• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance Evaluation of a Self-Developed Ozonesonde and Its Application in an Intensive Observational Campaign

    2014-03-30 07:53:53ZHANGJinQiangXUANYueJianXIAXiangAoLIUMingYuanYANXiaoLuPANGLiBAIZhiXuanandWANXiaoWei

    ZHANG Jin-Qiang, XUAN Yue-Jian, XIA Xiang-Ao, LIU Ming-Yuan, YAN Xiao-Lu, PANG Li, BAI Zhi-Xuan, and WAN Xiao-Wei

    1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.

    2Chinese Academy of Meteorological Sciences, Beijing 100081, China

    3Jiangsu Radio Scientific Institute Company Limited, Wuxi 214000, China

    Performance Evaluation of a Self-Developed Ozonesonde and Its Application in an Intensive Observational Campaign

    ZHANG Jin-Qiang1, XUAN Yue-Jian1, XIA Xiang-Ao1, LIU Ming-Yuan1, YAN Xiao-Lu2, PANG Li3, BAI Zhi-Xuan1, and WAN Xiao-Wei1

    1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.

    2Chinese Academy of Meteorological Sciences, Beijing 100081, China

    3Jiangsu Radio Scientific Institute Company Limited, Wuxi 214000, China

    To make a detailed test on the reliability and detection performance of the electrochemical concentration cell (ECC) type ozonesonde which had been developed and preliminarily evaluated by the authors, an intensive ozonesonde release experiment was held at two sites in Beijing and Changchun in June 2013. The results showed that the mean background current and its standard deviation were 0.03 (0.04) μA and 0.02 (0.03) μA in Beijing (Changchun). The average response time and its standard deviation were 27.8 s (30.4 s) and 4.0 s (3.7 s) in Beijing (Changchun). The ozone partial pressure profiles at both sites showed a central peak in the stratosphere and a side peak in the boundary layer. Large variation in ozone partial pressure was observed at the middle levels of the atmosphere (10-17 km). A more marked gradient of ozone change was observed in Beijing (3.4 mPa km-1) at the lower atmosphere level, as compared to that in Changchun (0.4 mPa km-1). The results presented in this paper indicate that this self-developed ozonesonde shows a high level of reliability and good performance. The ozonsonde is expected to play an important role in operational observations of ozone profiles.

    ozonesonde, evaluation, ozone profile

    1 Introduction

    Accurate ozone measurements are crucial to investigate local ozone distributions, long-term trends of change, ozone depletion, and associated climatic as well as environmental effects (Zhou and Luo, 1994). The ozonesonde is an important approach in providing ozone partial pressure measurements with high vertical resolution from the surface to atmospheric layers higher than 30 km. The global network of ozone sounding stations has provided the longest time series of vertical ozone distributions (V?mel and Diaz, 2010; Thompson et al., 2011).

    Three major types of ozonesonde have been developed and widely used: the Brewer-Mast (BM) (Brewer and Milford, 1960); the electrochemical concentration cell (ECC) (Komhyr, 1969); and the carbon iodine cell (KC) ozonesonde (Kobayashi and Toyama, 1966). The ECC ozonesonde is composed of two half cells, while a single-cell approach is used for both the BM and KC ozonesondes. The Juelich Ozonesonde Intercomparison Experiment (Smit and Kley, 1998; Smit et al., 2007) and the Balloon Experiment on Standards for Ozonesondes (Deshler et al., 2008) proved that the precision of the ECC ozonesonde was better than that of both BM and KC. The ECC ozonesonde has been used to replace KC96 in the Japanese ozone sounding network since 2011 (Smit et al., 2013), and the BM ozonesonde has also been replaced by the ECC ozonesonde at many European stations (Stübi et al., 2008).

    In China, the single-cell Global Positioning System ozonesonde (GPSO3), which was developed more than 20 years ago (Wang et al., 2003; Xuan et al., 2004), has been used in Beijing to measure ozone profiles every week since 2001. As shown by Zheng and Li (2005), the ozone partial pressure measurements by the GPSO3 ozonesonde were higher than those by the ECC ozonesonde for the atmospheric layer below 15 km and from 25 to 30 km.

    In order to further improve the measurement accuracy of the ozone profile in China, an ozonesonde composed of two half cells was developed at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences in 2013. The ozonesonde is simply named the “IAP ozonesonde” hereafter. The performance of the IAP ozonesonde has been preliminarily evaluated by comparing its observations with measurements from the ECC ozonesonde and Brewer spectrophotometer (Zhang et al., 2013). The results showed that the IAP ozonesonde was able to capture vertical ozone structures very well, and in good agreement with ECC ozonesonde measurements. To further test its reliability and detection performance in detail, an intensive ozonesonde launch experiment was held in Beijing and Changchun in June 2013. The objective of the experiment was to evaluate the ozonesonde’s performance during the pre-flight preparation procedures, as well as to study the vertical ozone structures over the two sites. Section 2 describes the instrumenta-tion and the field campaign. The results of the ozonesonde’s performance and the vertical ozone structures it retrieved are presented in section 3. The main conclusions are summarized in section 4.

