• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Seasonal Transition from Winter to Summer in the Northern Hemisphere Stratosphere

    2014-03-30 07:53:54ZHANGYuLiLIUYiandLIUChuanXi

    ZHANG Yu-Li, LIU Yi, and LIU Chuan-Xi

    1University of Chinese Academy of Sciences, Beijing 100049, China

    2Key Laboratory of Middle Atmosphere and Global Environmental Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    Dynamic Seasonal Transition from Winter to Summer in the Northern Hemisphere Stratosphere

    ZHANG Yu-Li1,2, LIU Yi2, and LIU Chuan-Xi2

    1University of Chinese Academy of Sciences, Beijing 100049, China

    2Key Laboratory of Middle Atmosphere and Global Environmental Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    This study applied the modified spatial similarity coefficient method to define the seasonal transition (ST) from winter to summer in the extratropical stratosphere of the Northern Hemisphere. The features of the ST were examined using European Centre for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis data; and the results showed that the time and duration of the ST, which is affected by the activity of planetary waves (PW) in the stratosphere, largely depended on the geophysical locations. This study also investigated the interannual variability of the ST and its relationship with stratospheric sudden warming (SSW) and the quasi-biennial oscillation (QBO). It was shown that the late-onset SSW events (after 22 January) are close to the start of the ST. An easterly (westerly) QBO hastens (delays) the onset of the ST in high and low latitudes, whereas it delays (hastens) the ST in midlatitudes. The duration of the ST is significantly affected by the QBO. The influence of SSW and the QBO have different significance in different latitudes, so they are both important and irreplaceable factors.

    seasonal transition, stratosphere, stratospheric sudden warming, quasi-biennial oscillation

    1 Introduction

    In the extratropical stratosphere, winter and summer alternate every year with two relatively short transition periods in between. Compared to the summer-to-winter seasonal transition (ST), the winter-to-summer ST is much sharper and quicker (Black and McDaniel, 2007), so we only discuss the winter-to-summer ST in this paper. The winter-to-summer ST witnesses the breakdown of the polar vortex and the buildup of summertime circumpolar easterlies. Because of the dynamic coupling between the stratosphere and the troposphere, the ST is dynamically linked to the mid-range weather prediction in the troposphere (e.g., Baldwin et al., 2007; Wang et al., 2012). Al-though many studies have examined stratospheric variations in winter and summer (e.g., Hess and Holton, 1985; Labitzke and Vanloon, 1988, 1992), fewer have focused on the ST process. An improved understanding of the ST and its controlling factors will definitely help to predict the general circulation adjustments and the variations of chemical species in both the stratosphere and the troposphere.

    The basic features of stratospheric dynamics, such as the stratospheric structure and dynamic coupling with the troposphere, have been well-documented using several definitions of the stratospheric ST (e.g., Karpetchko et al., 2005). Most studies (e.g., Sherstyukov et al., 1997; Choi et al., 2008) have followed the traditional method that evenly divides a year into four seasons, as used in the tropospheric studies. Some recent studies (e.g., Waugh and Rong, 2002; Black and McDaniel, 2007) began to realize the limitation of the traditional definition and they defined the winter-to-summer ST as the date when the average wind velocity along the vortex edge falls below a threshold value. This is also known as stratospheric final warming (SFW). However, SFW strongly depends on the definition of the polar vortex edge and the threshold chosen.

    Numerous studies have investigated the interannual variability of the stratospheric ST (e.g., Labitzke, 1982; Black and McDaniel, 2007). In early transition, once the vortex has broken down, the remnants of the vortex persist for longer than in late transition when the vortex disappears quickly (Waugh and Rong, 2002). Studies on the long-term trend have shown that between the mid-1980s and the late 1990s, the springtime polar vortex was stronger and colder, and lasted for a longer time (e.g., Waugh et al., 1999; Zhou et al., 2000).

    It is widely accepted that the activity of planetary waves (PW) plays a crucial role in modulating the occurrence of the ST (e.g., Newman et al., 2001; Polvani and Waugh, 2004). And PW activity is modulated by factors such as stratospheric sudden warming (SSW) (e.g., Liu et al., 2009) and the quasi-biennial oscillation (QBO) (e.g., Holton and Tan, 1982; Reid, 1994).

    This article investigates the dynamic stratospheric ST and is organized as follows: Section 2 describes the data and methods. A definition of the ST can be found in section 3. The time and duration of the ST are presented in section 4. The interannual variability of the ST is presented in section 5, and its relationship with the SSW andthe QBO are presented in sections 5.1 and 5.2, respectively. The conclusion is summarized in section 6.

    2 Data and method

    The daily mean European Centre for Medium-Range Weather Forecasts (ECMWF) ReAnalysis Interim (ERAInterim) dataset (1979-2011) (Dee et al., 2011) was used with a horizontal resolution of 1.5°×1.5°. We identified the SSW (e.g., Andrews et al., 1987) following the World Meteorological Organization, which requires the reversal of the westerlies at 60°N and 10 hPa. As a quasi-periodic oscillation of the equatorial zonal wind between easterlies and westerlies in the tropical stratosphere (e.g., Baldwin et al., 2001), the QBO is defined by the average zonal wind at 30 hPa over the equator.

