• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    山西省早白堊紀(jì)碳酸巖元素同位素和鋯石U-Pb定年研究*

    2014-03-14 04:40:04LIUShenFENGCaiXiaHURuiZhongLAIShaoCongCOULSONIanFENGGuangYingandYANGYuHong
    巖石學(xué)報(bào) 2014年2期
    關(guān)鍵詞:碳酸巖巖石學(xué)斑巖

    LIU Shen, FENG CaiXia, HU RuiZhong, LAI ShaoCong, COULSON Ian M, FENG GuangYing and YANG YuHong

    1. State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’ an 710069, China2. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China3. Solid Earth Studies Laboratory, Department of Geology, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada1.

    1 Introduction

    Carbonatite and mafic dykes develop during periods of lithospheric extension (Hall, 1982; Hall and Fahrig, 1987; Tarney and Weaver, 1987; Zhao and McCulloch, 1993; Yanetal., 2007) and have special geochemical features, attracting the attention of geologists’ worldwide (Le Bas, 1977; Bell, 1989; Bailey, 1993; Yanetal., 2007). Nowadays, more than 530 known carbonate occurrences have been founded on all continent and at some oceanic localities (e.g., the East African Rift, Kontozero Graben in northwestern Russia, Cape Verde, Canary archipelagos, North and Central Alantic Ocean, the NCC) (Bell and Tilton, 2001; Bell and Rukhlov, 2004; Yanetal., 2007; Doucelanceetal., 2010; Rukhlov and Bell, 2010; Xuetal., 2011). Since these rocks are important in understanding the chemical evolution of the mantle over time and assessing continental break-up, carbonatites have been attended closely (e.g., Bailey, 1983; Bell and Blenkinsop, 1989; Belletal., 1999; Bell and Tilton, 2002; Keppler, 2003; Burkeetal., 2003; Rukhlov and Bell, 2010). In addition, there are three principal hypotheses about the origin of the carbonatites (Harmer, 1999; Lee and Wyllie, 1997; Verhulstetal., 2000; Xuetal., 2007). However, there are visible uncertainties on the origin and age dating.

    Mafic dykes are widespread throughout the NCC, and more than 600 dykes have been identified within swarms that trend NE-SW, NW-SE, and E-W (Liuetal., 2008a, b, 2009, 2012a, b, 2013). These rocks provide important information on the extensional tectonism of the area, mantle composition, structures, and the nature and evolution of dynamic processes in the NCC. In contrast, carbonatites distribute very little in NCC (Bai and Li, 1985; Yingetal., 2004; Yanetal., 2007), and they are highly Si-undersaturated magma. They are very important for investigation of the extensional history, upper mantle composition, nature, evolution and geodynamic processes of NCC. The carbonatites in NCC were formed mainly at three periods, i.e., Late Paleoproterozoic-Early Mesoproterozoic, early and late Mesozoic. Except the carbonatites in Laiwu and Zibo, other rocks were derived from enriched lithospheric mantle (Yanetal., 2007). Nevertheless, apparent controversy on the dynamic mechanism still extent.

    Generally, zircon crystallizes from Si-saturated melt and it is commonly used for U-Pb-Hf-O isotope analyses. However, zircon in carbonatites usually occurs as a xenocryst in carbonatite due to crustal contamination and/or magma mixing (Guoetal., 2013). Thus, we can select enough zircon from carbonatite, and provide precise and convincing U-Pb age.

    Accordingly, more investigation on the carbonatite dykes of the NCC is required. Here, we present new zircon U-Pb ages obtained using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), as well as new petrological, whole-rock geochemical, and Sr-Nd isotopic data for representative samples of the carbonatite dykes in the northern NCC. These data allow us to constrain the emplacement ages of these dykes and discuss their petrogenesis.