    2 Instrumentation and field campaign

    2.1 Ozonesonde description

    Similar to the ECC type developed by Komhyr (1969), the IAP ozonesonde is also based on an electrochemical method. For a detailed description of the ozonesonde, readers are referred to Zhang et al. (2013). The ozonesonde-based ozone partial pressure can be computed from the following equation:

    wherePis the ozone partial pressure (mPa);Iis the cell output current (μA);IBGis the cell background current (μA);Tis the temperature of the ozonesonde box (K);tis the time for the pump to bubble 100 milliliters (mL) of airflow through the cathode solution (s);ηis the conversion efficiency; andpΦis the efficiency of the pump flow rate.

    In the conventional method, a pressure dependent background correction is applied for the ECC ozonesonde. However, many studies conducted at the laboratory (e.g., Thornton and Niazy, 1983; Smit et al., 1994) for the ECC ozonesonde were unable to confirm the pressure dependence on the background current; therefore, a constant background current correction was suggested to be applied throughout the entire ozone profile. Based on this, a constant background current measured during pre-flight preparations at surface pressure was applied for the IAP ozonesonde background current correction during the post-flight data processing throughout the entire ozone profile in this study.ηis assumed to be 1 during normal operation for the ECC ozonesonde, which is also deployed in the IAP ozonesonde. The pump volumetric flow rate is relatively constant from surface pressure to about 300 hPa during the balloon flight; however, one would expect a steady decrease in the pump flow rate with altitude higher than 300 hPa due to an increase in resistance from pumping against the cathode solution fluid head, dead space in the cylinder of the piston pump, and pump leakage (Komhyr et al., 1995; Steinbrecht et al., 1998; Johnson et al., 2002). A slight ozone deficiency in the IAP ozonesonde measurements, generally less than 10% compared to the ECC ozonesonde retrievals, was observed in the upper atmosphere, which was likely caused by a decrease in the pump flow rate of the IAP ozonesonde (Zhang et al., 2013). It should be noted that further study of the pump correction factor as a function of altitude is still required for the IAP ozonesonde; however, in the meantime, it was assumed to be 1 in the present study, which may have resulted in a bias of less than 10% in the upper atmosphere on the basis of our previous results obtained in the preliminarily evaluation campaign.

    2.2 Field campaign

    A total of 22 and 23 releases of the IAP ozonesonde were carried out at Beijing Observatory (BJ, (39.81°N, 116.47°E), 31 m above mean sea level (MSL)) and Changchun Observatory (CC, (43.9°N, 125.2°E), 237 m above MSL) in June 2013. The radiosonde used for the data transmission was provided by Changfeng Company, which participated in the Eighth World Meteorological Organization International Radiosonde Comparison held at Yangjiang, China in 2010 (Nash et al., 2011). An ozonesonde was generally launched at around 14:00 Local Standard Time (LST) per day; in addition, three ozonesondes were released at 07:30, 14:30, and 19:30 LST on 26 June in BJ to investigate the variation in vertical ozone distributions during different periods for a particular day. The maximum detection altitudes exceeded 30 km above ground level (AGL) over the two sites, except for two launches (one at BJ and one at CC).

    3 Results

    3.1 Ground check of ozonesonde performance

    The two ozonesonde performance parameters, i.e., background current and response time, obtained during the pre-flight preparation procedures at BJ and CC, are shown in Fig. 1. The background current was less than 0.05 μA for 18 out of 22 releases at BJ (Fig. 1a), and 15 out of 23 releases at CC (Fig. 1b). The mean background currents were 0.03 μA at BJ and 0.04 μA at CC, and their standard deviations of the background current were 0.02 μA and 0.03 μA, respectively. Figures 1c and 1d illustrate the response times, which were generally less than 35 seconds. The response time was less than 30 seconds for 16 and 11 releases at BJ and CC, respectively. The average response time and its standard deviation were 27.8 s and 4.0 s at BJ, and 30.4 s and 3.7 s at CC, respectively. The ascent of the IAP ozonesonde was about 5 m s-1, thus translating into a vertical altitude resolution of about 140 m (27.8 m s-1× 5 m s-1) at BJ and 150 m (30.4 m s-1× 5 m s-1) at CC, as well as resulting in a slight displacement of the observational profile in the vertical direction compared to the actual profile. In general, no corrections are made for the response lag during usual practice, which was also adopted by the IAP ozonesonde measurements at BJ and CC. The background current and response time over the two sites were, respectively, 0.04±0.02 μA and 29.1±4.0 s, which is comparable to results for the ECC ozonesonde (typically 0.03-0.11 μA for the background current and 20-30 s for the response time) (Smit et al., 2013) (Table 1).

    Note that the same pre-flight preparations were conducted for the IAP ozonesondes released at BJ and CC; the background currents at the two stations were close to each other and were also close to that of the ECC ozonesonde. The response time of the IAP ozonesonde at BJ was close to that of the ECC ozonesonde; however, it was slightly larger by ~2.6 s at CC as compared to that at BJ. The different atmospheric environment at the two stations, such as the temperature and/or relative humidity, was the likely cause for the difference in response time, which needs further study.

    Figure 1 The background current (upper panels) and response time (lower panels) for the ozonesondes released over the Beijing (left panels) and Changchun (right panels) site.

    Table 1 The average background current (μA) and response time (s) for the IAP ozonesonde at the Beijing site, Changchuan site, and the two sites combined, as well as their typical values for the ECC ozonesonde.