    3 Definition of ST

    We modified the method of spatial similarity coefficient (Zeng and Zhang, 1992; Xue et al., 2002) to define the ST. Essentially, this approach measures the similaritybetween a meteorological field at any time and a typical winter field, so we can judge how far this moment is from winter.

    The zonal wind velocity,U(θ,λ,p,t), varies with longitude (θ), latitude (λ), pressure (p), and time (t). The stratospheric winter-to-summer ST is actually a change of zonal wind from strong westerly to easterly. Traditionally, the typical winter field,Uw, and summer field,Us, are defined as the averageUin January and July, respectively. But as shown in Fig. 1a, an example of zonal wind evolution at 70 hPa in 1989-1990, January is not always characterized by the strongest westerly wind which actually occurs in different times at different latitudes. So we selected 31 consecutive days in which the averageUwas maximum (period between two blue lines), then we defined the averageUin these 31 days as the winter field at this level of this year. By calculating the average of the winter fields in 33 years, the typical winter field,Uw(θ,λ,p), was eventually found to be a variable of space. Using a similar method, we defined the typical summer field (Us) by looking for the minimum of the zonal wind.

    To highlight the anomaly, the average of the typical winter and summer fields,U*= (Uw+Us)/2, was subtracted. This gave

    within a given latitudinal areaA((θ)∈A), the similarity betweenU′ andUw′ is

    Figure 1 (a) The evolution of zonal-mean zonal wind (contour) at 70 hPa (units: m s?1), 1989-1990. The period between the two blue (red) lines is a month (31 days) with the strongest westerly (easterly) wind. (b) The evolution of similarity between daily zonal wind and winter zonal wind field (Rw) at 70 hPa and 51°N in 1990.

    where the inner product and the norm betweenU′ andare defined as follows:

    Also, the similarity betweenU′ and′is

    It is obvious thatRw=?Rs, and it can be proved that if the two fields,andU′, are exactly the same, thenRw= +1; if the fields are similar in reverse,Rw=?1 andRw= 0 if they are not relevant.

    Therefore, we can useRwonly to define the seasons as follows:

    In this paper, we calculatedRw(λ,p,t) for each latitude belt (1.5° of latitude). For example, Fig. 1b shows the evolution ofRwat 70 hPa and 51°N in 1990 in whichRwdecreases from about 1.0 in January to about ?1.0 in July. However, the fluctuating variation of the ST shows up in the evolution ofRw, which does not decrease monotonically. Actually,Rwexceeds the transition value (?0.5 or 0.5) multiple times. Here, we defined the last time it was smaller than 0.5 (?0.5) (red dots) as the start (end) of the ST (red lines). So, the time of the ST depends on time, latitude, and pressure.

    4 Time and duration of the winter-to-summer ST in the stratosphere

    The climatological mean (1979-2011) time and duration of the ST (Fig. 2) change with year, pressure level and latitude. The start of the ST (Fig. 2a) occurs first in February in the region of 50-60°N at about 10 hPa. This is because of the strong PW activity in this region which accelerates the decay of the westerly wind. The farther away from this region, the later the ST occurs. The latest ST occurs below 30 hPa south of 30°N, and a large horizontal gradient appears in the latitudes around 40°N. The end of the ST has a dominant horizontal difference (Fig. 2b) with the largest gradient between 40°N and 50°N. The ST ends earlier at higher latitudes in the upper stratosphere and later at around 30°N in the middle and lower stratosphere. We obtained the duration of the ST (Fig. 2c) by subtracting the start date of the ST from the end date. The ST has a long duration of more than 75 days in the region of 40-50°N between 10 and 30 hPa, but in most areas it is less than 60 days.

    Figure 2 The climatological mean (1979-2011) (a) start dates, (b) end dates, and (c) duration of the stratospheric winter-to-summer seasonal transition (ST) period in the Northern Hemisphere defined by ERA-Interim zonal wind velocity (U) (units: (a, b) day of year; (c) day).

    Compared to the traditional method that uses a fixed time (March-April-May) and duration (three months) for the ST, our method shows the spatial differences. These differences reveal the non-uniform evolutions of zonal wind in different areas of the stratosphere during the ST period.

    5 Interannual variability of the winter-tosummer ST

    Figure 3 The evolution of polar (70.5-90°N) zonal-mean zonal wind (contours) at 10 hPa (units: m s?1) in 32 years: the start (black solid line) and end (black dash line) dates of the ST at 70.5°N, 10 hPa; and the stratospheric final warming (SFW) date (red solid line) and the date of vortex displacement stratospheric sudden warming (SSW) events (black circles) and vortex split SSW events (black dots). All the variables correspond to the left coordinate. The duration of the ST (white dashed line) corresponds to the right coordinate (units: day).

