• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rapid Regeneration of Chelated Iron Desulfurization Solution Using Electrochemical Reactor with Rotating Cylindrical Electrodes*

    2014-03-25 09:11:14于永劉有智祁貴生

    (于永)(劉有智)**(祁貴生)

    Research Center of Shanxi Province for High Gravity Chemical Engineering and Technology, North University of China, Taiyuan 030051, China

    Rapid Regeneration of Chelated Iron Desulfurization Solution Using Electrochemical Reactor with Rotating Cylindrical Electrodes*

    YU Yong(于永), LIU Youzhi(劉有智)**and QI Guisheng(祁貴生)

    Research Center of Shanxi Province for High Gravity Chemical Engineering and Technology, North University of China, Taiyuan 030051, China

    A new electrochemical reactor with rotating cylindrical electrodes was designed and used to increase the regeneration efficiency of chelated iron desulfurization solution. The influence of operating parameters, such as the rotation speed of electrode, voltage, and inlet air and liquid flow rates, on the regeneration rate was investigated. Compared with the traditional tank-type reactor, the regeneration rate with the new electrochemical reactor was increased significantly. Under the optimum conditions, the regeneration rate was increased from 45.3% to 84.8%. Experimental results of continuous operation indicated that the new electrochemical regeneration method had some merits including higher regeneration efficiency, smaller equipment size and good stability in operation.

    regeneration, desulfurization, chelated iron, electrochemistry, reactor

    1 INTRODUCTION

    H2S is a toxic, malodorous and sour gas emitted from industrial activities such as petroleum refining, pulp and paper manufacturing, food processing, natural gas treating and coal gasification, which leads to severe air pollution and results in great harm to people’s living and production. The removal of H2S has become a very important gas cleanup process in the chemical industry. Several desulfurization methods, such as dry-, semidry- and wet-processes, have been proposed. The wet desulfurization method is the main technology used [1] due to larger treatment volume, easier recovery of sulfur and more stable operation. Many wet desulfurization methods have been developed, such as the rectisol method, methyldiethanolamine (MDEA) method, polyethylene glycol dimethyl ether (NHD) method, Stretford method, chelated iron method and binuclear cobalt phthalocyanine ammonium sulfonate (PDS) method, among which the chelated iron method is more widely applied abroad [2-6], and its representative technologies are the liquid oxidation catalyst (LO-CAT) process and the SulFerox process [7-9]. While the chelated iron method is still on a laboratory scale in China, there are few reports in industrial applications.

    H2S-removal by the chelated iron method is generally considered as a fast, safe, green and economical method with the advantages of non-toxic reagent with negligible losses. The chelated iron desulfurization processes have been proved to be economically advantageous over other options for throughputs between approximately 250 and 2.0×104kg of sulfur per day [10]. The chemical absorption of H2S with chelated iron is usually represented by Eqs. (1)-(3) [11].

    Where n denotes the charge of an organic ligand L. Since the active chelated iron is converted into inactive chelated iron, the latter component has to be regenerated into its ferric form by oxidation of the solution with oxygen. The regeneration reaction is usually represented by Eqs. (4) and (5) [11].

    Judging from the viewpoint of reaction dynamics, Eqs. (3) and (5) are very rapid, while Eqs. (1) and (4) are relatively slow and are the rate controlling steps in all chelated iron processes [12]. The control step of absorption process is the gas film mass transfer [13-15], which can be greatly enhanced by the new chemical absorption method or equipment with process intensification [16-18]. However, the regeneration process of the chelated iron method is the key step mainly because the solubility of oxygen is extremely low in the liquid phase, which results in slower regeneration speed and lower regeneration efficiency. The traditional regeneration process is generally carried out in a packed column, spray tank or spray tower [19, 20], which has many demerits, such as poor mass transfer efficiency, larger equipment volume, lower regeneration efficiency and higher energy consumption. Therefore, researches have been focused on developing good regenerative processes and equipment featuring fast regeneration speed and high regeneration efficiency, which will have great significance on decreasing theliquid circulation and operating costs.

    In recent years, electrochemical methods have gained increasing interest thanks to their high efficiency, compact facilities, low operating costs and friendly environment, which are studied individually by electrooxidation process, (EOP) [21], electro-coagulation process, (ECP) [22] and electro-Fenton process, (EFP) [23]. The electro-oxidation process is widely applied to the treatment of synthetic solutions containing phenolic compounds [24, 25] and real wastewater, such as textile effluents [26, 27], landfill leachate [28], olive oil wastewaters [29], domestic sewage [30] and tannery waste liquors [31, 32]. The equilibrium potential of the chelated iron desulfurization solution in experiments is relatively low, the reducibility of which is strong. The powerful oxidation of the electro-oxidation process is used to enhance the regeneration effect of the chelated iron desulfurization solution. Meanwhile, this study combines the air oxidation method with the electrooxidation process to intensify the rapid regeneration of the desulfurization solution. In this work, a new electrochemical reactor with rotating cylindrical electrodes is designed and used to increase the regeneration efficiency of the chelated iron desulfurization solution. The new regeneration technology will provide theoretical and experimental basis for industrial applications. This paper focuses on the regeneration process only.