    3.2 Vertical ozone distributions

    Figure 2 Vertical distributions of the ozone partial pressure retrieved from ozonesondes launched in (a) Beijing and (b) Changchun; spaced at 50-m intervals. The areas colored in black denote the altitude ranges without detections, and the other colors represent the ozone partial pressure (in units of mPa).

    The ozonesonde measures data every second with average ascent about 5 m s-1that results in vertical resolution of about 5 m (5 m s-1× 1 s). The observed profiles are projected to layers spaced at 50-m intervals from the surface to the upper atmosphere. Figure 2 shows the ozone partial pressure profiles from all ozonesonde launches. In general, the ozone structure at both stations was similar, with large ozone partial pressure located inthe middle of the stratosphere ranging from 20 to 28 km. The maximum ozone partial pressure was about 14 mPa at the two sites. However, a rather larger difference can be revealed by a more detailed inspection. The ozone partial pressure in the planetary boundary layer occasionally exceeded 10 mPa at BJ; however, it was generally less than 8 mPa at CC. The ozone partial pressure in the upper layer of the troposphere (10-15 km) at CC occasionally exceeded 10 mPa. This is indicative of a strong stratosphere-troposphere exchange due to the outbreak of a cold vortex over Northeast China in this season (Yang and Lü, 2004).

    Figure 3 shows the average profile and its standard deviation of ozone partial pressure. The mean ozone partial pressure profile at BJ showed a bimodal distribution, with a central peak in the middle of the stratosphere and a side peak in the planetary boundary layer. The maximum magnitude of ozone partial pressure was 11.4 mPa, which was located at 24.8 km. The pattern of the vertical ozone distribution at CC was similar to that at BJ, especially in the middle of the stratosphere. Larger ozone variation (as shown by the larger standard deviation) was observed in the upper layers of the troposphere, as compared to values in the planetary boundary layer and stratosphere. A large discrepancy was observed within the planetary boundary layer, in which the ozone partial pressure increased sharply from the surface to 1.1 km AGL at BJ (3.4 mPa km-1); however, it was 0.4 mPa km-1at CC. Most of the ozone partial pressures were < 5 mPa between 10 and 20 km at BJ; however, they were generally > 5 mPa at CC.

    A comparison of the observed ozone distributions at 07:30, 14:30, and 19:30 LST on 26 June is shown in Fig. 4. In general, the patterns of vertical ozone distributions collected from three profiles were very close. However, large discrepancies existed in the lower atmosphere where the ozone partial pressure was larger in the afternoon (14:30 LST) and evening (19:30 LST) than that in the morning (07:30 LST); the maximum difference was about 5 mPa. This is indicative of strong ozone production in the boundary layer during daytime due to photochemical reactions (Ma and Zhang, 2000).

    Figure 3 Average profiles of ozone partial pressure (black line) and their standard deviations in (a) Beijing and (b) Changchun. The vertical resolution is 50 m; shaded grey areas represent the standard deviation.

    Figure 4 Comparison of ozone partial pressure profiles collected from ozonesonde launches at 07:30 (blue line), 14:30 (red line), and 19:30 (green line) LST on 26 June in Beijing.

    4 Conclusions

    Ozonesondes are widely used to measure ozone profiles from the surface to the upper atmosphere. A double-cell ozonesonde has been successfully developed at the IAP, and a preliminary evaluation of the ozonesonde showed it is a vast improvement over the GPSO3, which has been the major ozonesonde deployed in China to date. To further test its performance, an intensive IAP ozonesonde launch experiment was held in Beijing and Changchun in June 2013. The background current and response time of the ozonesonde were checked in detail during the pre-flight preparation. In addition, the vertical ozone structures over the two sites were compared. The major conclusions from the study are as follows.

    The average background current and response time were 0.04 μA and 29.1 s, and their standard deviations were 0.02 μA and 4.0 s. The atmospheric environment, such as the temperature and/or relative humidity, mighthave induced the slight difference in the response time (~2.6 s) at the two sites, which needs further investigation. The ozone partial pressure vertical distributions over the two sites were both bimodal, with a central peak in the middle of the stratosphere and a side peak in the planetary boundary layer. Large variation in ozone partial pressure was observed in the upper troposphere. A marked gradient of ozone partial pressure was also observed in the boundary layer at BJ (3.4 mPa km-1).

    In previous work, we have preliminarily proven that the IAP ozonesonde is able to capture vertical ozone structures very well, and in good agreement with ECC ozonesonde measurements. The results presented here further demonstrate its high level of reliability and detection performance, which will surely accelerate the process of conventional observations of ozone profiles over China in the near future.

    Acknowledgements. The authors would like to thank Haoran JING, Tuo QIU, Shuai QIAO, and Shiqing XU for preparing and launching the ozonesonde and radiosonde. This work was supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB05020503) and the Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201106041).

    Brewer, A., and J. Milford, 1960: The Oxford Kew ozonesonde,Proc. Roy. Soc. London, Ser. A, 256, 470-495.

    Deshler, T., J. Mercer, H. G. J. Smit, et al., 2008: Atmospheric comparison of electrochemical cell ozonesondes from different manufacturers, and with different cathode solution strengths: The balloon experiment on standards for ozonesondes,J. Geophys. Res., 113, D04307, doi:10.1029/2007JD008975.

