• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurement and Modeling of Vapor-Liquid Equilibrium for Ternary System Water + 2-Propanol + 1-Butyl-3-methylimidazolium Chloride*

    2014-03-25 09:11:18鄧東順喬玉珍姬登祥葛筠章連眾

    (鄧東順)(喬玉珍)(姬登祥)(葛筠)(章連眾)**

    Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014, China

    Measurement and Modeling of Vapor-Liquid Equilibrium for Ternary System Water + 2-Propanol + 1-Butyl-3-methylimidazolium Chloride*

    DENG Dongshun(鄧東順), QIAO Yuzhen(喬玉珍), JI Dengxiang(姬登祥), GE Yun(葛筠)and ZHANG Lianzhong(章連眾)**

    Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014, China

    Vapor-liquid equilibrium (VLE) data for water + 2-propanol + 1-butyl-3-methylimidazolium chloride ([bmim]Cl) were measured. Six sets of complete T, χ, y data are reported, in which the 2-propanol mole fraction on IL-free basis is fixed separately at 0.1, 0.2, 0.4, 0.6, 0.8, and approximate 0.98, while the IL mass fraction is varied from 0.1 to 0.8, in an interval of 0.1. The non-random-two-liquid (NRTL) and electrolyte non-random-two-liquid (eNRTL) equations are used to correlate the experimental data with satisfactory results. The ternary VLE behavior is also modeled with the parameters obtained by correlating two data sets, in which the mole fraction of 2-propanol on IL-free basis is approximately 0.1 and 0.98. In this way, the six sets of data are reproduced satisfactorily. With the eNRTL model, the root-mean-square deviation for temperature is 0.82 K and that for vapor-phase mole fraction is 0.0078. The influences of IL on activity coefficients and relative volatility of the volatile components are also graphically illustrated.

    vapor-liquid equilibrium, eNRTL equation, ionic liquid, 2-propanol, activity coefficient, relative volatility

    1 INTRODUCTION

    In recent years, the utilization of ionic liquids (ILs) as entrainers in the extractive distillation of azeotropic or close boiling mixtures has gained considerable attention [1, 2]. Compared with conventional entrainers, ILs possess some special merits suitable for distillation, such as non-volatility, large liquidus range, high compatibility with many organic solvents. Usually, when an IL is introduced into an azeotropic mixture to be separated, the components change their non-ideality and activity coefficients to a different extent because the interactions between IL and each component are discriminating. It is desirable that the changes may enhance the relative volatility to break the azeotrope. The influences of IL on relative volatility depend mainly on the composition dependence of activity coefficients in the IL-containing mixture. Therefore, it is necessary to understand the changes of vaporliquid phase behavior arising from the addition of IL. At the present stage, such thermodynamic information is mainly obtained from experimental measurement of vapor-liquid equilibrium (VLE) data and by correlation using a model of excess Gibbs energy [3-10].

    In our previous work [11], we developed a procedure for the experimental measurement and modeling of vapor-liquid equilibrium data for IL-containing ternary systems, taking the system water + ethanol + 1-hexyl-3-methylimidazolium chloride as a case study. Six sets of complete T, χ, y data were measured, in which two data sets were used for correlation of the non-random-two-liquid (NRTL) model [12] and the other four data sets were used for checking the model. Based on detailed discussion, the modeling of VLE behavior of a ternary system containing IL has been generally recommended by correlation of two ternary data sets, measured at a relatively wide range of IL mass fractions, while the mole fractions of the volatile quasibinary pair are distributed separately in the two diluted ends. In the following work, we have extended the procedure to several water-alcohol-IL systems [13-15].

    As a continuation of our study, we will extend the experimental measurement and modeling to the system water (1) + 2-propanol (2) + [bmim]Cl (3) in present work. The modeling is based on T, χ, y data in a relatively wide range of IL mass fractions up to 0.8 and in a relatively complete composition range for the volatile binary pair. The effect of ILs on the mixture of water and 2-propanol was studied by Westerholt et al. for [HMIM][BTI] and [BMPYR][BTI] [6], and by Li et al. for [EMIM][BF4] [8]. In our previous work [16], we also studied the same ternary system, but the measurements were performed only in the 2-propanol-rich region and the highest IL mass faction was 0.65. To the best of our knowledge, there are no other VLE data for the ternary system.

    2 EXPERIMENTAL

    2.1 Materials

    Water was doubly distilled. 2-propanol (analytical reagent grade, Sinopharm Chemical reagent Co. Ltd, with purity 99.9% checked by GC and a water mass fraction of 3.6×10?4indicated by Karl-Fischer analysis), 1-methylimidazole (99.5%, Yancheng MedicalChemical Factory), and 1-chlorobutane (chemical pure grade, Sinopharm Chemical reagent Co. Ltd) were used without further purification. [bmim][Cl] was prepared by simple reaction of 1-methylimidazole with 1-chlorobutane under a nitrogen atmosphere and purified by recrystallization in a mixture of ethyl acetate and acetonitrile. Before use, the IL was dried for 24 h under vacuum at 340 K to remove volatile impurities. Karl Fischer analysis showed typically a water mass fraction of 1.2×10?3in the IL. The IL was also checked by electrospray ionization mass spectrometry (ESI-MS), showing a single positive ion, m/z=139 ([bmim]).