    2 EXPERIMENTAL

    2.1 Materials and methods

    The air used in experiments was from an air steel container. The chelated iron desulfurization solution was collected from a chemical plant, which had an initial pH value of 8.52, an initial temperature of (21±1) °C, an equilibrium potential of ?127 mV, a Fe3+Ln?concentration of 0.016 mol·L?1and a Fe2+Ln?concentration of 0.046 mol·L?1. A kind of phenol catalyst was added to the chelated iron desulfurization solution to improve the regeneration efficiency. The concentrations of Fe2+Ln?and Fe3+Ln?were analyzed with potassium dichromate method. The pH value and equilibrium potential of solution were measured with digital pH meter (Model PHS-3C). An electrical voltage was supplied by a direct current (DC) power supply (Model SPWM- 3030). The rotational speed of electrode was measured by a measuring instrument (Model TESTO-471). The regeneration rate η is applied to characterize the regeneration efficiency of chelated iron desulfurization solution, which is defined as: η= (cin?cout)/cin×100%, in which cinand coutare the Fe2+Ln?concentrations in the inlet and outlet of the electrochemical regeneration device (mol·L?1), respectively.

    2.2 Experimental setup and process flow diagram

    Figure 1 Structure diagram of electrode1—fixed position of electrode and axis; 2—hole; 3—mesh electrode

    Figure 1 shows the structure diagram of electrode. The shape of the electrode is a cylinder, which is fixed on the rotating shaft through the upper and lower fixed points. Two mesh electrodes are placed in the cylinder to strengthen the gas-liquid mass transfer process and electrochemical reactions. Twelve circular holes are designed in the wall of the cylinder in four directions to intensify the interphase mass transfer. The cylindrical electrode has a diameter of 200 mm and a height of 300 mm. The diameter of circular hole in the wall is 60 mm. The mesh electrode in the cylinder is regularly arranged in square-like. The structure of the anode and cathode is the same. The anode material is made of the titanium-based compound material and the cathode material is made of the stainless steel.

    Figure 2 shows the flow chart for the new electrochemical reactor system for regeneration process. Several gas distributors like mushrooms are placed at the bottom of the anode cylinder regularly. Many tiny air holes are punched on the head of each mushroom. Liquid distributors are installed above the anode cylinder and cathode cylinder. The shape of the whole electrochemical reactor is a cuboid. The anode chamber is the same size as the cathode chamber, which has a length of 300 mm, a width of 300 mm and a height of 500 mm. The catholyte is the sodium chloride solution (concentration of 2.0 mol·L?1). The anolyte is the chelated iron desulfurization solution. The height of liquid level is maintained in about 350 mm in the anode chamber and cathode chamber in experiments.

    In the experiments, the chelated iron desulfurization solution was pumped from the storage tank to the inner of the anode cylinder via a liquid distributor, which moved downward via a gravity force. The air was dispersed to the tiny bubbles via a gas distributor, which moved upward via a buoyant force. Both gas and liquid streams contacted counter-currently in the anode chamber, in which the chelated iron desulfurization solution was regenerated by air under rapid stirring of the rotating electrodes. Meanwhile, the rotating electrodes could provide a large and quickly updated surface to accelerate the regeneration process of electrochemical oxidation.

    3 RESULTS AND DISCUSSION

    3.1 Effect of rotation speed of electrode on the regeneration rate

    Figure 2 Experimental process flow diagram1—power supply; 2—motor; 3—liquid distributor; 4—cathode; 5—ceramic membrane; 6—gas distributor; 7—anode; 8—air steel container; 9—regenerated solution tank; 10—original desulfurization solution tank; 11—pump

    Figure 3 Effect of rotation speed of electrode on the regeneration rate

    Figure 3 illustrates the effect of rotation speed of electrode on the regeneration rate at a voltage of 4 V, an inlet air flow rate of 2 m3·h?1and an inlet liquid flow rate of 80 L·h?1. A higher rotating speed of electrode is favorable to increase the regeneration rate, resulting in higher regeneration efficiency. At lower rotating speed, the air bubbles in solution and the bubbles created during electrochemical reactions can adhere easily to the electrode surface and reduce the electrode activity area, which will decrease the electrochemical oxidation efficiency. With an increasing rotating speed, the bubbles can be timely detached from the electrode surface, and the thickness of diffusion layer decreases and the concentration difference can be eliminated rapidly. The increase of current density enhances the electrochemical regeneration effect. At the same time, the gas-liquid mixing degree and turbulence intensity will be enhanced to favor the mass transfer at a higher rotating speed, which can lead to the quick supplement of the dissolved oxygen consumed in the regeneration process. Thus, the regeneration rate increases with increasing rotating speed. However, when the rotating speed of electrode is too high, the contact time between the chelated iron solution and electrode is shortened, and the electrochemical oxidation reactions will be not complete, so the regeneration rate decreases slightly. Moreover, it is well known that higher rotating speed will cause higher energy consumption, which must be considered in industrial applications. In this experiment, the regeneration rate can reach a maximum value of 84.9% when rotation speed of electrode is equal to 180 r·min?1, which is about 1.6 times that achieves in the static electrode environment. The experiments demonstrate that the rotating electrode has significant advantages in improving the regeneration rate.