    Johnson, B. J., S. J. Oltmans, H. V?mel, et al., 2002: Electrochemical concentration cell (ECC) ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of buffered and unbuffered ECC sensor cathode solutions,J. Geophys. Res., 107(D19), 4393, doi:10.1029/2001JD000557.

    Kobayashi, J., and Y. Toyama, 1966: On various methods of measuring the vertical distribution of atmospheric ozone (III)—Carbon iodine type chemical ozonesonde,Pap. Meteor. Geophys., 17, 113-126.

    Komhyr, W. D., 1969: Electrochemical concentration cells for gas analysis,Ann. Geophys., 25, 203-210.

    Komhyr, W. D., R. A. Barnes, G. B. Brothers, et al., 1995: Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989,J. Geophys. Res., 100, 9231-9244.

    Ma, Y., and Y. Zhang, 2000: The study on pollution of atmospheric photochemical oxidants in Beijing,Res. Environ. Sci.(in Chinese), 13(1), 14-17.

    Nash, J., T. Oakley, H. V?mel, et al., 2011:WMO Intercomparison of High Quality Radiosonde Systems, WMO/TD-No. 1580, Yangjiang, 12 July-3 August 2010, 248pp.

    Smit, H., H. DeBacker, J. Davies, et al., 2013:Quality Assurance and Quality Control for Ozonesonde Measurements in GAW, WMO Global Atmosphere Watch Report 201, World Meteorological Organization, Geneva, 92pp.

    Smit, H., and D. Kley, 1998:The 1996 WMO International Intercomparison of Ozonesondes under Quasi Flight Conditions in the Environmental Simulation Chamber at Jülich, WMO Global Atmosphere Watch Report 130, World Meteorological Organization, Geneva, 108pp.

    Smit, H., W. Straeter, B. J. Johnson, et al., 2007: Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE),J. Geophys. Res., 112, D19306, doi:10.1029/2006 JD007308.

    Smit, H., W. Str?ter, D. Kley, et al., 1994: The evaluation of ECC-ozonesondes under quasi flight conditions in the environmental simulation chamber at Jülich, in:Proceedings of Eurotrac Symposium 1994, P. M. Borell et al. (Eds.), SPB Academic Publishing, the Hague, 349-353.

    Steinbrecht, W., R. Schwartz, and H. Claude, 1998: New pump correction for the Brewer Mast ozone sonde: Determination from experiment and instrument intercomparisons,J. Atmos. Oceanic Technol., 15, 144-156.

    Stübi, R., G. Levrat, B. Hoegger, et al., 2008: In-flight comparisonof Brewer-Mastand electrochemical concentration cell ozonesondes,J. Geophys. Res., 113, D13302, doi:10.1029/2007 JD009091.

    Thompson, A. M., S. J. Oltmans, D. W. Tarasick, et al., 2011: Strategic ozone sounding networks: Review of design and accomplishments,Atmos. Envion., 45, 2145-2163.

    Thornton, D. C., and N. Niazy, 1983: Effects of solution mass transport on the ECC ozonesonde background current,Geophys. Res. Lett., 10, 148-151.

    V?mel, H., and K. Diaz, 2010: Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere,Atmos. Meas. Tech., 3(2), 495-505, doi:10.5194/amt-3-495-2010.

    Wang, G., Q. Kong, Y. Xuan, et al., 2003: Development and application of ozonesonde system in China,Adv. Earth Sci.(in Chinese), 18(3), 471-475.

    Xuan, Y., S. Ma, H. Chen, et al., 2004: Intercomparisons of GPSO3 and vaisala ECC ozone sondes,Plateau Meteor.(in Chinese), 23(3), 394-399.

    Yang, J., and D. Lü, 2004: Simulation of stratosphere-troposphere exchange effecting on the distribution of ozone over Eastern Asia,Chinese J. Atmos. Sci.(in Chinese), 28(4), 579-588.

    Zhang, J., Y. Xuan, X. Yan, et al., 2013: Development and preliminary evaluation of a double-cell ozonesonde,Adv. Atmos. Sci., in press, doi:10.1007/s00376-013-3104-1.

    Zheng, X., and W. Li, 2005: Analysis of the data quality observed by the Chinese-made ozone sonde system,Quart. J. Appl. Meteor.(in Chinese), 16(5), 608-618.

    Zhou, X., and C. Luo, 1994: Ozone valley over Tibetan Plateau,Acta Meteor. Sinica, 8(4), 505-506.

    :Zhang, J.-Q., Y.-J. Xuan, X.-A. Xia, et al., 2014: Performance evaluation of a self-developed ozonesonde and its application in an intensive observational campaign,Atmos. Oceanic Sci. Lett., 7, 175-179,

    10.3878/j.issn.1674-2834.13.0089.

