• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Control Vector Iteration Approach for Nonlinear Dynamic Optimization. II. Problems with Path Constraints*

    2014-03-25 09:11:14胡云卿劉興高薛安克

    (胡云卿)(劉興高),**(薛安克)

    1State Key Laboratory of Industry Control Technology, Zhejiang University, Hangzhou 310027, China

    2Institute of Information and Control, Hangzhou Dianzi University, Hangzhou 310018, China

    An Improved Control Vector Iteration Approach for Nonlinear Dynamic Optimization. II. Problems with Path Constraints*

    HU Yunqing(胡云卿)1, LIU Xinggao(劉興高)1,**and XUE Anke(薛安克)2

    1State Key Laboratory of Industry Control Technology, Zhejiang University, Hangzhou 310027, China

    2Institute of Information and Control, Hangzhou Dianzi University, Hangzhou 310018, China

    This paper considers dealing with path constraints in the framework of the improved control vector iteration (CVI) approach. Two available ways for enforcing equality path constraints are presented, which can be directly incorporated into the improved CVI approach. Inequality path constraints are much more difficult to deal with, even for small scale problems, because the time intervals where the inequality path constraints are active are unknown in advance. To overcome the challenge, the l1penalty function and a novel smoothing technique are introduced, leading to a new effective approach. Moreover, on the basis of the relevant theorems, a numerical algorithm is proposed for nonlinear dynamic optimization problems with inequality path constraints. Results obtained from the classic batch reactor operation problem are in agreement with the literature reports, and the computational efficiency is also high.

    nonlinear dynamic optimization, control vector iteration, path constraint, penalty function method

    1 INTRODUCTION

    Owing to the growing popularity of dynamic simulation softwares (e.g., Aspen Dynamics and gPROMS) in chemical engineering processes, operation optimization becomes a problem that needs to be solved urgently. Traditional static optimization methods are no longer suitable for the complex characteristics of modern chemical plants, such as nonlinearity, high dimensionality, and uncertainty. Therefore, more researchers are paying their attentions to using dynamic optimization methods for eliminating bottlenecks and tapping potentials in industrial processes [1, 2].

    In the previous paper [3], an improved control vector iteration (CVI) approach was established in detail. The approach can overcome most drawbacks of traditional indirect methods except dealing with path constraints. In this paper, the approach is enhanced further, and both of equality path constraints and inequality path constraints are considered.

    Dynamic optimization problems with path constraints are difficult to solve, especially for inequality path constrained problems. The reasons are: the time intervals where one or more active constraints exist are unknown in advance; in a specified time interval, the number of active constraints is also unknown; all the state equations that are described by a set of ordinary differential equations (ODEs) and the active constraints may constitute high-index differential-algebraic equations (DAEs), which are hard to solve currently.

    Many researchers have tried to overcome the difficulties [4-10]. In this paper, the l1penalty function and a novel smoothing technique are introduced to enhance the improved CVI approach and make it able to handle path constraints. A significant benefit of using the l1penalty function is that the solution of the original dynamic optimization problem can be approximately obtained by solving a sequence of unconstrained nonlinear programming problems (NLPs). However, the l1penalty function is not differentiable (i.e., non-smooth), so that many sophisticated NLP algorithms such as BFGS can not be used directly. To remedy the deficiency, a new-emerging smoothing technique given by Meng et al. [11] is applied, and the relationship between the original problem and the smoothed penalty problem is also elaborated, resulting in a concomitant numerical algorithm for nonlinear dynamic optimization problems with path constraints.

    2 PROBLEM FORMULATION

    The nonlinear dynamic optimization problems with path constraints can be formulated mathematically as follow:

    3 APPROACH DESCRIPTION

    3.1 Dealing with equality path constraints

    Equality path constraints are relatively much easier to deal with than inequality path constraints. Two effective ways can be incorporated into the improved CVI approach directly. The first one is suggested by Vassiliadis [5] that all the equality path constraints are enforced by minimizing the integral of their squared residual, thus DP becomes:

    When J[u(t)] reaches its minimum, the last term in Eq. (2a) should be zero, consequently the equality path constraints Eq. (1c) are satisfied. The second one is to treat Eq. (1b) and Eq. (1c) as a differential-algebraic equations (DAEs) system (the index of the DAEs system should be less than 3), which can be solved by state-of-art DAE solvers [12].