    2.2 Experimental apparatus

    VLE data were measured by an ebulliometer described in detail previously [17]. Pressure was measured by a precision pressure gauge with an uncertainty of ±0.04 kPa. A 20 dm3glass container was used as pressure buffer connected to the ebulliometer. Temperature was measured by a standard platinum thermometer and a 6-1/2-digit multimeter. Uncertainty of the resistance measurement was ±8 m?, which is equivalent to ±0.08 K for temperature measurement.

    2.3 Experimental procedure

    The VLE data were determined in such a way that the IL mass fraction, w3, changed from high to low, while the mole fraction of 2-propanol on IL-free basis, χ2′, remained approximately unchanged. At IL mass fractions w3=0.6, 0.7, and 0.8, the measurements were performed at p=30 kPa in order to decrease the boiling point. It is commonly recognized that the activity coefficients in a liquid mixture depend strongly on composition, only weakly on temperature and very weakly on pressure. Therefore, the present measurements mainly reflect the composition dependence of activity coefficients.

    At the beginning of measurement, samples of water, 2-propanol, and the IL were introduced into the ebulliometer. The water contents of 2-propanol and the IL were determined by Karl-Fischer analysis. Every sample added in or taken out of the ebulliometer was weighed with an electronic balance (Mettler-Toledo AL204) with an uncertainty of ±0.0002 g. Masses of each component added in the ebulliometer were calculated, so we have the overall synthetic masses for the first measurement. When the equilibrium was established, the vapor condensate was sampled and analyzed. As the IL is nonvolatile, the vapor phase is composed of water and 2-propanol. Vapor-phase composition was determined by analyzing the water content using the Karl-Fischer method. The uncertainty of the vapor-phase composition was estimated to be 0.0001 in water mole fraction or relatively 1%, whichever is the greater. Liquid-phase compositions were calculated according to the procedure presented in previous work [17]. The next measurement was carried out by replacement of certain amount of the mixture in the boiler with IL-free mixture of water and 2-propanol to keep χ2′ approximately unchanged. The measurement was repeated until w3was close to 0.1.

    3 RESULTS and DISCUSSION

    The experimental VLE data for the ternary system water (1) + 2-propanol (2) + [bmim]Cl (3) are listed in Table 1, with w3varied from 0.8 to 0.1 and χ2′ remained approximately unchanged. The pressure isabout 30 kPa for w3=0.8, 0.7, and 0.6, and 100 kPa for w3=0.5 to 0.1. The experimental points are regularly distributed at eight w3and six χ2′ levels. The liquid-phase compositions are reported in χ2′ and w3. Activity coefficients of water (γ1) and 2-propanol (γ2) and the relative volatility of 2-propanol to water (α2,1) are also reported. In the calculation of activity coefficients the vapor phase is regarded as an ideal gas and the saturated vapor pressures are calculated using parameters from literature [18].

    Table 1 Vapor-liquid equilibrium data for the ternary system water (1) + 2-propanol (2) + [bmim]Cl (3)

    Table 1 (Continued)

    In the measurements, temperature uncertainty was less than 0.04 K. As discussed in previous work [11, 16], the uncertainty for w3was estimated to be ±0.003. The uncertainty for molar composition of water or 2-propanol was estimated to be less than 1%.

    NRTL [12] and eNRTL [19] equations are used to correlate the six data sets. For the eNRTL equation, expressions for the liquid-phase activity coefficients of volatile components in a ternary system containing a salt have been presented by Vercher and Rojo [20]. In the correlations, the binary parameters for water + 2-propanol are taken from literature [21]. While the non-randomness factors α13and α23are chosen at the most common value of 0.3 for the NRTL equation and 0.2 for the eNRTL equation, the binary parameters for water + [bmim]Cl and 2-propanol + [bmim]Cl areobtained by minimization of the following objective function:

    in which N is the number of data points. The obtained parameters are used to calculate the ternary VLE data in comparison with the experimental values. Results are illustrated in Table 2, in which δTand δyare respectively the root mean square deviations of temperature and vapor-phase composition. It is obvious that eNRTL equation provides better results, with δT=0.77 K and δy=0.0074.

    Table 2 Root mean square deviations δTand δyin calculation of VLE data of water (1) + 2-propanol (2) + [bmim]Cl (3) based on the NRTL and eNRTL equations

    Figure 1 Experimental and calculated activity coefficients of water γ1(a) and 2-propanol γ2(b) in relation with mole fraction of 2-propanol on IL-free basis χ′2for the saturated mixture water (1) + 2-propanol (2) + [bmim]Cl (3)○ w3=0.1, p≈100 kPa; □ w3=0.3, p≈100 kPa; △ w3=0.5, p≈100 kPa; ● w3=0.7, p≈30 kPa; ■ w3=0.8, p≈30 kPa; lines: calculated by the eNRTL equation using parameters in Table 3; solid lines: calculated values at w3=0.1, 0.3, 0.5, 0.7, and 0.8 at relevant pressures; dashed lines: calculated values for the system water (1) + 2-propanol (2) at p=100 kPa

    Following the procedure developed in previous work [11] for modeling ternary VLE behavior, the parameters obtained by correlation of two data sets at χ2′≈0.1 and χ2′ ≈ 0.98 are used to reproduce ternary VLE data and compared with the six sets of experimental data. Results are also shown in Table 2. The eNRTL equation provides better results, with δT=0.82 K and δy=0.0078. These deviations are almost the same as those by direct correlation of the six data sets. Therefore, the two data sets at χ2′≈0.1 and χ2′ ≈0.98 appear to be adequate for modeling the VLE behavior in the experimental composition range. The optimized binary parameters for the eNRTL equation are given in Table 3.