    2 Geological setting and petrography

    The present study area, located in northern Shanxi Province (Tashan coalmine, Datong), is part of the NCC, the largest and oldest craton in China. The NCC consists of eastern and western blocks of Archean material, and an N-S trending mid-continental orogenic belt of Proterozoic age (Zhaoetal., 2001; Fig.1a). There are numerous carbonatite dykes coexisting with lamprophyre dykes, and all the carbonatites are calcite carbonatites. The country rocks in the study area include Archean leptynites, and Proterozoic, Ordovician, Carboniferous, and Tertiary sedimentary rocks, including limestones (Fig.1b).

    Individual dykes are vertical, trend between NE-SW and N-S, and range from 10m to 30m in width and 150m to 300m in length (Fig.1b). They intrude Carboniferous coal seams. The carbonatites are mainly composed of calcite (>85vol.%) with variable amounts of interstitial apatite and magnetite. A few xenoliths from the coal measures are present in the dykes, and chilled margins can be observed at the dyke edges.

    Fresh equigranular carbonatites in the study area are light gray in color, and weathered examples are light brown. Grain sizes range from 0.8mm to 2.2mm. Porphyritic carbonatites are dark green in color, and they are sometimes massive, sometimes brecciated. The phenocrysts include phlogopites up to 1.3cm in size and occasional pyroxenes, and the micro-granular matrix is made up of calcite, olivine, phlogopite, plagioclase, apatite, magnetite, and zircon. The dykes also contain brecciated material of gneiss, limestone, marble, and basalt. The blocks in the breccias range in size from several millimeters to 4.5cm.

    3 Analytical techniques

    3.1 Zircon LA-ICP-MS U-Pb dating

    Euhedral zircons were separated from one sample (TX01) using conventional heavy liquid and magnetic techniques at the Langfang Regional Geological Survey, Hebei Province, China. After separation and mounting, the internal and external structures of the zircons were imaged using transmitted light, reflected light, and cathodoluminescence (CL) at the State Key Laboratory of Continental Dynamics, Northwest University, China. Prior to zircon U-Pb dating, the surfaces of grain-mounts were washed in dilute HNO3and pure alcohol to remove any potential lead contamination. Zircon U-Pb ages were determined using LA-ICP-MS (Table 1; Fig.2) and an Agilent 7500a ICP-MS instrument equipped with a 193nm excimer laser at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geoscience, Wuhan, China. The zircon standard #91500 was used for quality control, and a NIST 610 standard was used for data optimization. A spot diameter of 24m was used during analysis, and we employed the methodology described by Yuanetal. (2004) and Liuetal. (2010b). Correction for common Pb was undertaken following Andersen (2002), and the resulting data were processed using the GLITTER and ISOPLOT programs (Ludwig, 2003; Table 1; Fig.2). Uncertainties in the individual LA-ICP-MS analyses are quoted at the 95% (1σ) confidence level.

    3.2 Whole-rock K-Ar dating

    Fresh samples were selected and crushed to powder, and then K-Ar ages were analyzed at the K-Ar age laboratory of the Institute of Geology, China Seismological Bureau. An MM-1200 mass spectrograph was used for the K-Ar age determination, and its affiliated extraction system is produced by the VG corp. The constants are adopted asλ=5.543×10-10/a,λe=0.58×10-10/a,λβ=0.58×10-10/a,40K/38K=1.167×10-4/mol/g (Table 2).

    Table 1 LA-ICP-MS U-Pb isotope data for zircons from carbonatite dykes of the NCC

    Table 2 Whole-rock K-Ar ages of the studied carbonatites

    SampleNoRocktypeDatingmethodK(%)40Arrad(mol/g)40Arrad(%)Age(Ma±1σ)TX?3TX?6TX?12carbonatiteWholerock(K?Ar)176431×10-695031313±24225548×10-686661325±27155366×10-693081326±25

    Fig.2 Zircon LA-ICP-MS U-Pb concordia diagrams and CL images of zircons separated from dykes of carbonatite in the northern NCC, China

    3.3 Whole-rock geochemistry and Sr-Nd isotope analyses

    Whole rock samples were trimmed to remove altered surfaces, and fresh portions were collected and then powdered in an agate mill to about 200 meshes for analyses of isotopes, and major and trace elements.