    3.2 Effect of voltage on the regeneration rate

    Figure 4 shows the influence of voltage on the regeneration rate at a rotation speed of electrode of 180 r·min?1, an inlet air flow rate of 2 m3·h?1and an inlet liquid flow rate of 80 L·h?1. The regeneration rate increases as voltage increases due to that the current density increases rapidly at the initial stage with the increase of voltage, resulting in an increased electrochemical reaction driving force. The increase of voltage is favorable to the regeneration rate in both of the rotating electrode and the static electrode environments. But the regeneration rate in the rotating electrode environment is higher than that in the static electrode environment at the same voltage due to that the rotating electrode can provide a great and rapid renewed surface of the electrode to strengthen the electrochemical oxidation process. When the voltage is above 4 V in the rotating electrode environment, the regeneration rate increases slowly probably due to that the current density and the electrochemical reaction driving force increases slowly. Moreover, too high voltage easily leads to higher energy consumption and more side reactions. Thus, an appropriate voltage of 4 V is selected and the regeneration rate is 84.8%. The new electrochemical reactor can be considered as thetraditional tank-type reactor on condition that the voltage is 0 V in the static electrode environment. Under the optimum conditions, the regeneration rate of the new electrochemical reactor is increased from 45.3% to 84.8% compared with the traditional tank-type reactor. The experiments indicate that the rotating electrode can dramatically improve the efficiency of electrochemical oxidation.

    Figure 4 Effect of voltage on the regeneration rate■ rotating electrode; ▲ static electrode

    3.3 Effect of inlet air flow rate on the regeneration rate

    Figure 5 Effect of inlet air flow rate on the regeneration rate■ rotating electrode; ▲ static electrode

    Figure 5 shows the effect of inlet air flow rate on the regeneration rate at a rotation speed of electrode of 180 r·min?1, a voltage of 4 V and an inlet liquid flow rate of 80 L·h?1. With increasing inlet air flow rate, the regeneration rate first increases rapidly and then changes slightly both in the rotating electrode and static electrode environments due to that the dissolved oxygen accelerates the regeneration reactions. But in the rotating electrode environment, the regeneration rate is always higher than that achieved in the static electrode environment because the rotating electrode strengthens the micro-mixing efficiency of the air and solution, resulting in excellent mixing and higher mass transfer rate. When inlet air flow rate increases to higher than 2 m3·h?1, the regeneration rate increases slowly. The reason may be that the residence time of air becomes shorter in solution and the gas-liquid mass transfer efficiency decreases with a too large inlet air flow rate. Therefore, an inlet air flow rate of 2 m3·h?1is appropriate and the regeneration rate is 84.8%. The experiments indicate that the rotating electrode has significant influence on improving the regeneration efficiency of air oxidation.

    3.4 Effect of inlet liquid flow rate on the regeneration rate

    Figure 6 illustrates the effect of inlet liquid flow rate on the regeneration rate at a rotation speed of electrode of 180 r·min?1, a voltage of 4 V and an inlet air flow rate of 2 m3·h?1. The regeneration rate first decreases slowly and then decreases rapidly with the increase of the inlet liquid flow rate in the rotating electrode environment, which shows the same trend as the case of the static electrode environment. The smaller the inlet liquid flow rate is, the longer the residence time of liquid in the electrochemical reactor will be. Long residence time can benefit the regeneration of the chelated iron desulfurization solution because the gas-liquid contract time and the electrolysis time are one of the most important influence factors of the regeneration process. When inlet liquid flow rate is less than 80 L·h?1, the regeneration rate remains at over 84.6%. When inlet liquid flow rate continues to increase to higher than 80 L·h?1, the residence time of liquid in the electrochemical reactor becomes shorter gradually, resulting in rapid decrease in the regeneration rate. Under the condition that the treatment capacity is bigger and the regeneration rate is higher, an optimum inlet liquid flow rate of 80 L·h?1is selected and the regeneration rate reaches 84.6%, which is about 1.6 times that in the static electrode environment. Theexperiments demonstrate that the rotating electrode has significant advantages in increasing the treatment capacity of regeneration process.

    Figure 6 Effect of inlet liquid flow rate on the regeneration rate■ rotating electrode; ▲ static electrode

    4 CONCLUSIONS

    A new type of electrochemical reactor with rotating cylindrical electrodes exhibits better regeneration performance for the chelated iron desulfurization solution than the traditional tank-type reactor due to its good electrochemical oxidation property and gas-liquid mass transfer performance. The novel electrochemical reactor can not only provide a great and rapid renewed surface to accelerate the regeneration process of electrochemical oxidation, but also provide an excellent gas-liquid mixing environment to strengthen the regeneration process of air oxidation, overcoming the poor mass transfer effect and the low oxidation regeneration efficiency in the traditional tank-type reactor. Under the optimum conditions, the regeneration rate of chelated iron desulfurization solution is increased from 45.3% to 84.8%. Such a new electrochemical reactor offers an opportunity for high-efficiency and continuous operation for regeneration of chelated iron desulfurization solution, which may reduce the liquid circulation, shrink the equipment size and decrease the energy consumption. Moreover, the combination of the novel electrochemical regeneration method and the high gravity chelated iron desulfurization technology will have some advantages, such as higher sulfur capacity, higher desulfurization efficiency, higher regeneration efficiency and smaller equipment size, which will potentially have a great market for industrial applications.

    REFERENCES

    1 Liang, F., Xu, B.G., Shi, X.H., Ming, S.R., “Advances in desulfurization with wet oxidation process”, Modern Chem. Ind., 23 (5), 21-24 (2003). (in Chinese)

    2 Clarke, E.T., Solouki, T., Russell, D.H., “Transformation of polysulfidic sulfur to elemental sulfur in a chelated iron, hydrogen sulfide oxidation process”, Anal. Chim. Acta., 299 (1), 97-111 (1994).