    Table 3 Energy parameters Δgijand Δgjiand nonrandomness factors αijfor the eNRTL model obtained from correlation of ternary VLE data of water (1) + 2-propanol (2) + [bmim]Cl (3) using data sets at χ′2≈0.1 and χ′2≈0.98

    VLE results calculated by using parameters in Table 3 and experimental data are also graphically compared in Figs. 1-3. Fig. 1 shows the relationship of γ1and γ2with χ2′. As the experimental data are distributed regularly at different w3, it is expedient to compare the calculated activity coefficients with experimental values at several fixed IL mass fractions, inrelation with χ2′. For the best illustration, typical results at w3=0 (no IL), 0.1, 0.3, 0.5, 0.7, and 0.8 are presented. While γ2decreases with increasing χ2′ at all given w3, γ1increases with increasing χ2′ at w3=0.1 and 0.3, and decreases with increasing χ2′ at higher IL mass fractions, namely at w3=0.5, 0.7 and 0.8. These trends are similar to those presented for the system water + 2-propanol + [bmim][OAc] [14]. On the other hand, the effect of IL mass fraction on the activity coefficients can be also observed in Fig. 1. Generally, both γ1and γ2decrease with increasing w3at the same χ2′.

    The relative volatility of 2-propanol to water,is expressed asin which the ratiodepends weakly on temperature and has small change from 1.939 to 1.955 in the experimental temperature range. Therefore, the effect of IL on α2,1is mainly embodied in the ration of the activity coefficients. Although the decrease of γ1is beneficial for enhancement of the relative volatility, the decrease of γ2is undesirable. Effect of the IL on α2,1is shown in Fig. 2. While the addition of IL increases the relative volatility in the 2-propanol-rich region, showing a salting-out effect, there is a salting-in effect in the water-rich region. In Fig. 3, y2is shown in relation with χ2′. The addition of IL to water (1) + 2-propanol (2) azeotropic mixture leads to noticeable increase of vapor phase molar fraction of 2-propanol, and the azeotrope can be easily broken with small content of IL.

    Figure 2 Experimental and calculated relative volatility of 2-propanol to water α2,1in relation with mole fraction of 2-propanol on IL-free basis χ′2for the saturated mixture water (1) + 2-propanol (2) + [bmim]Cl (3)○ w3=0.1, p≈100 kPa; □ w3=0.3, p≈100 kPa; △ w3=0.5, p≈100 kPa; ● w3=0.7, p≈30 kPa; ■ w3=0.8, p ≈ 30 kPa; lines: calculated by the eNRTL equation using parameters in Table 3; solid lines: calculated values at w3=0.1, 0.3, 0.5, 0.7, and 0.8 at relevant pressures; dashed lines: calculated values for the system water (1) + 2-propanol (2) at p=100 kPa

    Figure 3 Experimental and calculated vapor phase mole fraction of 2-propanol, y2, in relation with mole fraction of 2-propanol on IL-free basis, χ′2, for the saturated mixture water (1) + 2-propanol (2) + [bmim]Cl(3)○ w3=0.1, p≈100 kPa; □ w3=0.3, p≈100 kPa; △ w3=0.5, p≈100 kPa; ● w3=0.7, p≈30 kPa; ■ w3=0.8, p≈30 kPa; lines: calculated by the eNRTL equation using parameters in Table 3; solid lines: calculated values at w3=0.1, 0.3, 0.5, 0.7, and 0.8 at relevant pressures; dashed lines: calculated values for the system water (1) + 2-propanol (2) at p=100 kPa

    4 CONCLUSIONS

    T, χ, y data are reported for the ternary system water + 2-propanol + [bmim]Cl. Six data sets are obtained in a relatively wide range of IL mass fractions up to 0.8 and at χ2′=0.1, 0.2, 0.4, 0.6, 0.8, and approximately 0.98. The NRTL and eNRTL equations are used to correlate the experimental data with satisfactory results. By correlating the two data sets using eNRTL equation, respectively, at χ2′=0.1 and χ2′ ≈ 0.98, all of the six data sets are well reproduced, with δT=0.82 K and δy=0.0078. Owing to the regular distribution of the experimental data, good agreement between experiment and calculation is graphically illustrated. Influence of IL on the VLE behavior of the volatile components is also presented.

    NOMENCLATURE

    Δg NRTL parameters

    p pressure, kPa

    T temperature, K

    w mass fraction

    χ mole fraction of liquid phase

    y mole fraction of vapor phase

    α12, α13, α23NRTL parameters

    α2,1relative volatility of component 2 to component 1

    γ activity coefficient

    δ root mean square deviations

    Superscripts

    sat saturated vapor pressure of a pure component

    ′ prime symbol, indicating the quantity on IL-free basis

    Subscripts

    1, 2, 3 volatile (1, 2) or nonvolatile (3) component

    REFERENCES

    1 Seiler, M., Jork, C., Karvanou, A., Arlt, W., Hirsch, R., “Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids”, AIChE J., 50 (10), 2439-2454 (2004).

    2 Li, Q.S., Zhang, J.G., Lei, Z.G., Zhu, J.Q., Zhu, J.J., Huang, X.Q.,“Selection of ionic liquids as entrainers for the separation of ethyl acetate and ethanol”, Ind. Eng. Chem. Res., 48 (19), 9006-9012 (2009).