    An example (see Fig. 3) of the 10-hPa time and duration of the ST at 70.5°N (the core latitude of the stratospheric polar vortex) shows a pronounced interannual variability which is similar to the trend of the SFW. The SFW event is taken as a sign that the polar vortex has finally broken down and the zonal wind transition has changed from westerlies to easterlies. These are identified as the final time that the 10-hPa zonal-mean zonal wind at 70.5°N drops below zero without returning to the threshold value (10 m s?1). As one of the definitions of the ST, the SFW successfully marks the time that the vortex breaks down and the wind reverses; however, it ignores the duration of the ST. Take 2009 for example: the 10-hPa zonal wind in the polar region (70.5-90°N) began to reverse with the onset of the SSW event in late January. From then, the zonal wind remained either easterly or as a weak westerly, which is exactly a characteristic of the ST, but the SFW event of this year happened in early May (close to the end of the ST). So, the long duration of this ST (nearly 100 days) had not been found by the SFW, but it had been seen clearly between the start and end of the ST.

    5.1 Impact of SSW on the winter-to-summer ST

    Factors such as SSW and the QBO could have complex influences on the ST. The occurrence of a late SSW (i.e., after 22 January) was found to have a good correlation with the start of the ST. As SSW is characterized by the weakening of the westerly wind, the later the SSW happens, the less likely it can recover. Instead, it keeps on weakening and is finally replaced by the summer easterly wind. In contrast, the wind returns to westerly after early SSW events (before 22 January), such as in 1982 and 1988. The three longest durations of ST happened in 1987, 2001, and 2009 because of the relatively early start of the ST with the onset of SSW events.

    In addition, we divided SSW into two categories: vortex-displacement SSW and vortex-split SSW (e.g., Cohen and Jones, 2012). It is likely that the vortex-split SSW events affect the start of ST more frequently than vortex-displacement ones.

    5.2 The impact of the QBO on the winter-to-summer ST

    Considering the relationship between the ST and the QBO, we performed a composite analysis using the five strongest westerly and easterly QBO winters based on the definition in section 2. We compared the differences of the start/end date anomalies and the zonal-mean zonal wind between these two types. The start date anomaly of the ST displays a sandwich-like distribution (Fig. 4a). More specifically, for a westerly QBO, the ST occurs earlier than the climatological date in midlatitudes and later in high and low latitudes. The distribution for an easterly QBO (Fig. 4b) is a mirror image of the westerly. The influence of the QBO at the end date of the ST (Figs. 4c and 4d) is similar to the influence on the start date, but smaller. Furthermore, Figs. 4a and 4b indicate a similar distribution for the duration of the ST (Fig. 2c) suggesting that the duration of the ST is also dominated by the dynamics related to the QBO.

    This regional influence can be interpreted using the Holton-Tan oscillation (Holton and Tan, 1980). It suggests that the correlation between the QBO and the extratropical zonal wind in the stratosphere is negative at midlatitudes and positive at both low and high latitudes. So, the easterly QBO strengthens the wind (positive anomaly) in midlatitudes and weakens the zonal wind (negative anomaly) in high latitudes (Fig. 4f). Therefore, the easterly QBO delays the ST in midlatitudes and hastens it in the high and low latitudes. Conversely, a westerly QBO produced exactly the opposite influence (Fig. 4e). Since the Holton-Tan oscillation is most significant in winter, it is no longer evident as we move into summer. As a result, the influence of the QBO on the end of the ST is weaker.

    6 Conclusions

    On the basis of the modified spatial similarity coefficient, the stratospheric winter-to-summer ST in the Northern Hemisphere was analyzed using ERA-Interim reanalysis data. Affected by PW activity, the ST occurs as early as February in the 50-60°N with the longest duration in the midlatitudes. Compared to the traditional definition, our definition focuses more precisely on the spatial difference of the stratospheric dynamic evolution. Based on this definition, the dynamic and chemical processes that occur in different locations during the ST period will be studied in the future.

    Figure 4 The composite zonal-wind-based ST start date anomaly in the Northern Hemisphere in (a) westerly QBO winters and (b) easterly QBO winters, and end date anomalies in the Northern Hemisphere in (c) westerly QBO winters and (d) easterly QBO winters (units: day). The zonal-mean zonal wind anomalies at 30 hPa in the Northern Hemisphere in (e) westerly QBO winters and (f) easterly QBO winters (units: m s?1); the white lines are the start and end date of the ST. The anomaly contours statistically significant at the 0.05 level (based on the Student’st-test) are shown as shadow regions.

    The time and duration of the ST display pronounced interannual variability. Compared to SFW, our ST can show the duration of the transition period, and we find it is strongly affected by SSW and the QBO. The late SSWevents (occurring after 22 January) are strongly correlated to the start of the ST. The QBO plays a regionally different role in the ST, which can be explained by the Holton-Tan oscillation. The easterly winter QBO strengthens the zonal wind in midlatitudes and weakens it in the high latitudes. Therefore, an easterly QBO delays the transition in midlatitudes and hastens the onset of the ST in high and low latitudes, while the westerly QBO produces exactly the opposite effect.

    As a dramatic event in the middle and high latitudes of stratospheric winter, the onset of SSW significantly determines the start of the ST in high and middle latitudes. And as a tropical phenomenon, the influence of the QBO on the ST in midlatitudes is stronger than in high latitudes. These influencers adjust the stratospheric dynamic through PW activity, and these adjustments will further influence the troposphere and the chemical field which will be studied in the future.