    3.2 Penalty function method for dealing with inequality path constraints

    Inequality path constraints are very difficult to handle, even for small-scale problems [10]. The idea of penalty was mentioned early in Bryson and Ho [13], where the inequality path constraints were suggested being enforced by augmenting the original objective function as

    where ρ is the penalty parameter. In fact, this form applies the quadratic penalty function which is not exact, that means ρ should be very large when the solution of DP′ can be taken as an approximate solution of DP. To remedy this flaw, the l1exact penalty function is used, resulting in the new problem DP1:

    For the exactness of the l1penalty function method, there exist a threshold value ρ?for the penalty parameter ρ, that for all ρ ρ?> , the solution of DP1 is exactly the solution of DP [14]. This favorable property can avoid the possible numerical difficulties caused by the very large value of ρ in DP′.

    3.3 Smoothing technique

    Although the l1penalty function is exact, it is not differentiable, which means the sophisticated gradient based NLP algorithms can not be used to solve DP1. In this study, a novel smoothing technique [11] is adopted to overcome this drawback.

    The non-differentiable operator max{0, y} can be equivalently expressed by Eq. (5a):

    Recently, Meng et al. [11] proposed a smooth function that can approximate p(y) with artificially precision:

    where the parameter a should be greater than 1. For the constrained NLP problem in Eq. (6), the l1penalty function is expressed in Eq. (7) and the smoothed l1penalty function is expressed in Eq. (8).

    Accordingly, two penalty problems in Eqs. (9) and (10) are obtained, both of them are unconstrained NLP problems:

    Meng et al. [11] also proved the following theorems, where ε is called the smoothing parameter.

    Definition 1 A vector zεis ε-feasible to SP if

    Theorems 1 and 2 indicate that when ε is sufficiently small, the solution of SP2 is an approximate solution of SP1.

    3.4 Solve the problem DP with the smoothed penalty method

    Suppose u(t) has been discretized in the time horizon, and the state variables x(t) have been calculated by solving Eq. (1b) and Eq. (1e) with a set of given control variables (this is reasonable in the iterative solution process, please see the implementation structure in the first paper [3]), then DP1 becomes:

    Applying the novel smoothing technique to DP1, DP2 is produced:

    It is surprising to find that the relationship between the problems DP, DP1 and DP2 is the same as the relationship between SP, SP1 and SP2. In other words, for all ρ> ρ?, the solution of DP2 is an approximate solution of DP.

    3.5 Algorithm outline

    The improved CVI approach is enhanced by applying the smoothed l1penalty function, its structure is sketched in Fig. 1, and the corresponding numerical algorithm is given below:

    Step 1 Set initial penalty parameter ρ and initial smoothing parameter ε.

    Step 2 Set tolerances ε1for Adams algorithm, ε2for BFGS algorithm, ε3for feasibility, choose the time interval number N.

    Step 3 Assign the initial guess for control variablesaccording to experience or priori knowledge about the problem. Set the number of iteration k=0.

    Step 4 Integrate the state and adjoint equations by Adams algorithm, thusJ[u(k)] andare obtained. Go to Step 5.

    Figure 1 The structure of the improved CVI approach

    4 CASE TESING

    The batch reactor operation problem with the parallel reaction mechanism: A→B, A→C (the objective is to find the optimal temperature operating policy below 412 K that maximizes the yield of B), is tested again with additional path constraints (for more background about the problem please refer to [3]). The computing platform consists of Pentium E6550/2.93GHz CPU and DDRII/1000MHz system memory. The desired integration tolerance ε1and the optimization tolerance ε2are set to 10?6, ε3is set to 10?4. The parameter a in Eq. (5b) is set to 2.

    Bloss and Biegler [7] added a state inequality path constraint on this problem, that the yield of A should never be less than 0.2, the modified problem is formulated as The initialconditionsare:A0=1,=0,ρ=1, ε=5×c=10, d=0.5, and=2 uniformly. The algorithm in Section 3.5 is used to solve this problem and Table 1 summarizes the results. It can be s e en there are 3 times of penalty in the solution proce s s. For instance,when ρ=1 and ε=5×the o b je ctivefunction value is 0.5631 while the error is gr e a ter thanthenthe penalty parameter and the smoothing parameter are updated by the rules: ρ= 10?ρ and ε=0.5?ε, respectively, and the algor i t h m res t a rts fromStep4. When ρ=100 and ε= 1 . 2 5 ×t h e algorithmstops with theobjective function value of 0.5347. The solution process needs 37 BFGS iterations in all and 7.25 s.