    3 Shen, C., Li, X.M., Lu, Y.Z., Li, C.X., “Effect of ionic liquid 1-methylimidazolium chloride on the vapour liquid equilibrium of water, methanol, ethanol, and {water + ethanol} mixture”, J. Chem. Thermodyn., 43 (11), 1748-1753 (2011).

    4 Lei, Z.G., Arlt, W., Wasserscheid, P., “Separation of 1-hexene and n-hexane with ionic liquids”, Fluid Phase Equilib., 241, 290-299 (2006).

    5 Wang, J.F., Li, C.X., Wang, Z.H., Li, Z.J., Jiang, Y.B., “Vapor pressure measurement for water, 2-propanol, and their binary mixtures in the presence of an ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate”, Fluid Phase Equilib., 255 (2), 186-192 (2007).

    6 Westerholt, A., Liebert, V., Gmehling. J., “Influence of ionic liquids on the separation factor of three standard separation problems”, Fluid Phase Equilib., 280, 56-60 (2009).

    7 Zhao, J., Dong, C.C., Li, C.X., Meng, D., Wang, Z.H., “Isobaric vapor-liquid equilibria for ethanol-water system containing different ionic liquids at atmospheric pressure”, Fluid Phase Equilib., 242 (2), 147-153 (2006).

    8 Li, Q.S., Xing, F.Y., Lei, Z.G., Wang, B.H., Chang, Q.L., “Isobaric vapor-liquid equilibrium for isopropanol + water + 1-ethyl-3-methylimidazolium tetrafluoroborate”, J. Chem. Eng. Data, 53 (1), 275-279 (2008).

    9 Cai, J.L., Cui, X.B., Zhang, Y., Li, R., Feng, T.Y., “Isobaric vapor liquid equilibrium for methanol + methyl acetate + 1-octyl-3-methylimidazolium hexafluorophosphate at 101.3 kPa”, J. Chem. Eng. Data, 56 (6), 2884-2888 (2011).

    10 Li, Q.S., Zhu, W., Wang, H.C., Ran, X.M., Fu, Y.Q., Wang, B.H.,“Isobaric vapor-liquid equilibrium for the ethanol + water + 1,3-dimethylimidazolium dimethylphosphate system at 101.3 kPa”, J. Chem. Eng. Data, 57 (3), 696-700 (2012).

    11 Zhang, L.Z., Ge, Y., Ji, D.X., Ji, J.B., “Experimental measurement and modeling of vapor-liquid equilibrium for ternary systems containing ionic liquids: a case study for the system water + ethanol + 1-hexyl-3-methylimidazolium chloride”, J. Chem. Eng. Data, 54 (8), 2322-2329 (2009).

    12 Renon, H., Prausnitz, J. M., “Local compositions in thermodynamic excess functions for liquid mixtures”, AIChE J., 14 (1), 135-144 (1968).

    13 Geng, W., Zhang, L.Z., Deng, D.S., Ge, Y., Ji, J.B., “Experimental measurement and modeling of vapor-liquid equilibrium for the ternary system water + ethanol + 1-butyl-3-methylimidazolium chloride”, J. Chem. Eng. Data, 55 (4), 1679-1683 (2010).

    14 Deng, D.S., Wang, R.F., Zhang, L.Z., Ge, Y., Ji, J.B., “Vapor-liquid equilibrium measurements and modeling for the ternary system (water + 2-propanol + 1-butyl-3-methylimidazolium acetate)”, Physics & Chemistry of Liquids, 50 (4), 504-512 (2012).

    15 Deng, D.S., Wang, R.F., Zhang, L.Z., Ge, Y., Ji, J.B., “Vapor- liquid equilibrium measurements and modeling for ternary system water + ethanol + 1-butyl-3-methylimidazolium acetate”, Chin. J. Chem. Eng., 19 (4), 703-708 (2011).

    16 Zhang, L.Z., Han, J.Z., Deng, D.S., Ji, J.B., “Selection of ionic liquids as entrainers for separation of water and 2-propanol”, Fluid Phase Equilib., 255 (2), 179-185 (2007).

    17 Zhang, L.Z., Deng, D.S., Han, J.Z., Ji, D.X., Ji, J.B., “Isobaric vaporliquid equilibria for water + 2-propanol + 1-butyl-3-methylimidazolium tetrafluoroborate”, J. Chem. Eng. Data, 52 (1), 99-205 (2007).

    18 Reid, R.C., Prausnitz J.M., Poling, B.E., The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York (1987).

    19 Mock, B., Evans, L.B., Chen, C.C., “Thermodynamic representation of phase equilibria of mixed-solvent electrolyte”, AIChE J., 32 (10), 1655-1664 (1986).

    20 Vercher, E., Rojo, F.J., Martínez-Andreu, A., “Isobaric vapor-liquid equilibria for 1-propanol + water + calcium nitrate”, J. Chem. Eng. Data, 44 (6), 1216-1221 (1999).

    21 Marzal, P., Montón, J.B., Rodrigo, M.A., “Isobaric vapor-liquid equilibria of the water + 2-propanol system at 30, 60, and 100 kPa”, J. Chem. Eng. Data, 41(3), 608-611 (1996).

    Received 2012-07-02, accepted 2013-01-28.

    * Supported by the National Natural Science Foundation of China (20776132) and the Natural Science Foundation of Zhejiang Province (Y4100699).