    Acknowledgements. This work was funded by the National Basic Research Program of China (Grant No. 2010CB428604), the National Natural Science Foundation of China (Grant No. 41105025), and the Dragon 3 Programme (Grant No. 10577). The ERA-Interim reanalysis was kindly provided by ECMWF.

    Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987:Middle Atmosphere Dynamics, Academic Press, London, 489pp.

    Baldwin, M. P., M. Dameris, and T. G. Shepherd, 2007: How will the stratosphere affect climate change?Science, 316, 1576-1577.

    Baldwin, M. P., L. J Gray, T. J. Dunkerton, et al., 2001: The quasi-biennial oscillation,Rev. Geophys., 39, 179-229.

    Black, R. X., and B. A. McDaniel, 2007: Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events,J. Atmos. Sci., 64, 2968-2974.

    Choi, Y., Y. Wang, T. Zeng, et al., 2008: Springtime transitions of NO2, CO, and O3over North America: Model evaluation and analysis,J. Geophys. Res., 113, D20311, doi:10.1029/2007 JD009632.

    Cohen, J., and J. Jones, 2012: Tropospheric precursors and stratospheric warmings,J. Climate, 25, 1780-1790.

    Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system,Quart. J. Roy. Meteor. Soc., 137, 553-597.

    Hess, P. G., and J. R. Holton, 1985: The origin of temperal variance in long-lived trace constituents in the summer stratosphere,J. Atmos. Sci., 42, 1455-1463.

    Holton, J. R., and H. C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 Mb,J. Atmos. Sci., 37, 2200-2208.

    Holton, J. R., and H. C. Tan, 1982: The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere,J. Meteor. Soc. Japan, 60, 140-148.

    Karpetchko, A., E. Kyro, and B. M. Knudsen, 2005: Arctic and Antarctic polar vortices 1957-2002 as seen from the ERA-40 reanalyses,J. Geophys. Res., 110, D21109, doi:10.1029/2005 JD006113.

    Labitzke, K., 1982: On the interannual variability of the middle stratosphere during the northern winters,J. Meteor. Soc. Japan, 60, 124-139.

    Labitzke, K., and H. Vanloon, 1988: Associations between the 11-year solar-cycle, the QBO and the atomosphere. Part 1. The troposphere and stratosphere in the Northern Hemisphere in winter,J. Atmos. Terr. Phys., 50, 197-206.

    Labitzke, K., and H. Vanloon, 1992: Association between the 11-Year solar cycle and the atmosphere. Part 5. Summer,J. Climate, 5, 240-259.

    Liu, Y., C. X. Liu, H. P. Wang, et al., 2009: Atmospheric tracers during the 2003-2004 stratospheric warming event and impact of ozone intrusions in the troposphere,Atmos. Chem. Phys., 9, 2157-2170.

    Newman, P. A., E. R. Nash, and J. E. Rosenfield, 2001: What controls the temperature of the Arctic stratosphere during the spring?J. Geophys. Res., 106, 19999-20010.

    Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes,J. Climate, 17, 3548-3554.

    Reid, G. C., 1994: Seasonal and interannual temperaturevariations in the tropical stratosphere,J. Geophys. Res., 99, 18923-18932.

    Sherstyukov, O. N., A. D. Akchurin, and E. Yu Zykov, 1997: Spring stratospheric circulation transition and mid-latitude sporadic E-layer,Adv. Space Res., 20, 1313-1316.

    Wang, Y., P. Konopka, Y. Liu, et al., 2012: Tropospheric ozone trend over Beijing from 2002-2010: Ozonesonde measurements and modeling analysis,Atmos. Chem. Phys., 12, 8389-8399.

    Waugh, D. W., and P. P. Rong, 2002: Interannual variability in the decay of lower stratospheric Arctic vortices,J. Meteor. Soc. Japan, 80, 997-1012.

    Waugh, D. W., W. J. Randel, S. P. Paul, et al., 1999: Persistence of the lower stratospheric polar vortices,J. Geophys. Res., 104, 27191-27201.

    Xue, F., Y. Lin, and Q. Zeng, 2002: On the seasonal division of atmospheric general circulation and its abrupt change. Part III: Climatology,Sci. Atmos. Sinica, 26, 307-314.

    Zeng, Q., and B. Zhang, 1992: On the seasons of general atmospheric circulation and their abrupt changes. Part I: General concept and method,Chinese J. Atmos. Sci.(in Chinese), 16, 641-647.

    Zhou, S. T., M. E. Gelman, A. J. Miller, et al., 2000: An inter-hemisphere comparison of the persistent stratospheric polar vortex,Geophys. Res. Lett., 27, 1123-1126.

    :Zhang, Y.-L., Y. Liu, and C.-X. Liu, 2014: Dynamic seasonal transition from winter to summer in the Northern Hemisphere stratosphere,Atmos. Oceanic Sci. Lett., 7, 180-185,

    10.3878/j.issn.1674-2834.13.0082.

