚洲最大成人中文| 搞女人的毛片| 在线观看66精品国产| 日韩精品中文字幕看吧| 欧美精品啪啪一区二区三区| 国产精品一区二区三区四区免费观看 | 又黄又粗又硬又大视频| 欧美av亚洲av综合av国产av| 欧美在线一区亚洲| 黄色丝袜av网址大全| 国产精品国产高清国产av| 美女午夜性视频免费| 18禁美女被吸乳视频| e午夜精品久久久久久久| 黄色毛片三级朝国网站| 此物有八面人人有两片| 成在线人永久免费视频| 99久久综合精品五月天人人| 亚洲av五月六月丁香网| 久久这里只有精品中国| 香蕉国产在线看| 亚洲第一电影网av| 国产精品免费视频内射| 国产欧美日韩精品亚洲av| 成人手机av| 好看av亚洲va欧美ⅴa在| 亚洲va日本ⅴa欧美va伊人久久| 久久欧美精品欧美久久欧美| 国产一区二区激情短视频| 一级作爱视频免费观看| 欧美高清成人免费视频www| 欧美+亚洲+日韩+国产| 国产精品一区二区三区四区久久| 在线观看免费午夜福利视频| 亚洲一区二区三区不卡视频| 村上凉子中文字幕在线| av超薄肉色丝袜交足视频| 国产精品久久电影中文字幕| 精品少妇一区二区三区视频日本电影| 天堂√8在线中文| 最近最新免费中文字幕在线| 亚洲在线自拍视频| 嫩草影视91久久| 九九热线精品视视频播放| 黄色片一级片一级黄色片| 亚洲av成人一区二区三| 美女免费视频网站| 久久精品91无色码中文字幕| 50天的宝宝边吃奶边哭怎么回事| www.自偷自拍.com| 国产黄色小视频在线观看| 色av中文字幕| 亚洲国产高清在线一区二区三| 在线免费观看的www视频| 亚洲五月婷婷丁香| 高潮久久久久久久久久久不卡| 999精品在线视频| 亚洲熟妇熟女久久| 欧美3d第一页| 曰老女人黄片| 99热只有精品国产| 国产成人一区二区三区免费视频网站| 欧美性长视频在线观看| 美女午夜性视频免费| 午夜福利在线观看吧| 国产真实乱freesex| 日本撒尿小便嘘嘘汇集6| 欧美乱码精品一区二区三区| 成人三级黄色视频| 久久性视频一级片| 黑人操中国人逼视频| 国产亚洲精品第一综合不卡| 狠狠狠狠99中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 国产高清视频在线观看网站| 很黄的视频免费| 女人爽到高潮嗷嗷叫在线视频| 无遮挡黄片免费观看| а√天堂www在线а√下载| 亚洲av电影不卡..在线观看| 精品国产超薄肉色丝袜足j| 深夜精品福利| 亚洲成a人片在线一区二区| 在线十欧美十亚洲十日本专区| 色噜噜av男人的天堂激情| 亚洲精品久久国产高清桃花| 黄色a级毛片大全视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av成人av| 午夜激情福利司机影院| 国语自产精品视频在线第100页| 丰满人妻一区二区三区视频av | 亚洲国产欧洲综合997久久,| 亚洲免费av在线视频| 成人高潮视频无遮挡免费网站| 国产精品香港三级国产av潘金莲| www.www免费av| 50天的宝宝边吃奶边哭怎么回事| 人人妻人人澡欧美一区二区| 最近最新中文字幕大全免费视频| 精品一区二区三区av网在线观看| 无遮挡黄片免费观看| 一级片免费观看大全| 国产又黄又爽又无遮挡在线| 亚洲成人精品中文字幕电影| 桃红色精品国产亚洲av| 一级毛片精品| av在线播放免费不卡| 丝袜人妻中文字幕| 看免费av毛片| av国产免费在线观看| 日韩高清综合在线| 亚洲午夜理论影院| 精品乱码久久久久久99久播| 