    Major element contents were determined in fused glass discs using a PANalytical Axios-advance (Axios PW4400) X-ray fluorescence spectrometer (XRF) at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China. These analyses have a precision of <5% (Table 3). Loss on ignition (LOI) values was obtained using 1g of powder heated to 1100℃ for 1 hour. Trace element concentrations were determined using ICP-MS at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China, using the procedures outlined in Qietal. (2000), and the analytical uncertainty is ±5% (Table 4). Sample powders used for Rb-Sr and Sm-Nd isotope analyses were spiked with mixed isotope tracers, dissolved in Teflon capsules with HF and HNO3acids, and separated by conventional cation-exchange techniques. Isotopic measurements were performed using a Finnigan Triton Ti thermal ionization mass spectrometer at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China. Procedural blanks yielded concentrations of <200pg for Sm and Nd, and <500pg for Rb and Sr. Mass fractionation corrections for Sr and Nd isotopic ratios were based on86Sr/88Sr=0.1194 and146Nd/144Nd=0.7219, respectively, and analyses of the NBS987 and La Jolla standards yielded values of87Sr/86Sr=0.710246±16 (2σ) and143Nd/144Nd=0.511863±8 (2σ), respectively (Table 5).

    Table 3 Major element contents (wt%) for the carbonatite dykes of the NCC

    SampleSiO2Al2O3Fe2O3TMgOCaONa2OK2OMnOP2O5TiO2LOITotalTX?1203711356321932840037276014126106276010156TX?2218410874840832970014253013131105268010004TX?320651118387127296001324901112810127109869TX?421741112463100279002025501312710626909851TX?520531148320035301005223401212710727699867TX?620751125424065287302827101213010526489855TX?7193110937892362242036280017137106327310040TX?820691162342077301201426301112810527319914TX?919701173257038316400722601013110628009881TX?1021251082491096282700925501412910426969828TX?11194610847832372238035283016139105316610032TX?12207811224230632776025263011128104306210055TX?1320551143316033298604723101112510628659918TX?1421661108457098278402225401312610828169952TX?1519671165253036317100622201212810729129979

    Note: LOI= loss on ignition. Total iron is expressed as Fe2O3T

    Table 4 Trace element compositions (×10-6) of the carbonatite dyke within the NCC

    Table 5 Sr-Nd isotopic compositions of the carbonatite dykes within the northern NCC

    SampleSm(×10-6)Nd(×10-6)Rb(×10-6)Sr(×10-6)87Rb86Sr87Sr86Sr2σ87Sr86Sr()i147Sm144Nd143Nd144Nd2σ143Nd144Nd()iεNd(t)TX183143636397801073070831710070811401152051178880511688-152TX2913453248956007500708147100708005012180511774100511668-156TX392045828198000829070814312070798601214051175290511646-160TX4888434334995009700708204100708021012370511742100511634-162TX5920448295102000836070801310070785501241051173980511631-163TX6850426363101001039070824512070804901206051171690511611-167TX79394633891090010310708268100708073012260511722100511615-166TX89184313871140009810708477120708292012880511774100511662-157TX9934465320106000872070828410070811901214051172480511618-166TX10904430356104000989070826710070808001271051173890511627-164

    Note: using Chondrite Uniform Reservoir (CHUR) values, and decay constants ofλRb=1.42×10-11year-1(Steiger and J?ger, 1977) andλSm=6.54×10-12year-1(Lugmair and Harti, 1978)

    4 Results

    4.1 Zircon U-Pb ages

    Euhedral zircons in sample TX01 are clear and prismatic, and have oscillatory magmatic zoning (Fig.2). Twelve zircons from sample TX01 yielded a weighted mean206Pb/238U age of 132.9±0.6Ma (1σ, 95% confidence interval; Table 1; Fig.2). These new data provide the best estimates of carbonate dyke crystallization ages in the study area, and no inherited zircons were observed in either sample population.