    3 McManus, D., Martell, A.E., “The evolution, chemistry and applications of chelated iron hydrogen sulfide removal and oxidation processes”, J. Mol. Cat. A., 117 (1), 289-297 (1997).

    4 Eng, S.J., Motekaitis, R.J., Martell, A.E., “The effect of end-group substitutions and use of a mixed solvent system on β-diketonates and their iron complexes”, Inorg. Chim. Acta., 278 (2), 170-177 (1998).

    5 Eng, S.J., Motekaitis, R.J., Martell, A.E., “Degradation of coordinated β-diketonates as iron chelate catalysts during the oxidation of H2S to S8by molecular oxygen”, Inorg. Chim. Acta., 299 (1), 9-15 (2000).

    6 Piché, S., Ribeiro, N., Bacaoui, A., “Assessment of a redox alkaline/iron-chelate absorption process for the removal of dilute hydrogen sulfide in air emissions”, Chem. Eng. Sci., 60 (22), 6452-6461 (2005).

    7 Dalrymple, D.A., Trofe, T.W., Evans, J.M., “An overview of liquid redox sulfur recovery”, Chem. Eng. Prog., 85 (3), 43-49 (1989).

    8 Eaton, R. F., “Update LO-CAT/LO-CAT II process design and applications”, In: Proceedings Sulfur Recovery Conference, Austin GRI, 73-82 (1995).

    9 Dostwouder, S.P., “Gas separation membranes coming of age for carbon dioxide removal from natural gas”, In: 45th Annual Lauraceous Reid Gas Conditioning Conference, University of Oklahoma, Norman, 284-307 (1995).

    10 Oostwouder, S.P., Hodge, V.B., “SulFerox process technology and application update”, In: GRI Sulfur Recovery Conference, Radian Corporation, Austin, 49-59 (1995).

    11 Wubs, H.J., Beenackers, A.A.C.M., “Kinetics of the oxidation of ferrous chelates of EDTA and HEDTA in aqueous solutions”, Ind. Eng. Chem. Res., 32 (11), 2580-2594 (1993).

    12 Heguy, D.L., Nagl, G.J., “Consider optimized iron-redox processes to remove sulfur”, Hydrocarbon Processing, 82 (1), 53-57 (2003).

    13 Ebrahimi, S., Kleerebezem, R., Loosdrecht, M.C.M., “Kinetics of the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solutions”, Chem. Eng. Sci., 58 (2), 417-427 (2003).

    14 Chen, J.F., High Gravity Technology and Application, Chemical Industry Press, Beijing, 163-166 (2003). (in Chinese)

    15 Liu, Y.Z., Chemical Engineering Process and Technology in High Gravity, National Defence Industry Press, Beijing, 47-70 (2009). (in Chinese)

    16 Guo, F., Li, F.Y., Cao, Z.G., “Research on absorption process technology for high concentration H2S treatment by compounded complex ferric solution”, Refining Chem. Ind., 18 (2), 7-9 (2007). (in Chinese)

    17 Qi, G.S., Liu, Y.Z., Jiao, W.Z., “Desulfurization by high gravity technology”, Chem. Ind. Eng. Progr., 27 (9), 1404-1407 (2008). (in Chinese)

    18 Cao, H.B., Li, Z.H., Hao, G.J., “Pilot plant experiment for removal of hydrogen sulfide from oil-associated gas by high gravity complex iron method”, Petrochem. Technol., 38 (9), 971-974 (2009). (in Chinese)

    19 Jiang, L.F., Gao, C.Z., Wang, Z.H., “Industrial test on sulfur removal by wet method and catalysis of modification chelate iron”, Shandong Chem. Ind., 1, 33-35 (1998). (in Chinese)

    20 Yang, J.P., Li, H.T., Xiao J.G., “Study on desulfurization from acidic gaseous stream by chelate iron”, J. Chem. Ind. Eng., 23 (2), 23-24 (2002). (in Chinese)

    21 Andrade, L.S., Ruotolo, L.A.M., Rocha-Filho, R.C., “On the performance of Fe and Fe, F doped Ti-Pt/PbO2electrodes in the electro-oxidation of the blue reactive 19 dye in simulated textile wastewater”, Chemosphere., 66 (11), 2035-2043 (2007).

    22 Kabdasli, I., Vardar, B., Arslan-Alaton, I., Tunay, O., “Effect of dye auxiliaries on color and COD removal from simulated reactive dyebath effluent by electro-coagulation”, Chem. Eng. J., 148 (1), 89-96 (2009).

    23 Rosales, E., Pazos, M., Longo, M.A., Sanroman, M.A., “Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment”, Chem. Eng. J., 155 (1-2), 62-67 (2009).

    24 Canizares, P., Garcia-Gomez, J., Saez, C., Rodrigo, M. A., “Electrochemical oxidation of several chlorophenols on diamond electrodes. Part I. Reaction mechanism”, J. Appl. Electrochem., 33 (10), 917-927 (2003).

    25 Polcaro, A.M., Vacca, A., Palmas, S., Mascia, M, “Electrochemical treatment of wastewater containing phenolic compounds: Oxidation at boron-doped diamond electrodes”, J. Appl. Electrochem., 33 (10), 885-892 (2003).

    26 Naumczyk, J., Szpyrkowicz, L., Zillio-Grandi, F., “Electrochemical treatment of textile wastewater”, Water Sci. Technol, 34 (11), 17-24 (1996).