久久久久久亚洲精品国产蜜桃av| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品中文字幕一二三四区| 亚洲国产精品久久男人天堂| 亚洲精品在线美女| av视频在线观看入口| 亚洲欧洲精品一区二区精品久久久| 我的老师免费观看完整版| 免费在线观看亚洲国产| 亚洲午夜精品一区,二区,三区| 丰满的人妻完整版| 亚洲欧美激情综合另类| 日韩精品中文字幕看吧| 国产欧美日韩精品亚洲av| 国产亚洲欧美98| 婷婷精品国产亚洲av| 男女床上黄色一级片免费看| 非洲黑人性xxxx精品又粗又长| www日本在线高清视频| 国产欧美日韩一区二区三| 99在线视频只有这里精品首页| 成人永久免费在线观看视频| 国产高清视频在线观看网站| 亚洲男人的天堂狠狠| 国产精品久久久久久久电影 | 亚洲av美国av| 欧美一级毛片孕妇| 少妇粗大呻吟视频| 中亚洲国语对白在线视频| 可以在线观看毛片的网站| 午夜影院日韩av| 亚洲精品久久国产高清桃花| 老司机深夜福利视频在线观看| 午夜免费观看网址| 亚洲人成伊人成综合网2020| 亚洲熟女毛片儿| 久久久久久久午夜电影| 日本三级黄在线观看| 国产爱豆传媒在线观看 | 国产99白浆流出| videosex国产| 日韩欧美国产在线观看| 男女午夜视频在线观看| 亚洲成av人片免费观看| 成人高潮视频无遮挡免费网站| 男女床上黄色一级片免费看| 99热这里只有精品一区 | 国产在线观看jvid| 男人的好看免费观看在线视频 | 男女视频在线观看网站免费 | 国产av在哪里看| 观看免费一级毛片| 久久久久久亚洲精品国产蜜桃av| 丁香六月欧美| 国产精品98久久久久久宅男小说| 不卡一级毛片| 好看av亚洲va欧美ⅴa在| 搡老岳熟女国产| 日日干狠狠操夜夜爽| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩精品网址| 国产一区二区在线观看日韩 | 18禁裸乳无遮挡免费网站照片| 91麻豆av在线| 国产精品一区二区免费欧美| 小说图片视频综合网站| 国产精品一区二区三区四区久久| 日本一二三区视频观看| 青草久久国产| 怎么达到女性高潮| 少妇熟女aⅴ在线视频| 99re在线观看精品视频| 欧美日韩乱码在线| 国内精品久久久久久久电影| e午夜精品久久久久久久| 亚洲一码二码三码区别大吗| 19禁男女啪啪无遮挡网站| 日韩大码丰满熟妇| 国产精品永久免费网站| 久久久久国产精品人妻aⅴ院| 成人三级黄色视频| 岛国在线免费视频观看| 夜夜夜夜夜久久久久| netflix在线观看网站| 欧美一区二区精品小视频在线| 国产午夜精品久久久久久| 午夜福利视频1000在线观看| 国产av一区在线观看免费| 岛国在线观看网站| 亚洲国产精品999在线| 久久精品国产亚洲av高清一级| 久久热在线av| 一区福利在线观看| 国产亚洲欧美98| 国产一级毛片七仙女欲春2| av视频在线观看入口| 看片在线看免费视频| 99久久精品热视频| 少妇的丰满在线观看| 久久婷婷成人综合色麻豆| cao死你这个sao货| 一区二区三区国产精品乱码| 长腿黑丝高跟| 国产人伦9x9x在线观看| 日韩欧美精品v在线| 久久午夜亚洲精品久久| 国产精品亚洲一级av第二区| 国产精品 国内视频| 欧美日韩国产亚洲二区| 天堂√8在线中文| 欧美国产日韩亚洲一区| 搡老岳熟女国产| 18禁黄网站禁片午夜丰满| 在线观看66精品国产| 一个人免费在线观看电影 | 亚洲成人免费电影在线观看| cao死你这个sao货| 