    Figure 2 shows the change of control profile in the solution process, and Fig. 3 shows the optimalstate variables. In Fig. 2, the upper bounds for k1and k2are the same as in the first paper [3], meaning that the path constraint Eq. (13d) is satisfied. From Fig. 3 it can be seen that, the yield of A only equals to 0.2 at tf, implying the path constraint Eq. (13e) is satisfied well during the whole operation process. Furthermore, the optimal objective function value of 0.5347 is close to the result by Bloss and Biegler [7], which demonstrates the effectiveness of the proposed algorithm.

    Table 1 Results for the constrained batch reactor problem

    Figure 2 Control profile in the solution process

    Figure 3 Optimal state profiles

    5 CONCLUSIONS

    This paper aims to handle path constraints in the framework of the improved CVI approach. Equality path constraints can be enforced by minimizing the integral of their squared residual, or taken with the differential equations together as a DAEs system. Inequality path constraints are incorporated into the original objective function and enforced gradually by penalty function method. In order to use the sophisticated NLP algorithms such as BFGS, a novel smoothing technique is used to make the l1penalty function differentiable. Based on the relationship between the original problem and the smoothed problem, an efficient numerical algorithm for path constrained dynamic optimization problems is elaborated. The changes of the control profiles in the solution process are also illustrated. In addition, the low computational cost indicates the algorithm may have more potential in practical implementations.

    REFERENCES

    1 Biegler, L.T., Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes, SIAM, Philadelphia (2010).

    2 Woranee, P., Paisan, K., Amornchal, A., “Batch-to-batch optimization of batch crystallization processes”, Chin. J. Chem. Eng., 16 (1), 26-29 (2008).

    3 Hu, Y.Q., Liu, X.G., Xue, A.K., “An improved control vector iteration approach for nonlinear dynamic optimization. I. problems without path constraints”, Chin. J. Chem. Eng., 20 (6), 1053-1058 (2012).

    4 Jacobson, D.H., Lele, M.M., “A transformation technique for optimal control problems with a state variable inequality constraint”, IEEE Trans. Auto. Control, 14 (5), 457-464 (1969).

    5 Vassiliadis, V.S., “Computational solution of dynamic optimization problems with general differential-algebraic constraints”, Ph.D. Thesis, University of London, London, UK (1993).

    6 Feehery, W.F., “Dynamic optimization with path constraints”, Ph.D. Thesis, MIT, Boston, USA (1998).

    7 Bloss, K.F., Biegler, L.T., Schiesser, W.E., “Dynamic process optimization through adjoint formulations and constraint aggregation”, Ind. Eng. Chem. Res., 38 (2), 421-432 (1999).

    8 Bell, M.L., Sargent, R.W.H., “Optimal control of inequality constrained DAE systems”, Comput. Chem. Eng., 24 (11), 2385-2404 (2000).

    9 Chen, T.W.C., Vassiliadis, V.S., “Inequality path constraints in optimal control: a finite iteration ε-convergent scheme based on pointwise discretization”, J. Process. Contr., 15 (3), 353-362 (2005).

    10 Luus, R., “Handling inequality constraints in optimal control by problem reformulation”, Ind. Eng. Chem. Res., 48 (21), 9622-9630 (2009).

    11 Meng, Z., Dang, C., Jiang, M., Shen, R., “A smoothing objective penalty function algorithm for inequality constrained optimization problems”, Numer. Func. Anal. Opt., 32 (7), 806-820 (2011).

    12 Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S., “SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers”, ACM Trans. Math. Software, 31 (3), 363-396 (2005).

    13 Bryson, A.E., Ho, Y.C., Applied Optimal Control: Optimization, Estimation, and Control, Taylor & Francis, New York (1975).

    14 Han, S.P., Mangasarian, O.L., “Exact penalty functions in nonlinear programming”, Math. Program., 17 (1), 251-269 (1979).

    Received 2012-08-04, accepted 2012-10-08.

    * Supported by the National Natural Science Foundation of China (U1162130), the National High Technology Research and Development Program of China (2006AA05Z226), and Outstanding Youth Science Foundation of Zhejiang Province (R4100133).