    27 Lin, S.H., Chen, M.L., “Treatment of textile wastewater by chemical methods for reuse”, Water Res., 31 (4), 868-876 (1997).

    28 Chiang, L.C., Chang, J.E., Wen, T.C., “Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate”, Water Res., 29 (2), 671-678 (1995).

    29 Israilides, C.J., Vlyssides, A.G., Mourafeti, V.N., Karvouni, G.,“Olive oil wastewater treatment with the use of an electrolysis system”, Biores. Technol., 61 (2), 163-170 (1997).

    30 DellaMonica, M., Agostiano, A., Ceglie, A., “An electrochemical sewage treatment process”, J. Appl. Electrochem., 10 (1), 527-533 (1980).

    31 Szpyrkowicz, L., Kelsall, G.H., Kaul, S.N., DeFaveri, M., “Performance of electrochemical reactor for treatment of tannery wastewaters”, Chem. Eng. Sci., 56 (4), 1579-1586 (2001).

    32 Szpyrkowicz, L., Naumczyk, J., Zilio-Grandi, F., “Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/Pt/Ir electrodes”, Water Res., 29 (2), 517-524 (1995).

    Received 2013-08-12, accepted 2013-10-22.

    * Supported by the National Natural Science Foundation of China (21376229), the Excellent Innovation Projects of Postgraduates of Shanxi Province (20103084) and the Science and Technology Innovation Projects of Shanxi Province Colleges and Universities (2013128).