    4.2 Whole-rock K-Ar ages

    The K-Ar dating results are listed in Table 2. The results show that the ages of three carbonatites range from 131.3±2.4Ma to 132.6±2.6Ma, implying that the studied carbonatites were the products of early Cretaceous magmatism.

    4.3 Major and trace elements

    The results of major and trace element analyses of the studied carbonatites are presented in Table 3 and Table 4. In a CaO-MgO-(Fe2O3T+MnO) classification diagram (Fig.3), all samples except two fall into the field of ferro-carbonatite, and the other two carbonatites straddle the region of calico-carbonatite.

    Fig.3 Plot of the studied carbonatites on the CaO-MgO-(Fe2O3T+MnO) classification diagram (after Woolley and Kempe, 1989)

    Fig.4 Chondrite-normalized REE diagram (a, normalization values after Anders and Grevesse, 1989) and primitive-mantle-normalized incompatible element distribution diagram (b, normalization values after Sun and McDonough, 1989) for the carbonatite dykes of the northern NCC, China

    The high SiO2content (19.31%~21.84%) of the studied carbonatites is reflected in the presence of phlogopite phenocrysts (Yingetal., 2004), and the carbonatites have steep rare earth element (REE) patterns, indicating an enriched source (Yingetal., 2004). Carbonatites generally contain more REEs and have higher ratios of light RREs to heavy REEs than any other igneous rocks (Woolley and Kempe, 1989; Hornig-Kjarsgaard, 1998). However, Fig.4a shows that the chondrite normalized REE patterns for the NCC carbonatites studied by us (with very small REE (86×10-6~178×10-6) and steeper REE patterns) are very different from those of most carbonatites worldwide (Table 3; Woolley and Kempe, 1989). In the primitive-mantle-normalized diagrams (Fig.4b), the NCC carbonatites are enriched in Ba, Th, Sr, and U, and markedly depleted in Rb, K, and Ti, and this is in common with carbonatites elsewhere (Nelsonetal., 1988; Woolley and Kempe, 1989). The Nb/Ta and Zr/Hf ratios in the studied rocks are 26~32 and 38~50, respectively, almost comparable with ratios of 17 and 36 in primitive mantle and OIB (Sun and McDonough, 1989), and consistent with most carbonatites elsewhere, as summarized by Thompsonetal. (2002). The Sr and Nd isotope data of the carbonatites are listed in Table 5 and plotted on Fig.5. All samples have relatively high and uniform initial87Sr/86Sr ratios (0.70798~0.70829), low143Nd/144Nd ratios (0.51161~0.51169), and consequently lowεNd(t) values (from -16.7 to -15.2). In a plot of (87Sr/86Sr)ivs.εNd(t), the data from the carbonatites fall in the enriched quadrant (Fig.5), and this illustrates the sharp contrast between the Sr and Nd isotopic data from the NCC Datong carbonatites and the data from other carbonatites elsewhere (e.g., at E’maokou; Shaoetal., 2003).

    Fig.5 Variations in initial 87Sr/86Sr ratios vs. εNd(t) values for the carbonatite dykes of the northern NCC, China

    MORB and OIB data are from Zhangetal. (2002), and the mantle array is from Zhangetal. (2005)

    5 Discussion

    5.1 Evidence of a magmatic origin of the NCC carbonatites

    The occurrence of carbonatites as dykes, sills, and breccia pipes, as well as the clear-cut contact zones with the country rocks, lends overall support to a magmatic origin for the studied carbonatites rather than remobilized limestones. Major element chemistry also provides clear evidence that the studied carbonatites are magmatic and not simply derived from sedimentary limestones or metamorphic marbles. For instance, the carbonatites have much higher SiO2concentrations (19.31%~21.84%, Table 3) than those of limestones. The REE distribution patterns and trace element spidergrams for the studied carbonatites are similar to those for known carbonatites, and are different from those of limestone (Le Basetal., 2002; Yingetal., 2004). In summary, all the evidence points convincingly to a magmatic origin for the studied carbonatites.