99国产精品一区二区三区| 国产亚洲欧美在线一区二区| 一本精品99久久精品77| 久久亚洲精品不卡| 国产v大片淫在线免费观看| 亚洲成人久久性| 亚洲国产欧美一区二区综合| 欧美性长视频在线观看| 精品国产乱码久久久久久男人| 精品一区二区三区av网在线观看| 国产私拍福利视频在线观看| 精品久久久久久成人av| 美女大奶头视频| av福利片在线| 久久久久久免费高清国产稀缺| 成人午夜高清在线视频| 99国产精品一区二区三区| 九九热线精品视视频播放| 淫妇啪啪啪对白视频| 久久这里只有精品中国| 亚洲国产中文字幕在线视频| 久久久国产欧美日韩av| 美女高潮的动态| 日韩一本色道免费dvd| 国产成人影院久久av| 婷婷亚洲欧美| 免费看美女性在线毛片视频| 亚洲无线观看免费| 成人漫画全彩无遮挡| 精品国内亚洲2022精品成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文字幕av成人在线电影| 国产精华一区二区三区| 亚洲电影在线观看av| 免费人成视频x8x8入口观看| 欧美不卡视频在线免费观看| 少妇猛男粗大的猛烈进出视频 | 好男人视频免费观看在线| 久久精品国产亚洲av涩爱 | 国产白丝娇喘喷水9色精品| 日本免费a在线| 国产精品人妻久久久久久| av又黄又爽大尺度在线免费看 | 成人欧美大片| АⅤ资源中文在线天堂| 国产色爽女视频免费观看| 男女做爰动态图高潮gif福利片| 国产v大片淫在线免费观看| 久久99精品国语久久久| 久久99热6这里只有精品| 日韩人妻高清精品专区| 国产精品久久久久久精品电影小说 | 成人毛片60女人毛片免费| 一区二区三区免费毛片| 精品不卡国产一区二区三区| 99riav亚洲国产免费| 婷婷精品国产亚洲av| 久久6这里有精品| 内射极品少妇av片p| av在线天堂中文字幕| 日韩一区二区视频免费看| 国产男人的电影天堂91| 啦啦啦观看免费观看视频高清| 国产精品久久久久久精品电影| 中文字幕免费在线视频6| 久久人人精品亚洲av| 免费在线观看成人毛片| 欧美又色又爽又黄视频| 久久久久久久久久成人| 我的女老师完整版在线观看| 成年女人看的毛片在线观看| 国产高清有码在线观看视频| 国产成人freesex在线| 久久综合国产亚洲精品| 伊人久久精品亚洲午夜| 一区二区三区四区激情视频 | 一本久久中文字幕| 日本黄色视频三级网站网址| 男人和女人高潮做爰伦理| 亚洲人成网站在线播放欧美日韩| 一级毛片我不卡| 变态另类成人亚洲欧美熟女| 欧美成人一区二区免费高清观看| 国产高清不卡午夜福利| 春色校园在线视频观看| 欧美日韩一区二区视频在线观看视频在线 | 内地一区二区视频在线| 久久久成人免费电影| 直男gayav资源| 男人舔女人下体高潮全视频| 色尼玛亚洲综合影院| 26uuu在线亚洲综合色| 成年免费大片在线观看| 国产精品福利在线免费观看| 亚洲一区高清亚洲精品| 国产真实伦视频高清在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲真实伦在线观看| 精品无人区乱码1区二区| 亚洲精品日韩在线中文字幕 | 看非洲黑人一级黄片| 晚上一个人看的免费电影| 3wmmmm亚洲av在线观看| 成人鲁丝片一二三区免费| 免费观看在线日韩| 最后的刺客免费高清国语| 亚洲经典国产精华液单| 国产精品日韩av在线免费观看| 高清毛片免费看| 日韩制服骚丝袜av| 国产在线精品亚洲第一网站| 麻豆国产97在线/欧美| 青春草视频在线免费观看| 亚洲熟妇中文字幕五十中出| 午夜视频国产福利| 深爱激情五月婷婷| 久久精品国产亚洲av涩爱 | 永久网站在线| 国产老妇伦熟女老妇高清| 一区二区三区高清视频在线| 中文字幕精品亚洲无线码一区| 国产高潮美女av| 国模一区二区三区四区视频| 一级黄片播放器| 亚洲精品影视一区二区三区av| 少妇熟女欧美另类| 国产精品.