    ** To whom correspondence should be addressed. E-mail: zhanglz@zju.edu.cn

    国产成人精品无人区| 国产精品98久久久久久宅男小说| 国产精品乱码一区二三区的特点| 国产三级在线视频| 久久久水蜜桃国产精品网| 在线观看美女被高潮喷水网站 | 天天一区二区日本电影三级| 国产野战对白在线观看| 国产亚洲欧美在线一区二区| 久9热在线精品视频| 一本精品99久久精品77| 亚洲国产高清在线一区二区三| 男女下面进入的视频免费午夜| av在线天堂中文字幕| 国产麻豆成人av免费视频| 啦啦啦观看免费观看视频高清| 国产精品一区二区精品视频观看| 黄色女人牲交| 91国产中文字幕| 伦理电影免费视频| 一边摸一边做爽爽视频免费| 一区福利在线观看| 99久久无色码亚洲精品果冻| 欧美大码av| 黄色毛片三级朝国网站| 精品国内亚洲2022精品成人| 国产亚洲精品一区二区www| 在线a可以看的网站| 日韩欧美精品v在线| 国产三级黄色录像| 精品无人区乱码1区二区| 一级毛片精品| 人人妻,人人澡人人爽秒播| 女生性感内裤真人,穿戴方法视频| 国产精华一区二区三区| 免费在线观看日本一区| 亚洲全国av大片| 精品乱码久久久久久99久播| 给我免费播放毛片高清在线观看| 两个人看的免费小视频| 又紧又爽又黄一区二区| 露出奶头的视频| 成人av在线播放网站| 精品久久久久久久久久免费视频| 亚洲 欧美 日韩 在线 免费| 波多野结衣高清作品| 国产亚洲av嫩草精品影院| 黄色丝袜av网址大全| 亚洲色图av天堂| www日本黄色视频网| 国产伦人伦偷精品视频| 99热6这里只有精品| 国产探花在线观看一区二区| 此物有八面人人有两片| 制服丝袜大香蕉在线| 亚洲成a人片在线一区二区| 波多野结衣巨乳人妻| 91字幕亚洲| 色综合站精品国产| 国产69精品久久久久777片 | 日韩 欧美 亚洲 中文字幕| 最近最新中文字幕大全免费视频| 亚洲国产中文字幕在线视频| 国产精品免费视频内射| 亚洲18禁久久av| 欧美成狂野欧美在线观看| 国产在线精品亚洲第一网站| 亚洲成人久久性| 黄色视频不卡| 国产精品美女特级片免费视频播放器 | 亚洲专区中文字幕在线| 久久久水蜜桃国产精品网| av福利片在线| 国产精品野战在线观看| 人人妻,人人澡人人爽秒播| 极品教师在线免费播放| 欧美成人免费av一区二区三区| 亚洲自偷自拍图片 自拍| 丁香欧美五月| 亚洲精品中文字幕一二三四区| 老司机福利观看| 欧美激情久久久久久爽电影| 国产私拍福利视频在线观看| 欧美日韩福利视频一区二区| 国产激情欧美一区二区| 免费看a级黄色片| 免费观看人在逋| 欧美黄色片欧美黄色片| 桃红色精品国产亚洲av| 国产人伦9x9x在线观看| 国产午夜福利久久久久久| 男女床上黄色一级片免费看| 亚洲人成伊人成综合网2020| 日韩国内少妇激情av| 亚洲成人中文字幕在线播放| av超薄肉色丝袜交足视频| 国产片内射在线| 午夜两性在线视频| 亚洲精品色激情综合| 欧美乱妇无乱码| 欧美最黄视频在线播放免费| 999久久久精品免费观看国产| 国产精品香港三级国产av潘金莲| 午夜免费成人在线视频| 成人av一区二区三区在线看| 欧洲精品卡2卡3卡4卡5卡区| 麻豆av在线久日| 五月玫瑰六月丁香| 午夜激情av网站| 亚洲av中文字字幕乱码综合| 人妻久久中文字幕网| 18禁黄网站禁片午夜丰满| 日本一区二区免费在线视频| 热99re8久久精品国产| 一级作爱视频免费观看| 日本a在线网址| www.www免费av| 中国美女看黄片| 国产精品久久视频播放| 亚洲国产欧美一区二区综合| 亚洲熟妇中文字幕五十中出| 国产91精品成人一区二区三区| 国产在线观看jvid| 国产在线观看jvid| 国产主播在线观看一区二区| 欧美av亚洲av综合av国产av| 久久欧美精品欧美久久欧美| 欧美一区二区精品小视频在线| 午夜福利高清视频| 三级男女做爰猛烈吃奶摸视频| 国产视频一区二区在线看| 精品国产超薄肉色丝袜足j| 女同久久另类99精品国产91| 老司机在亚洲福利影院| 变态另类成人亚洲欧美熟女| 欧美日韩精品网址| 日本免费一区二区三区高清不卡| 亚洲中文字幕一区二区三区有码在线看 | 日韩高清综合在线| 精品乱码久久久久久99久播| 伊人久久大香线蕉亚洲五| 国产99白浆流出| 国产爱豆传媒在线观看 | 色综合亚洲欧美另类图片| 国产真人三级小视频在线观看| 久久国产乱子伦精品免费另类| 精品久久久久久,| 精品人妻1区二区| 免费在线观看影片大全网站| 成人18禁在线播放| 