    ** To whom correspondence should be addressed. E-mail: liuxg@iipc.zju.edu.cn

    男人添女人高潮全过程视频| 久久这里只有精品19| 黄网站色视频无遮挡免费观看| 亚洲免费av在线视频| cao死你这个sao货| kizo精华| 国产亚洲精品第一综合不卡| 伊人久久大香线蕉亚洲五| 日韩欧美国产一区二区入口| 亚洲国产毛片av蜜桃av| 男女午夜视频在线观看| 久久久国产精品麻豆| 亚洲色图 男人天堂 中文字幕| 搡老乐熟女国产| 亚洲国产精品成人久久小说| 日韩 欧美 亚洲 中文字幕| 久久中文字幕一级| 少妇人妻久久综合中文| 免费在线观看视频国产中文字幕亚洲 | 午夜视频精品福利| 午夜福利,免费看| 男女下面插进去视频免费观看| 在线av久久热| 色老头精品视频在线观看| 午夜福利视频在线观看免费| 欧美激情高清一区二区三区| 成人三级做爰电影| a级毛片黄视频| 搡老岳熟女国产| 欧美日韩亚洲综合一区二区三区_| 一进一出抽搐动态| 精品久久久精品久久久| 亚洲少妇的诱惑av| 视频区欧美日本亚洲| 波多野结衣一区麻豆| 国产一区二区 视频在线| 秋霞在线观看毛片| 中文字幕人妻丝袜一区二区| 99热国产这里只有精品6| 久久综合国产亚洲精品| 亚洲五月色婷婷综合| 亚洲伊人色综图| 欧美日韩精品网址| 国产精品久久久人人做人人爽| 久久精品人人爽人人爽视色| 国产色视频综合| 国产一区二区在线观看av| svipshipincom国产片| 亚洲av片天天在线观看| 亚洲精品中文字幕在线视频| 看免费av毛片| 桃花免费在线播放| 午夜免费观看性视频| 国产成人精品久久二区二区免费| 国产成人精品久久二区二区免费| 极品人妻少妇av视频| 亚洲伊人久久精品综合| 国产福利在线免费观看视频| 精品久久久久久久毛片微露脸 | 1024视频免费在线观看| 亚洲黑人精品在线| 91精品三级在线观看| 亚洲全国av大片| 99热全是精品| 色老头精品视频在线观看| 中文字幕av电影在线播放| 精品国产一区二区久久| 别揉我奶头~嗯~啊~动态视频 | 天堂中文最新版在线下载| 一区福利在线观看| 乱人伦中国视频| 久久人人97超碰香蕉20202| 天天躁夜夜躁狠狠躁躁| 久久久久国产精品人妻一区二区| av电影中文网址| 又黄又粗又硬又大视频| 亚洲欧美一区二区三区久久| 在线观看免费高清a一片| 午夜免费鲁丝| 男女高潮啪啪啪动态图| 日韩中文字幕视频在线看片| 极品人妻少妇av视频| 国产麻豆69| 在线精品无人区一区二区三| 亚洲色图综合在线观看| 欧美久久黑人一区二区| 18在线观看网站| 俄罗斯特黄特色一大片| 国产在线视频一区二区| 精品少妇黑人巨大在线播放| 欧美精品高潮呻吟av久久| 亚洲少妇的诱惑av| 国产精品麻豆人妻色哟哟久久| 亚洲 国产 在线| 丝瓜视频免费看黄片| 三上悠亚av全集在线观看| 精品第一国产精品| av又黄又爽大尺度在线免费看| 精品一区二区三区四区五区乱码| 久久中文字幕一级| 19禁男女啪啪无遮挡网站| 国产免费现黄频在线看| 亚洲精品国产精品久久久不卡| 十八禁网站网址无遮挡| 亚洲久久久国产精品| 久久久水蜜桃国产精品网| 亚洲精品美女久久久久99蜜臀| 久久国产精品男人的天堂亚洲| 每晚都被弄得嗷嗷叫到高潮| 搡老熟女国产l中国老女人| 黄色a级毛片大全视频| 人人妻人人澡人人看| 亚洲天堂av无毛| 亚洲色图 男人天堂 中文字幕| 黄频高清免费视频| 亚洲av日韩在线播放| 亚洲黑人精品在线| 啪啪无遮挡十八禁网站| 亚洲黑人精品在线| 亚洲人成77777在线视频| 黄片小视频在线播放| avwww免费| kizo精华| 