    Received 14 November 2013; revised 22 November 2013; accepted 28 November 2013; published 16 May 2014

    ZHANG Jin-Qiang, zjq@mail.iap.ac.cn

    一边摸一边抽搐一进一小说 | 久久精品成人免费网站| 一个人免费在线观看的高清视频| 精品人妻在线不人妻| 亚洲国产精品合色在线| 欧美国产精品va在线观看不卡| 又黄又爽又免费观看的视频| 欧美激情久久久久久爽电影 | 黄色丝袜av网址大全| 亚洲情色 制服丝袜| 亚洲欧美一区二区三区久久| 变态另类成人亚洲欧美熟女 | 成人18禁高潮啪啪吃奶动态图| 国产1区2区3区精品| 国产精品乱码一区二三区的特点 | 久久久久久亚洲精品国产蜜桃av| 成人18禁在线播放| 一级毛片精品| 老司机亚洲免费影院| 女同久久另类99精品国产91| 国产深夜福利视频在线观看| 国产主播在线观看一区二区| 国产欧美亚洲国产| 亚洲av日韩在线播放| 如日韩欧美国产精品一区二区三区| 亚洲免费av在线视频| 成人18禁在线播放| 色播在线永久视频| 亚洲精品成人av观看孕妇| 午夜免费成人在线视频| 1024香蕉在线观看| 久久国产精品大桥未久av| 久久久久国内视频| 国产麻豆69| 国产精品 欧美亚洲| 国产成人精品久久二区二区免费| 激情在线观看视频在线高清 | 亚洲人成电影免费在线| 久久久久国产一级毛片高清牌| 亚洲情色 制服丝袜| 欧美国产精品va在线观看不卡| 老熟妇仑乱视频hdxx| 亚洲国产看品久久| av有码第一页| 1024视频免费在线观看| 久久久精品国产亚洲av高清涩受| 国产精品永久免费网站| 一级毛片精品| 亚洲国产精品合色在线| 亚洲五月色婷婷综合| 亚洲少妇的诱惑av| 亚洲视频免费观看视频| 黄色视频,在线免费观看| 丝袜人妻中文字幕| aaaaa片日本免费| 国内久久婷婷六月综合欲色啪| 精品高清国产在线一区| 一边摸一边做爽爽视频免费| 精品亚洲成国产av| 在线免费观看的www视频| 久久国产精品大桥未久av| 99riav亚洲国产免费| 精品久久久久久电影网| 伦理电影免费视频| 美国免费a级毛片| 久久国产精品影院| 免费看a级黄色片| 午夜福利一区二区在线看| 午夜激情av网站| 欧美 日韩 精品 国产| 99re在线观看精品视频| 黄色视频不卡| 老鸭窝网址在线观看| 午夜精品久久久久久毛片777| 欧美中文综合在线视频| 亚洲精品av麻豆狂野| 色婷婷久久久亚洲欧美| 午夜精品国产一区二区电影| 一区二区日韩欧美中文字幕| 久久久国产精品麻豆| 久久性视频一级片| 欧美一级毛片孕妇| 久久国产亚洲av麻豆专区| 97人妻天天添夜夜摸| 亚洲精品在线观看二区| 精品乱码久久久久久99久播| 51午夜福利影视在线观看| 免费在线观看黄色视频的| 高清在线国产一区| 又黄又粗又硬又大视频| 少妇粗大呻吟视频| 成年动漫av网址| 亚洲人成77777在线视频| 嫁个100分男人电影在线观看| av片东京热男人的天堂| 亚洲在线自拍视频| 欧美激情久久久久久爽电影 | 精品国产乱子伦一区二区三区| 一边摸一边抽搐一进一出视频| 日韩制服丝袜自拍偷拍| 免费在线观看完整版高清| 久久99一区二区三区| 精品无人区乱码1区二区| 午夜免费鲁丝| 少妇 在线观看| 啦啦啦免费观看视频1| 久久国产精品大桥未久av| 国产熟女午夜一区二区三区| 正在播放国产对白刺激| 99国产精品一区二区三区| 成人国产一区最新在线观看| 亚洲第一青青草原| 狠狠婷婷综合久久久久久88av| 欧美日韩福利视频一区二区| 正在播放国产对白刺激| 色婷婷久久久亚洲欧美| 日韩欧美国产一区二区入口| 亚洲av美国av| 日韩人妻精品一区2区三区| 最新在线观看一区二区三区| 怎么达到女性高潮| 国产精品一区二区精品视频观看| 国产亚洲精品第一综合不卡| 十八禁网站免费在线| 欧美日韩乱码在线| 黄色片一级片一级黄色片| 最新美女视频免费是黄的| 欧美 亚洲 国产 日韩一| 热re99久久精品国产66热6| 日韩欧美一区视频在线观看| 99国产综合亚洲精品| 国产av又大| 欧洲精品卡2卡3卡4卡5卡区| 91九色精品人成在线观看| 三上悠亚av全集在线观看| 国产一卡二卡三卡精品| 人成视频在线观看免费观看| 狂野欧美激情性xxxx| 热re99久久国产66热| 亚洲欧美激情在线| 午夜福利一区二区在线看| 狠狠狠狠99中文字幕| x7x7x7水蜜桃| 91精品国产国语对白视频| 老汉色∧v一级毛片| 亚洲视频免费观看视频| 