99热6这里只有精品| 国产精品美女特级片免费视频播放器 | 久久久久亚洲av毛片大全| 国产爱豆传媒在线观看 | www.www免费av| 嫁个100分男人电影在线观看| 1024视频免费在线观看| 久久九九热精品免费| 这个男人来自地球电影免费观看| 最近最新免费中文字幕在线| 一个人观看的视频www高清免费观看 | 一本精品99久久精品77| 国产精品永久免费网站| 欧美国产日韩亚洲一区| 成人欧美大片| 久久 成人 亚洲| 亚洲 欧美一区二区三区| 天堂av国产一区二区熟女人妻 | 亚洲av中文字字幕乱码综合| 一级毛片精品| 日本熟妇午夜| 999久久久精品免费观看国产| 欧美成人午夜精品| 欧美精品亚洲一区二区| 精品一区二区三区视频在线观看免费| 999精品在线视频| 亚洲专区中文字幕在线| 国产一区二区在线观看日韩 | 一进一出好大好爽视频| 亚洲成人国产一区在线观看| 1024香蕉在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 免费观看人在逋| 国产黄色小视频在线观看| 国产精品av久久久久免费| 香蕉丝袜av| 亚洲av第一区精品v没综合| 色播亚洲综合网| 这个男人来自地球电影免费观看| 久久香蕉激情| 免费在线观看亚洲国产| 国内精品久久久久久久电影| 日本撒尿小便嘘嘘汇集6| 久久久久性生活片| 久久久久性生活片| 正在播放国产对白刺激| 亚洲中文日韩欧美视频| 国产黄片美女视频| 老汉色∧v一级毛片| 欧美一区二区精品小视频在线| 免费看a级黄色片| av在线播放免费不卡| 亚洲精品美女久久av网站| 国产伦人伦偷精品视频| 18美女黄网站色大片免费观看| 一级作爱视频免费观看| 久久久精品国产亚洲av高清涩受| 少妇的丰满在线观看| 日韩大尺度精品在线看网址| 婷婷精品国产亚洲av| 嫩草影视91久久| 亚洲男人天堂网一区| 听说在线观看完整版免费高清| 亚洲av美国av| 精品久久久久久久毛片微露脸| a在线观看视频网站| xxxwww97欧美| 日韩大码丰满熟妇| 欧美成人一区二区免费高清观看 | 男插女下体视频免费在线播放| 中出人妻视频一区二区| 日韩大尺度精品在线看网址| 亚洲国产精品合色在线| 伊人久久大香线蕉亚洲五| 国产不卡一卡二| 欧美日韩中文字幕国产精品一区二区三区| 十八禁人妻一区二区| 国产69精品久久久久777片 | 日韩大码丰满熟妇| 法律面前人人平等表现在哪些方面| 久久国产精品人妻蜜桃| 可以在线观看毛片的网站| 国内久久婷婷六月综合欲色啪| 午夜久久久久精精品| 久久伊人香网站| 国产精品乱码一区二三区的特点| 久久精品人妻少妇| 午夜免费观看网址| 最近最新免费中文字幕在线| 夜夜夜夜夜久久久久| 最新美女视频免费是黄的| 精品午夜福利视频在线观看一区| 中文字幕av在线有码专区| 国产精品国产高清国产av| 久久婷婷成人综合色麻豆| 97碰自拍视频| 国产精品免费一区二区三区在线| 亚洲男人天堂网一区| 亚洲aⅴ乱码一区二区在线播放 | 悠悠久久av| 亚洲av美国av| 麻豆成人午夜福利视频| 欧美极品一区二区三区四区| 国产精品一区二区精品视频观看| 一a级毛片在线观看| 欧美zozozo另类| 欧洲精品卡2卡3卡4卡5卡区| 黑人巨大精品欧美一区二区mp4| 91麻豆精品激情在线观看国产| 亚洲黑人精品在线| 老司机午夜十八禁免费视频| 成人精品一区二区免费| 一区二区三区高清视频在线| 亚洲色图av天堂| 亚洲国产精品sss在线观看| 国产一区二区在线观看日韩 | 午夜久久久久精精品| 一边摸一边做爽爽视频免费| 亚洲18禁久久av| 一级作爱视频免费观看| 搡老熟女国产l中国老女人| 一a级毛片在线观看| 一边摸一边抽搐一进一小说| 国产在线精品亚洲第一网站| 日韩欧美 国产精品| 久久久久久久久久黄片| 十八禁人妻一区二区| 高潮久久久久久久久久久不卡| 亚洲中文字幕一区二区三区有码在线看 | 三级男女做爰猛烈吃奶摸视频| 丰满人妻一区二区三区视频av | av免费在线观看网站| 亚洲美女视频黄频| 久久久久国内视频| 淫妇啪啪啪对白视频| 91字幕亚洲| 亚洲av熟女| 国产成人啪精品午夜网站| 国语自产精品视频在线第100页| 国产精品久久久人人做人人爽| 禁无遮挡网站| 91在线观看av| www日本黄色视频网| 久久亚洲真实| 中文字幕久久专区| 国产精品久久久久久亚洲av鲁大| 我要搜黄色片| 桃色一区二区三区在线观看| 成人永久免费在线观看视频| 亚洲片人在线观看| 99riav亚洲国产免费| 成人一区二区视频在线观看| 波多野结衣高清无吗| 中文字幕熟女人妻在线| 久久久久性生活片| 