久久久| 国产成人福利小说| 亚洲国产精品国产精品| 看非洲黑人一级黄片| 又爽又黄无遮挡网站| 在线观看av片永久免费下载| 插阴视频在线观看视频| 天天一区二区日本电影三级| 黄色视频,在线免费观看| 日韩一区二区视频免费看| 免费不卡的大黄色大毛片视频在线观看 | 少妇熟女aⅴ在线视频| 99九九线精品视频在线观看视频| 欧美潮喷喷水| 国产精品av视频在线免费观看| 人妻久久中文字幕网| 日本五十路高清| 成人av在线播放网站| 国产午夜福利久久久久久| 午夜免费激情av| 一进一出抽搐动态| 三级经典国产精品| 免费人成视频x8x8入口观看| 日日摸夜夜添夜夜添av毛片| АⅤ资源中文在线天堂| 国内久久婷婷六月综合欲色啪| 国产三级在线视频| av女优亚洲男人天堂| 婷婷精品国产亚洲av| 91久久精品国产一区二区三区| 噜噜噜噜噜久久久久久91| 男人狂女人下面高潮的视频| 亚洲中文字幕日韩| 嫩草影院新地址| 搞女人的毛片| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线观看播放| 日韩三级伦理在线观看| 亚洲国产精品国产精品| 久久精品国产自在天天线| 亚洲欧美精品综合久久99| 日韩人妻高清精品专区| 天天躁日日操中文字幕| 九草在线视频观看| а√天堂www在线а√下载| 日日摸夜夜添夜夜添av毛片| 国产一区二区激情短视频| 国产探花在线观看一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 国模一区二区三区四区视频| 一个人看的www免费观看视频| 最近中文字幕高清免费大全6| 在线国产一区二区在线| 国产亚洲91精品色在线| 又黄又爽又刺激的免费视频.| 日韩欧美精品v在线| 国产美女午夜福利| 国产女主播在线喷水免费视频网站 | 少妇的逼水好多| 高清日韩中文字幕在线| 晚上一个人看的免费电影| 国产极品天堂在线| 国产精品嫩草影院av在线观看| 波多野结衣巨乳人妻| 免费不卡的大黄色大毛片视频在线观看 | 国产伦理片在线播放av一区 | 免费在线观看成人毛片| 国产成人精品久久久久久| 亚洲精品影视一区二区三区av| 亚洲最大成人中文| 日韩成人av中文字幕在线观看| 在线国产一区二区在线| 波多野结衣高清作品| 国产又黄又爽又无遮挡在线| 亚洲av男天堂| 嘟嘟电影网在线观看| 哪个播放器可以免费观看大片| 一级av片app| 欧美日韩在线观看h| 国产v大片淫在线免费观看| 久久99蜜桃精品久久| 99热6这里只有精品| 亚洲真实伦在线观看| 久久精品久久久久久久性| 美女脱内裤让男人舔精品视频 | 久久精品国产亚洲av天美| 亚洲欧美日韩无卡精品| 桃色一区二区三区在线观看| 少妇人妻一区二区三区视频| 久久久国产成人精品二区| 欧美日韩在线观看h| 成人鲁丝片一二三区免费| 男女那种视频在线观看| 久久久久久伊人网av| 久久精品国产亚洲av天美| 九九久久精品国产亚洲av麻豆| 中出人妻视频一区二区| 此物有八面人人有两片| 少妇熟女欧美另类| 国产三级在线视频| 性欧美人与动物交配| 哪个播放器可以免费观看大片| 