欧美精品人与动牲交sv欧美| 夜夜夜夜夜久久久久| 亚洲精品av麻豆狂野| 身体一侧抽搐| 久久中文看片网| 99精国产麻豆久久婷婷| 91成年电影在线观看| 后天国语完整版免费观看| 成人影院久久| 777久久人妻少妇嫩草av网站| 欧美av亚洲av综合av国产av| 天天添夜夜摸| 亚洲人成电影免费在线| 免费在线观看日本一区| 美女 人体艺术 gogo| 黄色丝袜av网址大全| 老司机亚洲免费影院| 国产日韩欧美亚洲二区| 日韩熟女老妇一区二区性免费视频| 成年人黄色毛片网站| 免费久久久久久久精品成人欧美视频| 欧美人与性动交α欧美软件| 久久人人97超碰香蕉20202| 亚洲精品美女久久av网站| 制服诱惑二区| 免费久久久久久久精品成人欧美视频| netflix在线观看网站| 女人被躁到高潮嗷嗷叫费观| a级片在线免费高清观看视频| 亚洲av第一区精品v没综合| 日韩一卡2卡3卡4卡2021年| 一级毛片精品| 欧美亚洲日本最大视频资源| 国产精品久久久人人做人人爽| 欧美日韩乱码在线| 日本撒尿小便嘘嘘汇集6| a级毛片黄视频| 变态另类成人亚洲欧美熟女 | av天堂久久9| 下体分泌物呈黄色| 在线视频色国产色| 老司机影院毛片| 亚洲欧美激情综合另类| 亚洲中文日韩欧美视频| 精品一区二区三区视频在线观看免费 | 亚洲精品中文字幕一二三四区| 国产精品亚洲av一区麻豆| av电影中文网址| 涩涩av久久男人的天堂| 国产有黄有色有爽视频| 首页视频小说图片口味搜索| 亚洲专区字幕在线| 精品久久久久久,| 久久人妻熟女aⅴ| 欧美黄色淫秽网站| 久久精品亚洲精品国产色婷小说| 欧美av亚洲av综合av国产av| 日韩欧美免费精品| 欧美丝袜亚洲另类 | 老熟女久久久| 国产精品久久久人人做人人爽| 国产精品久久视频播放| 欧美精品av麻豆av| 麻豆乱淫一区二区| 亚洲男人天堂网一区| 欧美日韩成人在线一区二区| 午夜成年电影在线免费观看| 亚洲色图av天堂| 黑人巨大精品欧美一区二区蜜桃| 久久久水蜜桃国产精品网| 在线观看日韩欧美| 日日摸夜夜添夜夜添小说| 99久久人妻综合| 丝袜美腿诱惑在线| 国产精品亚洲av一区麻豆| 亚洲va日本ⅴa欧美va伊人久久| 村上凉子中文字幕在线| 女人久久www免费人成看片| 亚洲人成电影免费在线| 亚洲成人手机| 亚洲国产毛片av蜜桃av| 欧美在线一区亚洲| 黄色丝袜av网址大全| 亚洲中文字幕日韩| 欧美激情 高清一区二区三区| 成年人黄色毛片网站| 一级毛片精品| 日本五十路高清| 丝袜美腿诱惑在线| 熟女少妇亚洲综合色aaa.| 国产精品免费视频内射| a级片在线免费高清观看视频| 在线观看免费日韩欧美大片| 欧美最黄视频在线播放免费 | 在线观看66精品国产| 国产蜜桃级精品一区二区三区 | 欧美成人午夜精品| 日韩欧美三级三区| 亚洲人成电影免费在线| 黑人操中国人逼视频| 国产又爽黄色视频| 一级片免费观看大全| av一本久久久久| 天堂俺去俺来也www色官网| 亚洲av成人av| 性少妇av在线| 一边摸一边抽搐一进一出视频| 另类亚洲欧美激情| 成年人黄色毛片网站| 免费一级毛片在线播放高清视频 | 精品少妇久久久久久888优播| 黄色 视频免费看| 90打野战视频偷拍视频| 欧美丝袜亚洲另类 | 老司机靠b影院| av有码第一页| 亚洲成a人片在线一区二区| 色婷婷久久久亚洲欧美| 在线观看免费视频网站a站| 99riav亚洲国产免费| 怎么达到女性高潮| 亚洲精品在线观看二区| 亚洲av熟女| 91大片在线观看| 国产一区二区三区视频了| 亚洲精品粉嫩美女一区| 精品无人区乱码1区二区| 午夜91福利影院| 天天躁狠狠躁夜夜躁狠狠躁| 精品福利永久在线观看| 久久午夜综合久久蜜桃| 成人特级黄色片久久久久久久| 宅男免费午夜| 男人操女人黄网站| 亚洲av片天天在线观看| 国产又爽黄色视频| 中文欧美无线码| av电影中文网址| 在线免费观看的www视频| 热99re8久久精品国产| 不卡av一区二区三区| 日韩精品免费视频一区二区三区| 久久九九热精品免费| 香蕉久久夜色| 少妇被粗大的猛进出69影院| 国产欧美日韩综合在线一区二区| 热99国产精品久久久久久7| 欧美黄色片欧美黄色片| 精品国产一区二区久久| 成人永久免费在线观看视频| 国产主播在线观看一区二区| 视频区图区小说| 国产精品99久久99久久久不卡| 亚洲,欧美精品.