老司机深夜福利视频在线观看| 在线观看一区二区三区| 免费看十八禁软件| 午夜久久久久精精品| 一边摸一边做爽爽视频免费| 九色成人免费人妻av| 精品无人区乱码1区二区| 特级一级黄色大片| 国产91精品成人一区二区三区| 麻豆成人午夜福利视频| 搡老熟女国产l中国老女人| 国产主播在线观看一区二区| 国产av又大| 一本综合久久免费| 草草在线视频免费看| a在线观看视频网站| 欧美最黄视频在线播放免费| 亚洲美女黄片视频| 99riav亚洲国产免费| 精品高清国产在线一区| 久久国产乱子伦精品免费另类| 99riav亚洲国产免费| 人人妻人人看人人澡| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品无人区| 伦理电影免费视频| 老熟妇仑乱视频hdxx| 国产精品av久久久久免费| 伦理电影免费视频| 精品人妻1区二区| 日本 欧美在线| 久久久久久久久中文| 少妇人妻一区二区三区视频| 欧美在线一区亚洲| xxxwww97欧美| 一边摸一边做爽爽视频免费| 国产精品爽爽va在线观看网站| 色av中文字幕| 麻豆久久精品国产亚洲av| 日本免费a在线| 日本在线视频免费播放| 黄色 视频免费看| 俄罗斯特黄特色一大片| 99热这里只有精品一区 | 国产熟女xx| 在线永久观看黄色视频| 欧美色视频一区免费| netflix在线观看网站| 久久精品国产亚洲av香蕉五月| 国产真实乱freesex| 一本大道久久a久久精品| 国产不卡一卡二| 男女之事视频高清在线观看| 国产97色在线日韩免费| 日本熟妇午夜| 精品少妇一区二区三区视频日本电影| 搡老岳熟女国产| 午夜免费激情av| 久久精品国产综合久久久| 亚洲,欧美精品.| av片东京热男人的天堂| 婷婷精品国产亚洲av| 精品久久久久久久毛片微露脸| 久久伊人香网站| 97碰自拍视频| 一本久久中文字幕| 亚洲午夜理论影院| 丰满的人妻完整版| 亚洲欧美日韩高清专用| 亚洲午夜精品一区,二区,三区| 欧美日韩中文字幕国产精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 俺也久久电影网| 精品熟女少妇八av免费久了| 一级毛片精品| 啦啦啦免费观看视频1| 18美女黄网站色大片免费观看| 日本三级黄在线观看| 韩国av一区二区三区四区| 亚洲精品一区av在线观看| 99国产综合亚洲精品| 99久久国产精品久久久| 精品久久久久久久人妻蜜臀av| 日韩欧美 国产精品| 听说在线观看完整版免费高清| 精品一区二区三区av网在线观看| 亚洲国产看品久久| 精品无人区乱码1区二区| 亚洲成人免费电影在线观看| 性色av乱码一区二区三区2| 国产熟女xx| 一个人免费在线观看电影 | 久久欧美精品欧美久久欧美| 亚洲一区高清亚洲精品| 啦啦啦免费观看视频1| 欧美丝袜亚洲另类 | 亚洲成人精品中文字幕电影| 亚洲av电影不卡..在线观看| 国产精品久久久人人做人人爽| 中文在线观看免费www的网站 | 9191精品国产免费久久| 亚洲人成77777在线视频| 欧美日本视频| 久久中文字幕一级| 亚洲最大成人中文| av超薄肉色丝袜交足视频| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线观看吧| 国产视频一区二区在线看| 日本一二三区视频观看| 亚洲一区二区三区色噜噜| 日本一区二区免费在线视频| 亚洲乱码一区二区免费版| 久久久久久亚洲精品国产蜜桃av| 无遮挡黄片免费观看| 校园春色视频在线观看| 在线免费观看的www视频| 看免费av毛片| 丝袜美腿诱惑在线| 色老头精品视频在线观看| 夜夜爽天天搞| 999久久久精品免费观看国产| 在线观看免费午夜福利视频| 最好的美女福利视频网| 校园春色视频在线观看| 岛国视频午夜一区免费看| 亚洲精品av麻豆狂野| 特大巨黑吊av在线直播| 亚洲片人在线观看| 国产在线精品亚洲第一网站| 90打野战视频偷拍视频| 成人高潮视频无遮挡免费网站| 大型av网站在线播放| 女同久久另类99精品国产91| 在线观看免费午夜福利视频| av中文乱码字幕在线| www国产在线视频色| 国产精品av视频在线免费观看| 日韩欧美国产在线观看| 国产一区二区激情短视频| 欧美高清成人免费视频www| 嫩草影院精品99| 亚洲国产精品合色在线| 国产精华一区二区三区| 男人舔女人的私密视频| 精品欧美一区二区三区在线| 18禁国产床啪视频网站| 成人精品一区二区免费| 最近最新中文字幕大全免费视频| 黑人巨大精品欧美一区二区mp4| 亚洲色图 男人天堂 中文字幕| 午夜福利高清视频| 