    ** To whom correspondence should be addressed. E-mail: lyzzhongxin@126.com

    av片东京热男人的天堂| 91aial.com中文字幕在线观看| 日韩视频在线欧美| 超碰97精品在线观看| 中文乱码字字幕精品一区二区三区| 高清欧美精品videossex| 国产成人av激情在线播放| 精品一区在线观看国产| 七月丁香在线播放| 亚洲欧洲日产国产| 少妇人妻 视频| 国产探花极品一区二区| 一区二区三区乱码不卡18| 97精品久久久久久久久久精品| 亚洲精品第二区| 水蜜桃什么品种好| 亚洲av综合色区一区| 97精品久久久久久久久久精品| 日韩免费高清中文字幕av| 久久国内精品自在自线图片| 国产一区亚洲一区在线观看| 又大又黄又爽视频免费| 亚洲欧美成人综合另类久久久| 免费观看a级毛片全部| 精品熟女少妇av免费看| 亚洲伊人色综图| 精品亚洲乱码少妇综合久久| 亚洲五月色婷婷综合| 久久影院123| 亚洲四区av| 欧美日韩av久久| 女性被躁到高潮视频| 超碰97精品在线观看| 一个人免费看片子| 乱码一卡2卡4卡精品| 午夜视频国产福利| 久久精品国产亚洲av天美| 日本欧美视频一区| 国产日韩欧美视频二区| 另类精品久久| 国产老妇伦熟女老妇高清| 最近的中文字幕免费完整| 午夜久久久在线观看| 啦啦啦视频在线资源免费观看| 日韩欧美精品免费久久| 国产成人aa在线观看| 91精品伊人久久大香线蕉| 国产精品久久久久久av不卡| 一级毛片电影观看| 一级片'在线观看视频| xxxhd国产人妻xxx| 精品卡一卡二卡四卡免费| 18禁在线无遮挡免费观看视频| 女人精品久久久久毛片| 久久午夜综合久久蜜桃| 国产男女内射视频| 中文字幕最新亚洲高清| 色吧在线观看| 母亲3免费完整高清在线观看 | 韩国高清视频一区二区三区| 欧美精品av麻豆av| 天美传媒精品一区二区| 午夜免费鲁丝| 日本欧美国产在线视频| 欧美丝袜亚洲另类| 麻豆精品久久久久久蜜桃| 国产成人精品一,二区| 两个人免费观看高清视频| 精品一区二区三卡| 性色av一级| 国产日韩欧美亚洲二区| 久久99热这里只频精品6学生| 久久久久久久精品精品| 9191精品国产免费久久| 一级a做视频免费观看| 大话2 男鬼变身卡| 香蕉丝袜av| 老女人水多毛片| 久久精品国产a三级三级三级| 一二三四在线观看免费中文在 | 午夜视频国产福利| 国产爽快片一区二区三区| 久久婷婷青草| 欧美人与性动交α欧美软件 | 大话2 男鬼变身卡| 日产精品乱码卡一卡2卡三| 如日韩欧美国产精品一区二区三区| 国产成人精品久久久久久| 免费观看在线日韩| 亚洲精华国产精华液的使用体验| 久久久久久久久久久免费av| av在线老鸭窝| tube8黄色片| 久热久热在线精品观看| 国产乱来视频区| 九九爱精品视频在线观看| 丁香六月天网| 国产精品麻豆人妻色哟哟久久| 国产日韩欧美在线精品| 亚洲精品久久成人aⅴ小说| 亚洲人成网站在线观看播放| 成人免费观看视频高清| 不卡视频在线观看欧美| 色网站视频免费| 狠狠婷婷综合久久久久久88av| 最新的欧美精品一区二区| 纵有疾风起免费观看全集完整版| 街头女战士在线观看网站| 日本vs欧美在线观看视频| 男女国产视频网站| 99久国产av精品国产电影| 美女国产高潮福利片在线看| 久久久久国产精品人妻一区二区| 国产精品蜜桃在线观看| 18禁观看日本| 新久久久久国产一级毛片| 青春草视频在线免费观看| 成人亚洲精品一区在线观看| 天天操日日干夜夜撸| 香蕉国产在线看| 国产成人精品婷婷| 久久久久人妻精品一区果冻| 亚洲精品av麻豆狂野| 午夜免费鲁丝| 嫩草影院入口| 国产精品一区二区在线不卡| 一级毛片我不卡| 国产精品久久久久久精品古装| 性色av一级| 丝瓜视频免费看黄片| 日韩欧美一区视频在线观看| 波野结衣二区三区在线| 丝袜人妻中文字幕| 日韩伦理黄色片| 美女国产视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产精品一区二区在线不卡| 毛片一级片免费看久久久久| 午夜激情av网站| 午夜影院在线不卡| 欧美日韩亚洲高清精品| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久免费av| 如日韩欧美国产精品一区二区三区| 人人妻人人澡人人看| 精品少妇久久久久久888优播| 午夜激情av网站| 国产高清三级在线| 亚洲欧美成人精品一区二区| 满18在线观看网站| 69精品国产乱码久久久| 国产亚洲最大av| 午夜91福利影院| 欧美国产精品va在线观看不卡| 激情视频va一区二区三区| 久久精品熟女亚洲av麻豆精品| 香蕉丝袜av| 久久久久视频综合| 两个人看的免费小视频| 色婷婷久久久亚洲欧美| 久久久久久久大尺度免费视频| 国产成人精品一,二区| 久久狼人影院| 婷婷成人精品国产| 妹子高潮喷水视频| 秋霞在线观看毛片| 99久久中文字幕三级久久日本| 交换朋友夫妻互换小说| 大香蕉久久网| 免费高清在线观看日韩| 日韩在线高清观看一区二区三区| 欧美日韩成人在线一区二区| 亚洲内射少妇av| 久久久久精品性色| 少妇 在线观看| av在线app专区| 欧美变态另类bdsm刘玥| 国产高清不卡午夜福利| 日本wwww免费看| 黑人欧美特级aaaaaa片| 国产精品久久久久成人av| 精品亚洲成a人片在线观看| 99国产精品免费福利视频| 人体艺术视频欧美日本| 男人操女人黄网站| 免费人妻精品一区二区三区视频| 婷婷色麻豆天堂久久| av福利片在线| 午夜久久久在线观看| a 毛片基地| 久久久久久久久久成人| 最近最新中文字幕免费大全7| 日本欧美国产在线视频| 国产成人精品福利久久| 女人精品久久久久毛片| 婷婷色av中文字幕| 交换朋友夫妻互换小说| 免费观看无遮挡的男女| 内地一区二区视频在线| a级毛片在线看网站| 亚洲 欧美一区二区三区| 国产亚洲av片在线观看秒播厂| 国产永久视频网站| 