    Received 16 October 2013; revised 15 November 2013; accepted 3 December 2013; published 16 May 2014

    LIU Yi, liuyi@mail.iap.ac.cn

    天堂俺去俺来也www色官网 | 成人二区视频| 国产免费视频播放在线视频 | 内射极品少妇av片p| 春色校园在线视频观看| 国产一区亚洲一区在线观看| 九草在线视频观看| av专区在线播放| 国产午夜精品一二区理论片| 亚洲欧美日韩东京热| 特级一级黄色大片| 日韩一本色道免费dvd| 久久精品久久久久久噜噜老黄| 亚洲av.av天堂| 中国国产av一级| 亚州av有码| 亚洲精品色激情综合| or卡值多少钱| 国产精品嫩草影院av在线观看| 成人鲁丝片一二三区免费| 内地一区二区视频在线| 日韩视频在线欧美| 美女脱内裤让男人舔精品视频| 国产乱人视频| 蜜臀久久99精品久久宅男| 日本黄大片高清| 日韩 亚洲 欧美在线| 一区二区三区免费毛片| 在线 av 中文字幕| 日本wwww免费看| 六月丁香七月| 午夜精品在线福利| 偷拍熟女少妇极品色| 亚洲va在线va天堂va国产| 国产精品麻豆人妻色哟哟久久 | 国产精品不卡视频一区二区| 中国国产av一级| 亚洲精品乱码久久久v下载方式| 最新中文字幕久久久久| 成年人午夜在线观看视频 | 亚洲av日韩在线播放| 久热久热在线精品观看| 高清日韩中文字幕在线| 赤兔流量卡办理| 日本av手机在线免费观看| 黄色欧美视频在线观看| 听说在线观看完整版免费高清| 欧美日韩一区二区视频在线观看视频在线 | 日韩欧美国产在线观看| 久久久精品94久久精品| 在线观看人妻少妇| 日本免费a在线| ponron亚洲| 欧美高清性xxxxhd video| 我的女老师完整版在线观看| 99热这里只有精品一区| 两个人的视频大全免费| 久久99热6这里只有精品| 97人妻精品一区二区三区麻豆| 国产单亲对白刺激| 亚洲国产精品sss在线观看| 亚洲国产成人一精品久久久| 亚洲怡红院男人天堂| 熟妇人妻不卡中文字幕| 青春草亚洲视频在线观看| www.av在线官网国产| 国语对白做爰xxxⅹ性视频网站| 精品久久久久久久久av| 国产成人freesex在线| 国产精品伦人一区二区| 日韩欧美精品免费久久| 日韩大片免费观看网站| 免费观看av网站的网址| 国产亚洲av片在线观看秒播厂 | 国精品久久久久久国模美| 免费观看a级毛片全部| 精品酒店卫生间| 亚洲欧美一区二区三区国产| 91av网一区二区| 亚洲成色77777| 又爽又黄无遮挡网站| 日本av手机在线免费观看| 一区二区三区高清视频在线| 亚洲av电影不卡..在线观看| 午夜福利视频精品| 国产亚洲91精品色在线| 日本黄大片高清| 亚洲欧美清纯卡通| 日韩精品有码人妻一区| 国产乱人偷精品视频| 色吧在线观看| 国产伦在线观看视频一区| 免费在线观看成人毛片| 国产精品久久久久久av不卡| 国产国拍精品亚洲av在线观看| freevideosex欧美| 国产免费一级a男人的天堂| 国内少妇人妻偷人精品xxx网站| 国产精品综合久久久久久久免费| 日韩人妻高清精品专区| 国产精品综合久久久久久久免费| 国产精品久久久久久久电影| 国产av码专区亚洲av| 亚洲电影在线观看av| 精品一区二区三区人妻视频| 午夜福利在线观看免费完整高清在| 伦精品一区二区三区| 亚洲av中文字字幕乱码综合| 联通29元200g的流量卡| 美女高潮的动态| 国产片特级美女逼逼视频| 午夜爱爱视频在线播放| 少妇熟女欧美另类| 18禁在线无遮挡免费观看视频| 在线观看美女被高潮喷水网站| 色综合站精品国产| 男女国产视频网站| 九色成人免费人妻av| 久久精品国产自在天天线| 午夜福利在线在线| 国产高潮美女av| 国产免费一级a男人的天堂| 精品酒店卫生间| 三级经典国产精品| 国产精品一区二区在线观看99 | 九九在线视频观看精品| 免费av观看视频| 中文字幕av在线有码专区| 日本一本二区三区精品| 国产高清三级在线| 久久久久久久亚洲中文字幕| 亚洲不卡免费看| 亚洲av成人精品一区久久| 在线观看人妻少妇| 一级爰片在线观看| a级一级毛片免费在线观看| 国产免费又黄又爽又色| 老女人水多毛片| 亚洲久久久久久中文字幕| 国产 一区 欧美 日韩| 亚洲在线观看片| 欧美97在线视频| 十八禁国产超污无遮挡网站| 国产午夜精品一二区理论片| 中文资源天堂在线| 日本熟妇午夜| 99久久九九国产精品国产免费| 人人妻人人澡人人爽人人夜夜 | 午夜福利高清视频| 亚洲精品乱码久久久久久按摩| 成人毛片a级毛片在线播放| av网站免费在线观看视频 | 国产精品三级大全| 一级二级三级毛片免费看| 国精品久久久久久国模美| 2021少妇久久久久久久久久久| 国产黄色视频一区二区在线观看| 亚洲成人一二三区av| 国产91av在线免费观看| 国产在视频线在精品| 啦啦啦韩国在线观看视频| 欧美+日韩+精品| 高清午夜精品一区二区三区| 欧美精品一区二区大全| 国产亚洲5aaaaa淫片| 日韩人妻高清精品专区| 人人妻人人澡欧美一区二区| 亚洲第一区二区三区不卡| 久久久久久九九精品二区国产| 身体一侧抽搐| 免费观看av网站的网址| 男女边摸边吃奶| 久久99精品国语久久久| 国产不卡一卡二| 久久久成人免费电影| 日韩不卡一区二区三区视频在线| 国内少妇人妻偷人精品xxx网站| 亚洲第一区二区三区不卡| 国内少妇人妻偷人精品xxx网站| 99re6热这里在线精品视频| 天堂网av新在线| 成人一区二区视频在线观看| 久久亚洲国产成人精品v| www.av在线官网国产| 欧美日韩综合久久久久久| 国产 一区精品| 色综合站精品国产| 99久国产av精品国产电影| 成人亚洲精品av一区二区| 赤兔流量卡办理| 国产有黄有色有爽视频| 久久久亚洲精品成人影院| 看非洲黑人一级黄片| 日韩av免费高清视频| 在线观看免费高清a一片| 人妻系列 视频| 精品国内亚洲2022精品成人| av天堂中文字幕网| av播播在线观看一区| 日韩三级伦理在线观看| 91精品伊人久久大香线蕉| 夫妻性生交免费视频一级片| 久久99蜜桃精品久久| 精品久久久久久久久av| 成人漫画全彩无遮挡| 欧美 日韩 精品 国产| 成人亚洲精品av一区二区| 亚洲三级黄色毛片| 人人妻人人澡人人爽人人夜夜 | 99久久中文字幕三级久久日本| 女人十人毛片免费观看3o分钟| 久久久久性生活片| 国产成人午夜福利电影在线观看| 男女边摸边吃奶| 欧美另类一区| 中文乱码字字幕精品一区二区三区 | 一级爰片在线观看| 波野结衣二区三区在线| 日本色播在线视频| 欧美性感艳星| 国产精品国产三级国产专区5o| 欧美变态另类bdsm刘玥| av网站免费在线观看视频 | 在线 av 中文字幕| 男女那种视频在线观看| 高清午夜精品一区二区三区| 国产成人免费观看mmmm| 综合色丁香网| 一本一本综合久久| 观看免费一级毛片| 成人亚洲欧美一区二区av| 久久精品国产自在天天线| 青青草视频在线视频观看| 三级国产精品片| 成年女人在线观看亚洲视频 | 秋霞伦理黄片| 亚洲电影在线观看av| 搡女人真爽免费视频火全软件| 亚洲欧美日韩卡通动漫| 欧美极品一区二区三区四区| 国产成人一区二区在线| 日产精品乱码卡一卡2卡三| 综合色av麻豆| 亚洲国产精品成人久久小说| 国产淫语在线视频| 人体艺术视频欧美日本| 欧美日韩精品成人综合77777| 淫秽高清视频在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲av在线观看美女高潮| 国产精品人妻久久久久久| 自拍偷自拍亚洲精品老妇| 国产精品女同一区二区软件| a级毛色黄片| 久久久久久久久中文| 亚洲精品亚洲一区二区| 乱人视频在线观看| a级毛色黄片| 国产成人一区二区在线| av免费观看日本| 成人午夜高清在线视频| 国产v大片淫在线免费观看| 免费看光身美女| 3wmmmm亚洲av在线观看| 亚洲精品久久午夜乱码| 国产亚洲一区二区精品| 国产探花极品一区二区| 午夜日本视频在线| 街头女战士在线观看网站| 中国国产av一级| 国产精品美女特级片免费视频播放器| 精品99又大又爽又粗少妇毛片| 国产在线一区二区三区精| 大香蕉久久网| 美女脱内裤让男人舔精品视频| 色综合亚洲欧美另类图片| 亚洲欧美日韩卡通动漫| 九九爱精品视频在线观看| 久久久久久久久久久免费av| 在线观看一区二区三区| av卡一久久| 国产 一区 欧美 日韩| 99视频精品全部免费 在线| 日韩欧美三级三区| 18禁在线无遮挡免费观看视频| 亚洲精品乱码久久久v下载方式| 伦理电影大哥的女人| 日韩精品有码人妻一区| 欧美日韩国产mv在线观看视频 | 七月丁香在线播放| 日韩欧美精品免费久久| av在线老鸭窝| 亚洲av日韩在线播放| 日韩欧美三级三区| 麻豆成人午夜福利视频| 国产淫语在线视频| 国产精品久久久久久久电影| 看非洲黑人一级黄片| 夫妻午夜视频| 久久久久网色| 97超碰精品成人国产| 亚洲精品久久久久久婷婷小说| 一边亲一边摸免费视频| 午夜爱爱视频在线播放| 国产又色又爽无遮挡免| 