人人妻人人爽人人添夜夜欢视频| 欧美老熟妇乱子伦牲交| 美女高潮喷水抽搐中文字幕| 一本一本久久a久久精品综合妖精| 国产真人三级小视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 涩涩av久久男人的天堂| 精品视频人人做人人爽| 午夜免费成人在线视频| 久久精品国产a三级三级三级| 无遮挡黄片免费观看| 欧美精品高潮呻吟av久久| 在线观看一区二区三区激情| 午夜免费观看性视频| 高清视频免费观看一区二区| 亚洲精品粉嫩美女一区| 精品少妇黑人巨大在线播放| 久久久久精品人妻al黑| 岛国毛片在线播放| 一本一本久久a久久精品综合妖精| 蜜桃在线观看..| 午夜影院在线不卡| 新久久久久国产一级毛片| 国产欧美日韩一区二区三 | 最近中文字幕2019免费版| 国产真人三级小视频在线观看| 99久久人妻综合| 国产亚洲av片在线观看秒播厂| 亚洲精品一区蜜桃| 国产淫语在线视频| 午夜福利一区二区在线看| 他把我摸到了高潮在线观看 | 美女视频免费永久观看网站| 在线亚洲精品国产二区图片欧美| 男女午夜视频在线观看| 在线观看免费视频网站a站| 精品一品国产午夜福利视频| 国产不卡av网站在线观看| a级片在线免费高清观看视频| av有码第一页| 国产成人精品久久二区二区91| 久久性视频一级片| 欧美日韩福利视频一区二区| 人妻久久中文字幕网| 久久ye,这里只有精品| 一级毛片精品| 国产精品久久久久久精品电影小说| 国产亚洲av高清不卡| 午夜视频精品福利| 91字幕亚洲| 久久精品aⅴ一区二区三区四区| 人妻 亚洲 视频| 捣出白浆h1v1| 日本a在线网址| 1024视频免费在线观看| av福利片在线| 桃花免费在线播放| 成人18禁高潮啪啪吃奶动态图| 免费在线观看日本一区| av不卡在线播放| 欧美精品亚洲一区二区| 不卡一级毛片| 丁香六月天网| 久久中文看片网| 久久精品国产亚洲av香蕉五月 | 啦啦啦 在线观看视频| 成在线人永久免费视频| 丝袜人妻中文字幕| av福利片在线| 国产精品免费大片| 日日夜夜操网爽| 99国产精品一区二区三区| 欧美成人午夜精品| 在线观看人妻少妇| 日韩视频在线欧美| 日韩电影二区| 99精品欧美一区二区三区四区| 欧美日韩中文字幕国产精品一区二区三区 | 免费看十八禁软件| 丝袜人妻中文字幕| 十分钟在线观看高清视频www| 可以免费在线观看a视频的电影网站| 夫妻午夜视频| 亚洲自偷自拍图片 自拍| 国产精品久久久av美女十八| 欧美日本中文国产一区发布| 国产精品久久久久久人妻精品电影 | 黑人巨大精品欧美一区二区蜜桃| 国产主播在线观看一区二区| 亚洲,欧美精品.| 少妇裸体淫交视频免费看高清 | 成人黄色视频免费在线看| 国产精品.久久久| 日韩 欧美 亚洲 中文字幕| 成人亚洲精品一区在线观看| 交换朋友夫妻互换小说| 国产精品久久久人人做人人爽| 国产在视频线精品| 中文字幕精品免费在线观看视频| 成年人午夜在线观看视频| av免费在线观看网站| 亚洲欧美日韩另类电影网站| 飞空精品影院首页| 巨乳人妻的诱惑在线观看| 91麻豆精品激情在线观看国产 | 中文字幕高清在线视频| 九色亚洲精品在线播放| 精品亚洲成国产av| 亚洲精品国产精品久久久不卡| av超薄肉色丝袜交足视频| 操美女的视频在线观看| www日本在线高清视频| 国产高清视频在线播放一区 | cao死你这个sao货| 91av网站免费观看| 久久精品成人免费网站| 亚洲伊人久久精品综合| 中文精品一卡2卡3卡4更新| 欧美日韩国产mv在线观看视频| 国产无遮挡羞羞视频在线观看| 国产在线一区二区三区精| a级片在线免费高清观看视频| 