| 精品久久久久久电影网| 一级黄色大片毛片| 久久亚洲真实| 一级毛片精品| 亚洲国产看品久久| 大香蕉久久成人网| 一级毛片高清免费大全| 男女午夜视频在线观看| 国产成人精品无人区| 国产aⅴ精品一区二区三区波| 丝袜在线中文字幕| 天堂中文最新版在线下载| 久久人人爽av亚洲精品天堂| 男女午夜视频在线观看| 母亲3免费完整高清在线观看| 国产成人免费无遮挡视频| 国产在线观看jvid| 视频在线观看一区二区三区| 久久 成人 亚洲| av在线播放免费不卡| tocl精华| 久久精品亚洲熟妇少妇任你| 国产av一区二区精品久久| tocl精华| 欧美人与性动交α欧美软件| 99国产精品免费福利视频| 欧美黄色淫秽网站| a级毛片黄视频| 国产精品二区激情视频| 99热网站在线观看| 9热在线视频观看99| 亚洲男人天堂网一区| 女警被强在线播放| 91在线观看av| 国产高清激情床上av| 香蕉国产在线看| 王馨瑶露胸无遮挡在线观看| 久久狼人影院| 在线观看午夜福利视频| 国产激情欧美一区二区| 男女午夜视频在线观看| 视频在线观看一区二区三区| 一区二区三区国产精品乱码| 在线观看一区二区三区激情| 欧美日韩福利视频一区二区| 久热爱精品视频在线9| 中文字幕另类日韩欧美亚洲嫩草| 午夜免费鲁丝| 久久狼人影院| 一进一出抽搐动态| 一级黄色大片毛片| 免费女性裸体啪啪无遮挡网站| 国精品久久久久久国模美| 国产一区有黄有色的免费视频| 久久精品成人免费网站| 国精品久久久久久国模美| 在线观看一区二区三区激情| tocl精华| 激情在线观看视频在线高清 | 一区在线观看完整版| 中文字幕精品免费在线观看视频| 18禁国产床啪视频网站| 日本vs欧美在线观看视频| 亚洲成人免费电影在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久国产精品人妻蜜桃| 日韩成人在线观看一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产av精品麻豆| 99久久精品国产亚洲精品| 色播在线永久视频| 超碰97精品在线观看| 在线天堂中文资源库| 精品无人区乱码1区二区| 国产成+人综合+亚洲专区| 老熟女久久久| 欧美日韩亚洲综合一区二区三区_| 美女扒开内裤让男人捅视频| 欧美国产精品va在线观看不卡| 亚洲av美国av| 久久久国产成人精品二区 | 午夜激情av网站| 一个人免费在线观看的高清视频| 搡老乐熟女国产| 村上凉子中文字幕在线| 久久九九热精品免费| 色老头精品视频在线观看| 女人久久www免费人成看片| 男女高潮啪啪啪动态图| 亚洲成人免费av在线播放| 别揉我奶头~嗯~啊~动态视频| 欧美精品亚洲一区二区| 一边摸一边抽搐一进一小说 | 免费在线观看亚洲国产| 欧美精品高潮呻吟av久久| 老司机午夜福利在线观看视频| 日本欧美视频一区| 多毛熟女@视频| 国产不卡av网站在线观看| 欧美大码av| 免费在线观看完整版高清| 人人澡人人妻人| 99国产精品免费福利视频| 99精品在免费线老司机午夜| 天天添夜夜摸| 久久久久国产精品人妻aⅴ院 | 一进一出抽搐gif免费好疼 | 欧美日韩国产mv在线观看视频| 国产有黄有色有爽视频| 老司机在亚洲福利影院| 亚洲人成电影观看| 12—13女人毛片做爰片一| 在线观看免费午夜福利视频| videos熟女内射| 精品午夜福利视频在线观看一区| 热99久久久久精品小说推荐| 人人妻人人添人人爽欧美一区卜| 午夜福利免费观看在线| 欧美人与性动交α欧美软件| 国产精品久久视频播放| 亚洲精品国产区一区二| 国产成人一区二区三区免费视频网站| 天天躁狠狠躁夜夜躁狠狠躁| svipshipincom国产片| 国产精品免费一区二区三区在线 | 一进一出好大好爽视频| 夜夜躁狠狠躁天天躁| 国产亚洲欧美在线一区二区| 又黄又粗又硬又大视频| 久久精品91无色码中文字幕| 国产成人欧美| 亚洲免费av在线视频| 国产真人三级小视频在线观看| 欧美国产精品一级二级三级| 亚洲av成人av| 精品国产国语对白av| 久久精品人人爽人人爽视色| 免费观看精品视频网站| 亚洲第一青青草原| 一区在线观看完整版| 黄色片一级片一级黄色片| 久热爱精品视频在线9| 黑丝袜美女国产一区| 亚洲情色 制服丝袜| 在线视频色国产色| 无人区码免费观看不卡| 不卡一级毛片| 亚洲一区二区三区欧美精品| 欧美精品啪啪一区二区三区| 亚洲九九香蕉| 亚洲国产欧美网| 成年人免费黄色播放视频| 国产日韩一区二区三区精品不卡| 男人的好看免费观看在线视频 | 亚洲精品国产色婷婷电影| 国产精品一区二区精品视频观看| 黄色a级毛片大全视频| 丝袜在线中文字幕| 一夜夜www| 91精品国产国语对白视频| 久久国产乱子伦精品免费另类| 国产极品粉嫩免费观看在线| 精品国产超薄肉色丝袜足j| 啪啪无遮挡十八禁网站| 