亚洲成人精品中文字幕电影| 99九九线精品视频在线观看视频| a级毛色黄片| 不卡视频在线观看欧美| 九九久久精品国产亚洲av麻豆| 国产亚洲精品久久久com| 一级爰片在线观看| 国产高潮美女av| 亚洲最大成人av| 成人鲁丝片一二三区免费| 欧美人与善性xxx| 欧美日韩精品成人综合77777| 大片免费播放器 马上看| 免费观看精品视频网站| 亚洲精品久久久久久婷婷小说| av在线播放精品| 乱码一卡2卡4卡精品| 国产女主播在线喷水免费视频网站 | 亚洲婷婷狠狠爱综合网| 亚洲美女搞黄在线观看| av天堂中文字幕网| 又粗又硬又长又爽又黄的视频| 日韩一区二区三区影片| 亚洲最大成人中文| 亚洲综合色惰| 国产精品久久久久久精品电影小说 | 日韩一本色道免费dvd| 乱人视频在线观看| 久久精品国产亚洲av天美| 免费观看av网站的网址| 中国国产av一级| 女人被狂操c到高潮| 尾随美女入室| 亚洲国产精品sss在线观看| 日韩成人av中文字幕在线观看| 特大巨黑吊av在线直播| 成年版毛片免费区| 高清日韩中文字幕在线| 精品欧美国产一区二区三| 中文字幕av在线有码专区| 26uuu在线亚洲综合色| 能在线免费看毛片的网站| 日韩欧美国产在线观看| 欧美三级亚洲精品| 国产一区亚洲一区在线观看| 51国产日韩欧美| 日韩在线高清观看一区二区三区| 久久99蜜桃精品久久| 最近中文字幕高清免费大全6| 伊人久久国产一区二区| 国产有黄有色有爽视频| 成人特级av手机在线观看| 欧美极品一区二区三区四区| 亚洲欧美一区二区三区黑人 | 日韩不卡一区二区三区视频在线| 国产亚洲精品久久久com| kizo精华| 日韩制服骚丝袜av| 午夜激情欧美在线| 欧美激情久久久久久爽电影| 亚洲精品日韩av片在线观看| 插阴视频在线观看视频| 免费av观看视频| 亚洲国产精品专区欧美| 午夜激情欧美在线| www.av在线官网国产| 精品久久久久久久久av| 久久久久久久国产电影| 日韩一本色道免费dvd| 午夜福利在线观看吧| 日韩在线高清观看一区二区三区| 国产成人91sexporn| 啦啦啦啦在线视频资源| 高清午夜精品一区二区三区| 观看美女的网站| 欧美高清性xxxxhd video| freevideosex欧美| 男插女下体视频免费在线播放| 国产伦一二天堂av在线观看| 精品国产三级普通话版| 毛片女人毛片| 亚洲性久久影院| 免费电影在线观看免费观看| 99热全是精品| 亚洲电影在线观看av| 一个人免费在线观看电影| 日韩欧美国产在线观看| 街头女战士在线观看网站| 99久国产av精品国产电影| 黄色一级大片看看| 丰满乱子伦码专区| 日日啪夜夜爽| 两个人的视频大全免费| 嫩草影院入口| 中文字幕av在线有码专区| 亚洲一级一片aⅴ在线观看| 国产v大片淫在线免费观看| 久久精品人妻少妇| 婷婷色综合www| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 最近最新中文字幕大全电影3| 亚洲精品成人久久久久久| 亚洲欧美一区二区三区国产| 久久久久久久久久人人人人人人| 搡老乐熟女国产| 日日啪夜夜爽| 日本色播在线视频| 久久精品夜色国产| 日本黄大片高清| 一个人观看的视频www高清免费观看| 久久久精品免费免费高清| 亚洲国产精品sss在线观看| 亚洲国产色片| 高清午夜精品一区二区三区| 最近中文字幕高清免费大全6| 国产成人午夜福利电影在线观看| 亚洲自偷自拍三级| 亚洲人成网站在线播| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久精品电影小说 | 夫妻午夜视频| 观看免费一级毛片| 男人舔女人下体高潮全视频| 免费在线观看成人毛片| 免费观看av网站的网址| 18禁在线无遮挡免费观看视频| 国产一区二区三区综合在线观看 | 身体一侧抽搐| 日本爱情动作片www.在线观看| 中文字幕av在线有码专区| 亚洲av免费在线观看| 亚洲精品国产av蜜桃| 欧美日韩在线观看h| 国产黄色视频一区二区在线观看| 日本-黄色视频高清免费观看| av国产久精品久网站免费入址| 久久鲁丝午夜福利片| 国产一区二区亚洲精品在线观看| 国产大屁股一区二区在线视频| 91aial.com中文字幕在线观看| 久久久久精品性色| 成人美女网站在线观看视频| 老司机影院毛片| 青青草视频在线视频观看| 尾随美女入室| 久久综合国产亚洲精品| 午夜老司机福利剧场| 高清毛片免费看| 国产精品国产三级专区第一集| 亚洲人与动物交配视频| 精品一区二区三区人妻视频| 日韩欧美精品免费久久| 