日韩欧美一区二区三区在线观看 | 另类亚洲欧美激情| 亚洲九九香蕉| 老司机影院毛片| a在线观看视频网站| 最黄视频免费看| 高潮久久久久久久久久久不卡| 久久精品国产综合久久久| 在线观看人妻少妇| 免费高清在线观看日韩| 嫁个100分男人电影在线观看| 婷婷丁香在线五月| 国产精品 欧美亚洲| a级毛片黄视频| 亚洲专区中文字幕在线| 欧美黑人欧美精品刺激| 大香蕉久久网| 日韩大片免费观看网站| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美视频二区| 欧美在线黄色| 国产亚洲精品久久久久5区| 日韩中文字幕视频在线看片| 国产成人免费无遮挡视频| 精品少妇一区二区三区视频日本电影| 波多野结衣av一区二区av| 宅男免费午夜| 国产成人精品在线电影| 一区二区av电影网| av天堂久久9| 女性被躁到高潮视频| 每晚都被弄得嗷嗷叫到高潮| 午夜福利乱码中文字幕| 狠狠婷婷综合久久久久久88av| av超薄肉色丝袜交足视频| 99热网站在线观看| 啦啦啦中文免费视频观看日本| 亚洲专区国产一区二区| 久久久久久人人人人人| 国产精品二区激情视频| 成年人黄色毛片网站| 久久热在线av| 黑人巨大精品欧美一区二区mp4| 巨乳人妻的诱惑在线观看| 亚洲性夜色夜夜综合| 人人妻人人澡人人看| 91大片在线观看| 亚洲成人免费电影在线观看| 午夜视频精品福利| 一本一本久久a久久精品综合妖精| 久久久久久久久久久久大奶| 久久久久国产一级毛片高清牌| 欧美乱码精品一区二区三区| 亚洲精品国产区一区二| 91精品三级在线观看| 丝袜人妻中文字幕| 国产成人啪精品午夜网站| 岛国在线观看网站| 亚洲av美国av| 精品国产一区二区三区久久久樱花| 日本wwww免费看| 日日摸夜夜添夜夜添小说| 韩国精品一区二区三区| 美女高潮喷水抽搐中文字幕| 十八禁人妻一区二区| av天堂久久9| 国产精品影院久久| 国产成人精品久久二区二区91| 国产成人av激情在线播放| 国产国语露脸激情在线看| 国产精品久久久久久人妻精品电影 | 自拍欧美九色日韩亚洲蝌蚪91| 欧美国产精品va在线观看不卡| 久久久国产欧美日韩av| 亚洲九九香蕉| a级毛片在线看网站| e午夜精品久久久久久久| 在线 av 中文字幕| 国产主播在线观看一区二区| 51午夜福利影视在线观看| 最黄视频免费看| 一级片'在线观看视频| netflix在线观看网站| 十八禁高潮呻吟视频| 一区二区三区激情视频| 精品久久久久久久毛片微露脸 | 国产深夜福利视频在线观看| 91麻豆精品激情在线观看国产 | 中文字幕最新亚洲高清| 欧美精品av麻豆av| 国产成人精品久久二区二区免费| 久久久久久久大尺度免费视频| 亚洲国产欧美网| 女人高潮潮喷娇喘18禁视频| 19禁男女啪啪无遮挡网站| 最近中文字幕2019免费版| 久久久精品94久久精品| 欧美成人午夜精品| 亚洲精品久久成人aⅴ小说| 在线观看一区二区三区激情| 国产视频一区二区在线看| 悠悠久久av| 天天影视国产精品| 日本91视频免费播放| 国产精品av久久久久免费| 亚洲第一欧美日韩一区二区三区 | 成年人午夜在线观看视频| 美女午夜性视频免费| 欧美日本中文国产一区发布| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇猛男粗大的猛烈进出视频| 亚洲一区中文字幕在线| 免费日韩欧美在线观看| 亚洲 国产 在线| 高清视频免费观看一区二区| 成人免费观看视频高清| 三级毛片av免费| 首页视频小说图片口味搜索| 国产又色又爽无遮挡免| 亚洲,欧美精品.