欧美乱色亚洲激情| 精品久久久久久久毛片微露脸| 黑人操中国人逼视频| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡| 久热这里只有精品99| 大码成人一级视频| 日本五十路高清| 一进一出抽搐动态| 亚洲精品中文字幕在线视频| 久久精品成人免费网站| 成年版毛片免费区| 精品免费久久久久久久清纯 | 精品国产美女av久久久久小说| 精品欧美一区二区三区在线| 国产精品影院久久| 日韩有码中文字幕| 91在线观看av| 精品国内亚洲2022精品成人 | 热99久久久久精品小说推荐| 人妻久久中文字幕网| 十八禁高潮呻吟视频| 99香蕉大伊视频| 国产一区二区三区视频了| 这个男人来自地球电影免费观看| 免费日韩欧美在线观看| 欧美日韩乱码在线| a级毛片黄视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美国产精品一级二级三级| 亚洲第一av免费看| 成人国语在线视频| av线在线观看网站| 国产国语露脸激情在线看| 国产高清视频在线播放一区| 大香蕉久久成人网| 在线观看免费视频日本深夜| 一级片免费观看大全| 免费日韩欧美在线观看| 国产一区二区三区在线臀色熟女 | 动漫黄色视频在线观看| 欧美精品人与动牲交sv欧美| 最近最新中文字幕大全免费视频| 亚洲精品久久午夜乱码| 妹子高潮喷水视频| 一边摸一边抽搐一进一小说 | 老汉色av国产亚洲站长工具| 淫妇啪啪啪对白视频| 亚洲男人天堂网一区| tocl精华| 国产激情欧美一区二区| 日韩熟女老妇一区二区性免费视频| 色播在线永久视频| 成在线人永久免费视频| 咕卡用的链子| 午夜福利乱码中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产淫语在线视频| 美女 人体艺术 gogo| av天堂久久9| 亚洲久久久国产精品| 亚洲欧美日韩高清在线视频| 女性生殖器流出的白浆| 韩国av一区二区三区四区| 久久中文字幕人妻熟女| 成人永久免费在线观看视频| 久久人妻福利社区极品人妻图片| 成人永久免费在线观看视频| 精品国产一区二区三区久久久樱花| 国产在视频线精品| 啦啦啦 在线观看视频| 久久ye,这里只有精品| 99热只有精品国产| 丰满迷人的少妇在线观看| 一本一本久久a久久精品综合妖精| 91大片在线观看| 黄片小视频在线播放| 久久人妻av系列| 一进一出好大好爽视频| 成人影院久久| 亚洲第一青青草原| 50天的宝宝边吃奶边哭怎么回事| 亚洲久久久国产精品| 精品一区二区三区av网在线观看| 一二三四社区在线视频社区8| 国产成人av激情在线播放| 深夜精品福利| 亚洲情色 制服丝袜| www.999成人在线观看| 久久青草综合色| 国产一区二区三区综合在线观看| 精品一区二区三区av网在线观看| 91精品三级在线观看| 国产激情欧美一区二区| 亚洲中文av在线| 真人做人爱边吃奶动态| 国产精品一区二区在线观看99| 手机成人av网站| 免费在线观看黄色视频的| 99国产极品粉嫩在线观看| 亚洲人成伊人成综合网2020| 91字幕亚洲| 久久香蕉激情| 日韩有码中文字幕| www.自偷自拍.com| 最新在线观看一区二区三区| 啦啦啦免费观看视频1| 中出人妻视频一区二区| 一a级毛片在线观看| 国内久久婷婷六月综合欲色啪| 精品久久久久久,| 久久久国产一区二区| 人妻 亚洲 视频| 国产aⅴ精品一区二区三区波| 中文字幕人妻丝袜一区二区| 一级毛片精品| 久久精品人人爽人人爽视色| 久久青草综合色| 亚洲精品美女久久av网站| 久久国产亚洲av麻豆专区| 久久国产精品大桥未久av| 国产精品乱码一区二三区的特点 | 免费一级毛片在线播放高清视频 | 免费一级毛片在线播放高清视频 | 欧美日本中文国产一区发布| 亚洲精品国产一区二区精华液| 国产精品久久久av美女十八| 人妻久久中文字幕网| 欧美av亚洲av综合av国产av| 法律面前人人平等表现在哪些方面| 他把我摸到了高潮在线观看| 午夜免费鲁丝| 色94色欧美一区二区| 99国产精品一区二区三区| 久久久久国内视频| 999精品在线视频| 亚洲熟女精品中文字幕| 亚洲精品在线观看二区| 校园春色视频在线观看| 男女床上黄色一级片免费看| 王馨瑶露胸无遮挡在线观看| 啪啪无遮挡十八禁网站| 免费在线观看影片大全网站| 色婷婷av一区二区三区视频| 亚洲色图 男人天堂 中文字幕| 男人舔女人的私密视频| 18禁裸乳无遮挡动漫免费视频| 久久久精品免费免费高清| 淫妇啪啪啪对白视频| 大陆偷拍与自拍| av免费在线观看网站|