免费看日本二区| 久久国产乱子免费精品| 99热全是精品| 欧美日本亚洲视频在线播放| 干丝袜人妻中文字幕| 国产午夜精品久久久久久一区二区三区| 1024手机看黄色片| 日韩,欧美,国产一区二区三区 | 日韩av不卡免费在线播放| 能在线免费看毛片的网站| 久久久久久久久久成人| 在线观看美女被高潮喷水网站| 看片在线看免费视频| 久久人人爽人人爽人人片va| 欧美成人精品欧美一级黄| 日韩一本色道免费dvd| 国产精品久久久久久精品电影小说 | 亚洲欧美日韩东京热| 中文字幕熟女人妻在线| 国产伦精品一区二区三区四那| 亚洲自偷自拍三级| 国产久久久一区二区三区| 五月伊人婷婷丁香| 色视频www国产| 亚洲精品亚洲一区二区| 亚洲欧美日韩高清专用| www.av在线官网国产| 综合色av麻豆| 老司机福利观看| 两个人的视频大全免费| 亚洲婷婷狠狠爱综合网| 少妇高潮的动态图| 日本av手机在线免费观看| 联通29元200g的流量卡| 国产精品人妻久久久影院| 亚洲一区高清亚洲精品| 国产极品天堂在线| 美女 人体艺术 gogo| 1000部很黄的大片| 99久国产av精品国产电影| 亚洲国产高清在线一区二区三| 亚洲va在线va天堂va国产| 小说图片视频综合网站| 国产精品久久视频播放| 黄色配什么色好看| 丝袜美腿在线中文| 亚洲欧美精品自产自拍| 99热6这里只有精品| 国产高清激情床上av| 美女被艹到高潮喷水动态| 一个人免费在线观看电影| 在线观看免费视频日本深夜| 桃色一区二区三区在线观看| 国产私拍福利视频在线观看| 麻豆成人av视频| 午夜精品在线福利| 黄片wwwwww| 99久久精品一区二区三区| av卡一久久| 神马国产精品三级电影在线观看| 成年av动漫网址| 欧美性猛交黑人性爽| 三级经典国产精品| 欧美xxxx性猛交bbbb| 色综合亚洲欧美另类图片| 看黄色毛片网站| 少妇猛男粗大的猛烈进出视频 | 在线免费观看不下载黄p国产| 久久久成人免费电影| 中文资源天堂在线| 亚洲四区av| 少妇被粗大猛烈的视频| 大又大粗又爽又黄少妇毛片口| 免费人成视频x8x8入口观看| 亚洲精品乱码久久久久久按摩| 国产乱人偷精品视频| 一级二级三级毛片免费看| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美精品综合久久99| 亚洲国产欧美人成| 欧美日韩综合久久久久久| 欧美3d第一页| 亚洲内射少妇av| 夫妻性生交免费视频一级片| 麻豆av噜噜一区二区三区| 日韩三级伦理在线观看| 黄色一级大片看看| 最近2019中文字幕mv第一页| 99久久中文字幕三级久久日本| 一个人看视频在线观看www免费| 国产老妇伦熟女老妇高清| 搡女人真爽免费视频火全软件| 欧美变态另类bdsm刘玥| videossex国产| 国产一区二区三区av在线 | 国产高清有码在线观看视频| 大型黄色视频在线免费观看| 国内久久婷婷六月综合欲色啪| 免费看美女性在线毛片视频| 国产高潮美女av| 亚洲国产精品国产精品| 免费观看人在逋| 男的添女的下面高潮视频| 又爽又黄a免费视频| 国产黄色小视频在线观看| 国产伦理片在线播放av一区 | 中文字幕人妻熟人妻熟丝袜美| 亚洲精品国产成人久久av| 全区人妻精品视频| 免费看日本二区| 欧美一区二区国产精品久久精品| 中文亚洲av片在线观看爽| 女的被弄到高潮叫床怎么办| 色综合站精品国产| 欧美区成人在线视频| 国产v大片淫在线免费观看| 欧美性猛交黑人性爽| 国产一级毛片七仙女欲春2| 亚洲不卡免费看|