人人妻人人澡人人爽人人夜夜 | 99热这里只有是精品在线观看| 久久久亚洲精品成人影院| 亚洲欧美中文字幕日韩二区| 欧美xxⅹ黑人| 18禁裸乳无遮挡免费网站照片| 伦理电影大哥的女人| 深爱激情五月婷婷| 精品久久久精品久久久| 美女高潮的动态| 欧美日韩一区二区视频在线观看视频在线 | 久久草成人影院| 欧美区成人在线视频| 国精品久久久久久国模美| 国产伦理片在线播放av一区| 噜噜噜噜噜久久久久久91| 80岁老熟妇乱子伦牲交| 国产国拍精品亚洲av在线观看| 十八禁国产超污无遮挡网站| 美女主播在线视频| 久久精品久久久久久久性| 日日啪夜夜撸| 男人和女人高潮做爰伦理| 国产老妇女一区| 亚洲va在线va天堂va国产| av福利片在线观看| 校园人妻丝袜中文字幕| 欧美日本视频| 狂野欧美激情性xxxx在线观看| kizo精华| 亚洲av电影在线观看一区二区三区 | 亚洲久久久久久中文字幕| 久久精品国产自在天天线| 亚洲成人一二三区av| 亚洲国产精品sss在线观看| 亚洲精品第二区| 人人妻人人澡欧美一区二区| 天堂俺去俺来也www色官网 | 嫩草影院新地址| 一个人看视频在线观看www免费| 日韩成人av中文字幕在线观看| 不卡视频在线观看欧美| 两个人视频免费观看高清| 99久久九九国产精品国产免费| av卡一久久| 最近中文字幕2019免费版| 亚洲高清免费不卡视频| 国产老妇女一区| 一本久久精品| 永久网站在线| 简卡轻食公司| 午夜福利高清视频| 国产中年淑女户外野战色| 亚洲av国产av综合av卡| 少妇熟女欧美另类| av播播在线观看一区| 麻豆av噜噜一区二区三区| 91av网一区二区| 久久久久久久国产电影| 日韩制服骚丝袜av| 乱码一卡2卡4卡精品| xxx大片免费视频| 免费少妇av软件| 国产精品人妻久久久影院| 中文字幕久久专区| 亚洲精品国产成人久久av| 亚洲无线观看免费| 午夜亚洲福利在线播放| www.av在线官网国产| 美女内射精品一级片tv| 亚洲成人av在线免费| 亚洲av免费高清在线观看| 欧美精品一区二区大全| 麻豆成人午夜福利视频| 男女啪啪激烈高潮av片| 97精品久久久久久久久久精品| 日韩av在线免费看完整版不卡| 国产精品一二三区在线看| 亚洲精品日韩av片在线观看| 精品久久久久久成人av| 九九久久精品国产亚洲av麻豆| 极品少妇高潮喷水抽搐| 又粗又硬又长又爽又黄的视频| 免费看不卡的av| 国产黄色小视频在线观看| 久久久久久久久久久免费av| 午夜老司机福利剧场| 亚洲欧美精品自产自拍| 亚洲成人久久爱视频| 街头女战士在线观看网站| 午夜精品国产一区二区电影 | 国产熟女欧美一区二区| 国产淫片久久久久久久久| 国产永久视频网站| 麻豆av噜噜一区二区三区| 男女下面进入的视频免费午夜| 亚洲av不卡在线观看| 欧美bdsm另类| 午夜久久久久精精品| 国产欧美另类精品又又久久亚洲欧美| 成人美女网站在线观看视频| 97在线视频观看| 亚洲欧美日韩东京热| 欧美xxxx黑人xx丫x性爽| 免费观看av网站的网址| 在线 av 中文字幕| 国产爱豆传媒在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品sss在线观看| 狠狠精品人妻久久久久久综合| 国产精品久久久久久精品电影| 国产大屁股一区二区在线视频| 高清av免费在线| 麻豆成人av视频| 亚洲精品影视一区二区三区av| av.在线天堂| 亚洲精品第二区| 日韩中字成人| 直男gayav资源| 久久久久久久久久黄片| 日日啪夜夜爽| 国产不卡一卡二| 99久久人妻综合| 亚洲av免费在线观看| 国产伦精品一区二区三区四那| 日本免费a在线| 亚洲经典国产精华液单| 久久97久久精品| 亚洲国产日韩欧美精品在线观看| 在线观看美女被高潮喷水网站| 国产黄片美女视频| 日日摸夜夜添夜夜爱| 久久亚洲国产成人精品v| 成人亚洲欧美一区二区av| 成年人午夜在线观看视频 | 久久人人爽人人爽人人片va| 久久久久久久久中文| 久久精品久久精品一区二区三区| 国产精品1区2区在线观看.| 亚洲婷婷狠狠爱综合网| av.在线天堂| 国产麻豆成人av免费视频| 日本与韩国留学比较| 99热这里只有精品一区| av免费在线看不卡| 午夜免费男女啪啪视频观看| 听说在线观看完整版免费高清| 白带黄色成豆腐渣| 精品欧美国产一区二区三| 中文欧美无线码| videos熟女内射| 黑人高潮一二区| 亚洲,欧美,日韩| 欧美日韩国产mv在线观看视频 | 日本一本二区三区精品| 久久久久久国产a免费观看| 国产伦在线观看视频一区|