国产v大片淫在线免费观看| 丰满的人妻完整版| 国产1区2区3区精品| 少妇裸体淫交视频免费看高清 | 丝袜美腿诱惑在线| 三级男女做爰猛烈吃奶摸视频| 真人一进一出gif抽搐免费| 欧美又色又爽又黄视频| 成人亚洲精品av一区二区| 美女黄网站色视频| 亚洲午夜理论影院| 亚洲五月天丁香| 人妻夜夜爽99麻豆av| 精品一区二区三区四区五区乱码| 国产精品香港三级国产av潘金莲| 欧美一级a爱片免费观看看 | 国产视频一区二区在线看| av福利片在线| 久久国产乱子伦精品免费另类| 欧美国产日韩亚洲一区| 黄色视频不卡| 99国产精品一区二区三区| 日韩大码丰满熟妇| 好男人电影高清在线观看| 欧美黄色淫秽网站| 国产精品,欧美在线| 成人精品一区二区免费| 人成视频在线观看免费观看| 老司机靠b影院| 久久久久久亚洲精品国产蜜桃av| 久久天堂一区二区三区四区| 亚洲中文日韩欧美视频| 欧美黑人巨大hd| 每晚都被弄得嗷嗷叫到高潮| 又爽又黄无遮挡网站| 国产蜜桃级精品一区二区三区| 国产精品电影一区二区三区| 狠狠狠狠99中文字幕| 亚洲 欧美 日韩 在线 免费| 97超级碰碰碰精品色视频在线观看| 国产主播在线观看一区二区| 一级毛片精品| 日韩av在线大香蕉| 中文亚洲av片在线观看爽| 热99re8久久精品国产| av在线播放免费不卡| 人妻丰满熟妇av一区二区三区| 90打野战视频偷拍视频| 亚洲欧美精品综合一区二区三区| 亚洲成人久久爱视频| 国产一区在线观看成人免费| 黑人欧美特级aaaaaa片| 免费观看人在逋| 亚洲中文字幕日韩| 亚洲免费av在线视频| 亚洲激情在线av| 高潮久久久久久久久久久不卡| 香蕉丝袜av| 国产精品久久久久久久电影 | 国产真实乱freesex| 18禁黄网站禁片免费观看直播| 很黄的视频免费| 国产蜜桃级精品一区二区三区| 亚洲av中文字字幕乱码综合| 人成视频在线观看免费观看| 国产爱豆传媒在线观看 | 国产欧美日韩精品亚洲av| 欧美绝顶高潮抽搐喷水| 十八禁人妻一区二区| 日本五十路高清| 国产人伦9x9x在线观看| 中文字幕熟女人妻在线| 亚洲人成网站在线播放欧美日韩| av片东京热男人的天堂| 欧美黄色片欧美黄色片| 欧美绝顶高潮抽搐喷水| 后天国语完整版免费观看| 国产在线观看jvid| 看免费av毛片| 性色av乱码一区二区三区2| 白带黄色成豆腐渣| 国产精华一区二区三区| 亚洲国产精品999在线| 精品一区二区三区av网在线观看| 18禁美女被吸乳视频| 老汉色∧v一级毛片| 91麻豆av在线| 国产一区二区在线av高清观看| 欧美日韩国产亚洲二区| 香蕉国产在线看| av国产免费在线观看| 啦啦啦韩国在线观看视频| 日韩av在线大香蕉| 成人国产一区最新在线观看| 国产久久久一区二区三区| 91成年电影在线观看| 在线a可以看的网站| 国产成人一区二区三区免费视频网站| 婷婷六月久久综合丁香| 一区二区三区国产精品乱码| 这个男人来自地球电影免费观看| 村上凉子中文字幕在线| 精品久久久久久久久久久久久| 久久精品综合一区二区三区| 又紧又爽又黄一区二区| 最新在线观看一区二区三区| 亚洲18禁久久av| 欧美激情久久久久久爽电影| bbb黄色大片| 国产蜜桃级精品一区二区三区| 亚洲成av人片在线播放无| 男人的好看免费观看在线视频 | 超碰成人久久| 久久性视频一级片| 一级a爱片免费观看的视频| 夜夜躁狠狠躁天天躁| 久久久久久久精品吃奶| 男人舔奶头视频| 久久国产精品人妻蜜桃| 亚洲七黄色美女视频| 精品电影一区二区在线| 正在播放国产对白刺激| 精品国产乱码久久久久久男人| 999精品在线视频| 国产精品久久电影中文字幕| 琪琪午夜伦伦电影理论片6080| 黄色成人免费大全| e午夜精品久久久久久久| 亚洲av美国av| 亚洲午夜精品一区,二区,三区| 久久久精品国产亚洲av高清涩受| 国产精品免费一区二区三区在线| 在线十欧美十亚洲十日本专区| 亚洲人与动物交配视频| 丰满人妻一区二区三区视频av | 欧洲精品卡2卡3卡4卡5卡区| 舔av片在线| 久久久久久免费高清国产稀缺| 欧美一级毛片孕妇| 视频区欧美日本亚洲| 亚洲人成网站在线播放欧美日韩| 中出人妻视频一区二区| 欧美一区二区国产精品久久精品 | 日日干狠狠操夜夜爽| 嫩草影视91久久| 黑人欧美特级aaaaaa片| cao死你这个sao货| 亚洲真实伦在线观看| 精品国产乱子伦一区二区三区| 欧美黑人巨大hd| 精品久久久久久,| 国产精品野战在线观看| 高清毛片免费观看视频网站| 国产一区在线观看成人免费| 日韩欧美在线乱码| 亚洲欧美日韩高清专用| 日韩 欧美 亚洲 中文字幕| 夜夜躁狠狠躁天天躁|