    5.2 Mantle source

    The carbonatite and mafic dykes are both associated with lithospheric extension, and the fact that the studied carbonatites coexist with many other contemporaneous mafic dykes suggests they may all have a similar source (possibly the lithospheric mantle). Generally, the carbonatites are enriched in incompatible elements (Ba, Th, Sr, and U), implying they were derived by a low degree of partial melting of the mantle (Shaoetal., 2003). As mentioned above, a striking feature of the studied carbonatites is their very negativeεNd(t) values (from -16.7 to -15.2), and this, coupled with the extremely high initial87Sr/86Sr ratios (0.70798~0.70829), obviously excludes the possibility that their primary isotopic ratios have been changed by the large assimilation of crustal materials (Shao and Zhang, 2002; Yingetal., 2004). Although some carbonatites include crustal breccias and xenoliths, their Sr and Nd isotopic ratios are quite similar to those of the carbonatites that are relatively pure and lacking crustal breccias (Yingetal., 2004). To summarize, the Sr-Nd isotopic ratios in the carbonatites studied indicate derivation from an enriched lower lithospheric mantle source.

    5.3 Crustal contamination

    As mentioned above, the extremely high abundances of Sr and Nd in carbonatites can buffer their primary isotopic ratios against crustal contamination during ascent of the magma, which is further supported by the absence of any inherited zircons. However, the fact that the carbonatites studied here are characterized by high Sr isotope ratios and negativeεNd(t) values suggests that the magmas might have assimilated significant amounts of crustal material. Furthermore, it is generally accepted that the carbonatites will be depleted in Zr, Hf, Nb, Ta and Ti. However, the studied carbonatite dykes almost show no Zr-Hf depletion with respect to neighboring Sm and Eu. Implying these carbonatite dykes experienced contamination or AFC processes by zircon-rich crustal rocks such as the wall granitic rocks, and the contaminated magmas would not show Zr-Hf depletion of the primary carbonatitic melts. In summary, there exists a certain amount of crustal contamination during magma ascending.

    5.4 Genetic processes

    The carbonatites in NCC are widespread in Henan Province (Fangcheng), Hebei Province (Huai’an and Zhuolu), Shanxi Province (Huairen and Zijinshan), Shaanxi Province (Huayin and Luonan) and Inner Mongolia Autonomous Region (Banyan Obo and Fengzhen), however, the majority of the carbonatites distribute in the north and south margin of the NCC. In addition, in central and eastern NCC, carbonatites only were found in Zijinshan (Shanxi Province) and Laiwu-Zibo (Shandong Province) (Yanetal., 2007). The main types of the carbonatite are calcite carbonatite, and most of them are paragenetic with alkaline rocks. Furthermore, the age of the carbonatites in NCC has a wide distribution, i.e., Paleoproterozoic (~1.8Ga), Mesoproterozoic (1.7~1.2Ga), Neoproterozoic (786Ma), Early Paleozoic (433Ma), Early Mesozoic (239~204Ma), and Late Mesozoic (132~124Ma) (Bai and Yuan, 1985; Yanetal., 2007; Mu and Yan, 1992; Qiuetal., 1993; Renetal., 1999; Zouetal., 2000; Ying and Zhou, 2001; Shaoetal., 2003; Fanetal., 2006; Yangetal., 2006). According to previous research, the carbonatites in NCC, especially during the Late Triassic, were considered to be related with extension due to crust rifting (Mu and Yan, 1992; Muetal., 2001), the subduction between Qinling Plate and the NCC (Renetal., 1999), the control of different structure (Shaoetal., 2003), and the subduction between paleoasian ocean plate, Yangtze Craton and the NCC (Yanetal., 2007). In addition to carbonatites, there are also other extension-derived rocks in NCC, such as alkaline rocks (Mu and Yan, 1992) and mafic dykes (Shao and Zhang, 2002; Shaoetal., 2003; Yangetal., 2004; Houetal., 2006, 2008; Johnetal., 2010; Lietal., 2010; Peng, 2010; Pengetal., 2005, 2007, 2008, 2010, 2011a, b; Liuetal., 2006, 2008a, b, 2009, 2012a, b, 2013).