| 人成视频在线观看免费观看| svipshipincom国产片| 亚洲一区中文字幕在线| 91成人精品电影| videosex国产| 国产欧美日韩一区二区精品| av一本久久久久| 国产精品国产三级国产专区5o| 黄色视频在线播放观看不卡| 大型av网站在线播放| 亚洲精品中文字幕一二三四区 | 午夜免费成人在线视频| 俄罗斯特黄特色一大片| 国产成人一区二区三区免费视频网站| 妹子高潮喷水视频| 一区二区三区激情视频| 19禁男女啪啪无遮挡网站| 99精品久久久久人妻精品| 久热爱精品视频在线9| 国产伦理片在线播放av一区| 自拍欧美九色日韩亚洲蝌蚪91| 9热在线视频观看99| 蜜桃在线观看..| 1024视频免费在线观看| 制服人妻中文乱码| 男人添女人高潮全过程视频| 高清黄色对白视频在线免费看| 自拍欧美九色日韩亚洲蝌蚪91| 老司机在亚洲福利影院| 午夜福利视频精品| 制服诱惑二区| 久久久久久久久久久久大奶| a在线观看视频网站| 丰满人妻熟妇乱又伦精品不卡| 大片免费播放器 马上看| 蜜桃国产av成人99| 人人妻,人人澡人人爽秒播| 免费黄频网站在线观看国产| 美女高潮喷水抽搐中文字幕| 亚洲国产精品一区二区三区在线| 精品一区二区三区四区五区乱码| 中文字幕色久视频| 久久人人爽av亚洲精品天堂| 久久久精品94久久精品| 精品国产国语对白av| 老司机在亚洲福利影院| 日韩 欧美 亚洲 中文字幕| 欧美日韩亚洲综合一区二区三区_| 别揉我奶头~嗯~啊~动态视频 | 蜜桃在线观看..| 亚洲,欧美精品.| 久久精品国产亚洲av香蕉五月 | 人人妻人人澡人人看| 精品欧美一区二区三区在线| 三级毛片av免费| 在线观看免费高清a一片| 一本综合久久免费| 自线自在国产av| 19禁男女啪啪无遮挡网站| 男女之事视频高清在线观看| 黄色视频,在线免费观看| 国产xxxxx性猛交| www.999成人在线观看| 99香蕉大伊视频| 亚洲欧洲精品一区二区精品久久久| svipshipincom国产片| 黑人欧美特级aaaaaa片| 真人做人爱边吃奶动态| 天堂俺去俺来也www色官网| 少妇被粗大的猛进出69影院| 99国产综合亚洲精品| 欧美另类亚洲清纯唯美| 亚洲精品一卡2卡三卡4卡5卡 | 久久中文字幕一级| 亚洲五月色婷婷综合| 天天添夜夜摸| 午夜福利视频精品| 另类亚洲欧美激情| 欧美日韩亚洲国产一区二区在线观看 | 成人国语在线视频| 日韩免费高清中文字幕av| 极品少妇高潮喷水抽搐| 亚洲欧美一区二区三区黑人| 精品国产乱码久久久久久小说| 中文字幕av电影在线播放| 午夜影院在线不卡| 久久精品成人免费网站| 青青草视频在线视频观看| 日本猛色少妇xxxxx猛交久久| 亚洲av男天堂| 丰满少妇做爰视频| 精品亚洲成国产av| 麻豆av在线久日| 青春草亚洲视频在线观看| 国产精品1区2区在线观看. | 男女下面插进去视频免费观看| av一本久久久久| 12—13女人毛片做爰片一| 亚洲成av片中文字幕在线观看| 后天国语完整版免费观看| 大码成人一级视频| 久久国产精品影院| 亚洲欧美色中文字幕在线| 久久中文字幕一级| 丝袜在线中文字幕| 亚洲精品美女久久久久99蜜臀| 精品国产乱码久久久久久小说| 精品国产国语对白av| 波多野结衣av一区二区av| 亚洲国产精品一区二区三区在线| 黑人猛操日本美女一级片| 国产亚洲一区二区精品| 成在线人永久免费视频| 首页视频小说图片口味搜索| 在线观看舔阴道视频| 国产主播在线观看一区二区| 香蕉国产在线看| 高清av免费在线| 亚洲精品中文字幕在线视频| 亚洲av日韩精品久久久久久密| 99久久国产精品久久久| 亚洲精品国产一区二区精华液| 久久国产亚洲av麻豆专区| 秋霞在线观看毛片| 女人被躁到高潮嗷嗷叫费观| 亚洲精品一区蜜桃| 