国产成人av激情在线播放| 国产精品一二三区在线看| 女人久久www免费人成看片| 中国三级夫妇交换| 免费看av在线观看网站| 国产成人精品久久久久久| 男女国产视频网站| 精品亚洲乱码少妇综合久久| 一级,二级,三级黄色视频| 亚洲精品av麻豆狂野| 精品一区二区三卡| 日韩伦理黄色片| 日韩欧美精品免费久久| 不卡视频在线观看欧美| av一本久久久久| 香蕉精品网在线| 大陆偷拍与自拍| 少妇人妻久久综合中文| 中文字幕精品免费在线观看视频 | 中国国产av一级| 久久精品国产a三级三级三级| 亚洲一码二码三码区别大吗| 国产成人a∨麻豆精品| 少妇精品久久久久久久| 超色免费av| 99九九在线精品视频| 另类亚洲欧美激情| av又黄又爽大尺度在线免费看| 啦啦啦啦在线视频资源| 一级片免费观看大全| 久久99蜜桃精品久久| 国产成人a∨麻豆精品| 欧美变态另类bdsm刘玥| 日韩大片免费观看网站| 亚洲国产成人一精品久久久| 天天操日日干夜夜撸| 色视频在线一区二区三区| 午夜福利视频在线观看免费| av免费观看日本| a级毛片黄视频| 黄色配什么色好看| 国产男人的电影天堂91| 晚上一个人看的免费电影| 久久99一区二区三区| 看免费av毛片| 国产精品国产av在线观看| 汤姆久久久久久久影院中文字幕| 免费日韩欧美在线观看| 一级爰片在线观看| 母亲3免费完整高清在线观看 | 日本av免费视频播放| 久久久久精品久久久久真实原创| 一级毛片 在线播放| 在线观看美女被高潮喷水网站| 亚洲欧美日韩卡通动漫| 国产 精品1| 青春草国产在线视频| 王馨瑶露胸无遮挡在线观看| 亚洲情色 制服丝袜| 777米奇影视久久| 精品久久久久久电影网| 成人黄色视频免费在线看| 日韩一本色道免费dvd| 久久久久久久久久久久大奶| 亚洲欧美一区二区三区黑人 | 国产日韩欧美在线精品| 18禁动态无遮挡网站| 99热6这里只有精品| 中文乱码字字幕精品一区二区三区| 亚洲精品456在线播放app| 免费观看在线日韩| 国产永久视频网站| 妹子高潮喷水视频| 天天影视国产精品| 国产精品一区www在线观看| 亚洲第一av免费看| 国产女主播在线喷水免费视频网站| 国产欧美另类精品又又久久亚洲欧美| 麻豆乱淫一区二区| 国产精品久久久av美女十八| 国产免费福利视频在线观看| www.熟女人妻精品国产 | 汤姆久久久久久久影院中文字幕| 最近中文字幕高清免费大全6| 国产在线一区二区三区精| 国产免费福利视频在线观看| 青春草亚洲视频在线观看| 高清毛片免费看| 男女免费视频国产| 亚洲一级一片aⅴ在线观看| 99久久精品国产国产毛片| 国产av一区二区精品久久| 中文欧美无线码| av在线播放精品| 亚洲第一av免费看| freevideosex欧美| 国产精品女同一区二区软件| 蜜桃国产av成人99| 久久久久精品人妻al黑| 日韩一本色道免费dvd| 日本猛色少妇xxxxx猛交久久| xxxhd国产人妻xxx| videos熟女内射| 久久国产精品大桥未久av| 街头女战士在线观看网站| av卡一久久| 久久精品aⅴ一区二区三区四区 | 欧美激情 高清一区二区三区| 免费在线观看黄色视频的| 夜夜骑夜夜射夜夜干| 夜夜爽夜夜爽视频| 97超碰精品成人国产| 草草在线视频免费看| 美女福利国产在线| 韩国精品一区二区三区 | 亚洲综合色惰| av天堂久久9| 国产精品99久久99久久久不卡 | 午夜久久久在线观看| 国精品久久久久久国模美| 久久99热这里只频精品6学生| 久久综合国产亚洲精品| 国产免费视频播放在线视频| 亚洲精品日本国产第一区| 人妻少妇偷人精品九色| 下体分泌物呈黄色| 日日摸夜夜添夜夜爱| 国产在视频线精品| 国内精品宾馆在线| 老熟女久久久| 亚洲av在线观看美女高潮| 成年女人在线观看亚洲视频| 成人手机av| 成人无遮挡网站| 日韩电影二区| 观看av在线不卡| 一本大道久久a久久精品| 久久毛片免费看一区二区三区| 久久精品国产自在天天线| 国产精品久久久久成人av| 欧美激情 高清一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 人妻人人澡人人爽人人| 赤兔流量卡办理| 视频区图区小说| 99九九在线精品视频| 午夜视频国产福利| 欧美日韩精品成人综合77777| 国产日韩一区二区三区精品不卡| 在线 av 中文字幕| 亚洲国产日韩一区二区| 久久99蜜桃精品久久| 久久 成人 亚洲| 韩国av在线不卡| 免费黄频网站在线观看国产| 日本av免费视频播放| 亚洲国产欧美在线一区| 69精品国产乱码久久久| av一本久久久久| 一级毛片我不卡| 女人精品久久久久毛片| 欧美精品国产亚洲| 99久久综合免费| 在线观看免费视频网站a站| 精品一区二区三卡| 在线观看免费日韩欧美大片| 亚洲国产最新在线播放| av不卡在线播放| 涩涩av久久男人的天堂| 亚洲一码二码三码区别大吗| 99视频精品全部免费 在线| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区二区在线不卡| 色5月婷婷丁香| 欧美性感艳星| 欧美老熟妇乱子伦牲交| 亚洲情色 制服丝袜| a级片在线免费高清观看视频| 国产视频首页在线观看| 午夜视频国产福利| 狂野欧美激情性xxxx在线观看| 成年女人在线观看亚洲视频| 色哟哟·www| 精品国产一区二区三区四区第35| 亚洲一级一片aⅴ在线观看| 三上悠亚av全集在线观看| 观看av在线不卡| 国产欧美日韩一区二区三区在线| 亚洲av成人精品一二三区| 久久精品国产a三级三级三级| 一区二区av电影网| 欧美成人午夜免费资源| 亚洲精品自拍成人| 亚洲成人手机| 日韩欧美一区视频在线观看| 2022亚洲国产成人精品| 欧美另类一区| 男人爽女人下面视频在线观看| 亚洲精品一区蜜桃| 18+在线观看网站| 黄色视频在线播放观看不卡| 18禁在线无遮挡免费观看视频| 午夜福利,免费看| 99热国产这里只有精品6| 日本av手机在线免费观看| 午夜91福利影院| 久久婷婷青草| 蜜臀久久99精品久久宅男| 