日韩视频一区二区在线观看| 夜夜夜夜夜久久久久| 久久青草综合色| 国产精品国产三级国产专区5o| a级毛片在线看网站| 不卡av一区二区三区| 亚洲男人天堂网一区| 天天操日日干夜夜撸| 精品国产乱码久久久久久小说| 大片免费播放器 马上看| 制服人妻中文乱码| 欧美日韩福利视频一区二区| 国精品久久久久久国模美| 女人高潮潮喷娇喘18禁视频| 久久久久精品人妻al黑| 国产区一区二久久| 日韩一区二区三区影片| 国内毛片毛片毛片毛片毛片| 成人影院久久| 欧美 日韩 精品 国产| 国产精品久久久久久人妻精品电影 | a级毛片在线看网站| 国产麻豆69| 不卡av一区二区三区| 一本一本久久a久久精品综合妖精| 国产麻豆69| 丝袜脚勾引网站| 欧美变态另类bdsm刘玥| 国产欧美日韩一区二区精品| 黄色a级毛片大全视频| 亚洲国产毛片av蜜桃av| 亚洲精品自拍成人| 高清欧美精品videossex| 久久亚洲国产成人精品v| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区久久| 欧美黄色片欧美黄色片| 一级片免费观看大全| av又黄又爽大尺度在线免费看| 一级黄色大片毛片| 国产欧美日韩精品亚洲av| 三级毛片av免费| 精品欧美一区二区三区在线| 91麻豆av在线| 一本大道久久a久久精品| 啦啦啦免费观看视频1| 最近最新免费中文字幕在线| 黄片播放在线免费| 久久久久久人人人人人| 久久精品久久久久久噜噜老黄| av网站在线播放免费| 青草久久国产| 午夜福利在线免费观看网站| 大片免费播放器 马上看| 国产精品自产拍在线观看55亚洲 | 亚洲欧洲日产国产| 精品人妻1区二区| 如日韩欧美国产精品一区二区三区| 97精品久久久久久久久久精品| 久久精品国产亚洲av香蕉五月 | 国产亚洲欧美在线一区二区| 久久久久精品国产欧美久久久 | 激情视频va一区二区三区| 最新的欧美精品一区二区| 亚洲精品第二区| 免费高清在线观看视频在线观看| 性色av一级| 中文字幕另类日韩欧美亚洲嫩草| a级毛片在线看网站| 中文字幕高清在线视频| 亚洲七黄色美女视频| 黄色视频在线播放观看不卡| 亚洲一区二区三区欧美精品| 国产日韩欧美视频二区| 男人操女人黄网站| 国产精品影院久久| 国产97色在线日韩免费| 精品人妻1区二区| 大片电影免费在线观看免费| 国产欧美日韩一区二区三 | 又紧又爽又黄一区二区| 国产熟女午夜一区二区三区| 国产在线一区二区三区精| 国产成人啪精品午夜网站| 精品少妇黑人巨大在线播放| 热re99久久国产66热| 亚洲一码二码三码区别大吗| 一二三四在线观看免费中文在| 久久久国产成人免费| 精品亚洲成a人片在线观看| 午夜久久久在线观看| 久久毛片免费看一区二区三区| 丰满迷人的少妇在线观看| 国产亚洲欧美在线一区二区| 欧美人与性动交α欧美软件| 亚洲精华国产精华精| 超碰97精品在线观看| 日本wwww免费看| 久久亚洲精品不卡| av国产精品久久久久影院| 香蕉丝袜av| 亚洲欧美激情在线| 一区在线观看完整版| 免费黄频网站在线观看国产| 亚洲精品国产色婷婷电影| 日本黄色日本黄色录像| 中文字幕精品免费在线观看视频| a在线观看视频网站| 18禁观看日本| 成人国语在线视频| 两个人免费观看高清视频| 欧美日韩亚洲国产一区二区在线观看 | 一区在线观看完整版| 黑人巨大精品欧美一区二区蜜桃| 一本色道久久久久久精品综合| 亚洲欧美色中文字幕在线| 国产高清videossex| 亚洲精品国产精品久久久不卡| 亚洲自偷自拍图片 自拍| 交换朋友夫妻互换小说| 精品国产超薄肉色丝袜足j| 操出白浆在线播放| 国产在线一区二区三区精| 各种免费的搞黄视频|