成人国语在线视频| 亚洲精品国产av成人精品| 美女国产视频在线观看| 国产免费一级a男人的天堂| 国产精品人妻久久久影院| 边亲边吃奶的免费视频| 韩国高清视频一区二区三区| 国产精品久久久久久精品古装| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产精品专区欧美| 18禁动态无遮挡网站| 免费观看在线日韩| 免费大片18禁| 久热久热在线精品观看| 亚洲人成77777在线视频| 欧美少妇被猛烈插入视频| 性色av一级| 97超碰精品成人国产| 国产精品秋霞免费鲁丝片| 91精品伊人久久大香线蕉| 狠狠精品人妻久久久久久综合| 18禁国产床啪视频网站| 五月开心婷婷网| 天天躁夜夜躁狠狠久久av| 亚洲欧美精品自产自拍| 在线看a的网站| 国产精品无大码| 少妇的丰满在线观看| 美女xxoo啪啪120秒动态图| 日本色播在线视频| 99热网站在线观看| av天堂久久9| 国产日韩一区二区三区精品不卡| 亚洲,一卡二卡三卡| av在线播放精品| 国产亚洲精品久久久com| 欧美变态另类bdsm刘玥| 最黄视频免费看| 久久青草综合色| 考比视频在线观看| 18在线观看网站| 亚洲天堂av无毛| 卡戴珊不雅视频在线播放| 午夜福利视频精品| 久久ye,这里只有精品| 国产精品一区二区在线不卡| 国产无遮挡羞羞视频在线观看| 国产亚洲一区二区精品| 黄色配什么色好看| av天堂久久9| 丝袜在线中文字幕| 伦理电影大哥的女人| 亚洲成人av在线免费| 青春草亚洲视频在线观看| 免费av中文字幕在线| 黄色 视频免费看| 在线天堂最新版资源| 免费大片18禁| 国产精品.久久久| 美女xxoo啪啪120秒动态图| 亚洲精品一二三| 一级a做视频免费观看| 乱码一卡2卡4卡精品| 啦啦啦在线观看免费高清www| 国产欧美日韩一区二区三区在线| 色婷婷av一区二区三区视频| 晚上一个人看的免费电影| 美女国产视频在线观看| 久久精品国产a三级三级三级| 女人精品久久久久毛片| 伊人久久国产一区二区| 26uuu在线亚洲综合色| 999精品在线视频| 22中文网久久字幕| 黄网站色视频无遮挡免费观看| 亚洲激情五月婷婷啪啪| 999精品在线视频| 91国产中文字幕| 免费黄网站久久成人精品| 中文欧美无线码| 九九爱精品视频在线观看| 欧美精品一区二区大全| 丰满饥渴人妻一区二区三| 18在线观看网站| 久久人人97超碰香蕉20202| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| a级片在线免费高清观看视频| 91在线精品国自产拍蜜月| 国产午夜精品一二区理论片| 精品久久国产蜜桃| 激情视频va一区二区三区| 精品少妇黑人巨大在线播放| 黑人猛操日本美女一级片| 卡戴珊不雅视频在线播放| 女的被弄到高潮叫床怎么办| 国产xxxxx性猛交| 久热久热在线精品观看| 国产深夜福利视频在线观看| 欧美日韩综合久久久久久| 亚洲av电影在线进入| 国产精品秋霞免费鲁丝片| 精品少妇久久久久久888优播| 成人18禁高潮啪啪吃奶动态图| 免费看av在线观看网站| 高清视频免费观看一区二区| 91aial.com中文字幕在线观看| 色视频在线一区二区三区| 少妇 在线观看| 成人亚洲欧美一区二区av| 成人国产av品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 热re99久久精品国产66热6| 亚洲第一区二区三区不卡| 国产成人a∨麻豆精品| 成人午夜精彩视频在线观看| 深夜精品福利| 亚洲精品久久午夜乱码| 免费黄网站久久成人精品| 免费观看a级毛片全部| 性色avwww在线观看| videosex国产| 七月丁香在线播放| 18禁动态无遮挡网站| 国产男女超爽视频在线观看| 26uuu在线亚洲综合色| 久久人人爽人人片av| 尾随美女入室| av有码第一页| 热re99久久精品国产66热6| 精品亚洲成国产av| 考比视频在线观看| 日韩中文字幕视频在线看片| 97人妻天天添夜夜摸| 久久久久久久大尺度免费视频| 中文字幕人妻熟女乱码| 国产精品久久久久成人av| 欧美xxⅹ黑人| 黄色怎么调成土黄色| 99国产精品免费福利视频| 亚洲av男天堂| 成人二区视频| 精品熟女少妇av免费看| 美女国产高潮福利片在线看| 欧美最新免费一区二区三区| 国产精品久久久久久av不卡| 久久狼人影院| 亚洲欧美成人综合另类久久久| 婷婷色av中文字幕| 欧美日韩成人在线一区二区| 亚洲欧美一区二区三区国产| 全区人妻精品视频| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 桃花免费在线播放| 日韩欧美精品免费久久| 免费观看av网站的网址| 午夜免费鲁丝| 夜夜爽夜夜爽视频| 99热网站在线观看| 三上悠亚av全集在线观看| 久久精品国产自在天天线| 欧美成人午夜精品| 中文欧美无线码| 51国产日韩欧美| 一级,二级,三级黄色视频| 18禁在线无遮挡免费观看视频| 国产av码专区亚洲av| 久久午夜福利片| 日本黄色日本黄色录像| 午夜91福利影院| 中文字幕人妻丝袜制服| 九色成人免费人妻av| 伦精品一区二区三区| 亚洲欧美日韩卡通动漫| 亚洲一码二码三码区别大吗| 欧美日韩av久久| 国产精品一国产av| 在线观看免费视频网站a站| 国产免费一区二区三区四区乱码| 成年美女黄网站色视频大全免费| 国产日韩欧美视频二区| 亚洲av.av天堂| 97在线人人人人妻| 男女高潮啪啪啪动态图| 99视频精品全部免费 在线| 精品久久久精品久久久| 22中文网久久字幕| 国产乱人偷精品视频| 欧美性感艳星| 岛国毛片在线播放| 最后的刺客免费高清国语| 久久精品人人爽人人爽视色| 高清欧美精品videossex| 观看av在线不卡| 亚洲伊人色综图| 欧美另类一区| 国产av码专区亚洲av| 999精品在线视频| 精品久久久久久电影网| 99re6热这里在线精品视频| 成人漫画全彩无遮挡| 全区人妻精品视频| 国产精品蜜桃在线观看|