    Hence, the genetic processes of the studied carbonatites should be discussed. There are currently three representative models for the origin of carbonatites: 1) direct partial melting (<1.0%) of asthenospheric or lithospheric mantle; 2) fractional crystallization of nepheline magma; and 3) liquation (Shaoetal., 2003). With respect to the studied carbonatites, we note that feldspars and micas are visible in the carbonatites, and that the carbonatites are characterized by high contents of Cr and Ni, and low contents of Nb and Ta. These observations indicate that the carbonatites were formed by liquation. However, a dynamic model is required to further decipher the origin of these rocks.

    Geophysical evidence suggests that the Datong area is in a special tectonic location of apparent asthenospheric upwelling and lithospheric thinning. In the Mesozoic, following the collision of the NCC with various other continental blocks (e.g., the Siberia Block), and after the closure of the ancient Pacific/Tethys Ocean, the regional stresses were reduced, and the NCC underwent a transformation in tectonic regime from compression to extension (Zhaietal., 2004). This resulted in large-scale uplift of the deep mantle, as well as considerable extension of the crust, and the widely distributed extension-derived igneous rocks, including numerous mafic, alkaline, and carbonatite dykes in the NCC, have been extensively studied (Wu, 1966; Heetal., 1986; Zhang, 1993; Shao and Zhang, 2002; Chen and Zhai, 2003; Shaoetal., 2003, 2005; Yangetal., 2004; Liuetal., 2005, 2006, 2008a, b, 2009, 2010a, 2011, 2012a, b, 2013; Yanetal., 2007; Zhang, 2007; Fengetal., 2010, 2012). This may be the tectonic context in which the carbonatite dykes in the study area were formed.

    Based on the description above, the studied carbonatites are characterized by enrichment in LILE (e.g., Ba, Th, Sr, U) and LREE, depletion in HREE and HFSE (e.g., Ta, P, Ti), radiogenic isotopes (e.g., Sr and Nd), and contamination by obvious crust materials. It is generally accepted that hydrous melts from the subducting continental crust are commonly of felsic composition. They have principally inherited the continental crust-like signatures of trace elements and radiogenic isotopes (Zheng, 2012). As a result, the mixing of the continental crust with sub-continental lithospheric mantle will result in the above characteristics. Likewise, this can give a reasonable interpretation for the existent crust contamination.

    6 Conclusions

    The geochronological, geochemical, Sr-Nd isotopic and whole-rocks K-Ar data presented here have allowed the following conclusions to be drawn:

    (1)Zircon LA-ICP-MS U-Pb and whole-rock K-Ar dating of carbonate dykes in Shanxi Province, China, indicates the Early Cretaceous (131.3±2.4Ma~132.9±0.6Ma) ages of crystallization.

    (2)These carbonate dykes were derived from partial melting of an enriched lower lithospheric mantle source, emplacement of the carbonatite dykes was accompanied with apparent crustal contamination. The carbonatite dykes within the northern NCC formed during the mixing of the continental crust with sub-continental lithospheric mantle.

    AcknowledgementsThe authors thank Lian Zhou and Zhaochu Hu for assistance during zircon U-Pb dating, Sr-Nd isotope, and Hf isotopic analyses.

    Anders E and Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1): 197-214

    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report204Pb. Chemical Geology, 192(1-2): 59-79

    Bai G and Yuan ZX. 1985. Carbonatite and related mineral deposits. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, 1: 99-175 (in Chinese with English abstract)

    Bailey DK. 1983. The chemical and thermal evolution of rifts. Tectonophysics, 94(1-4): 585-597

    Bailey DK. 1993. Carbonate magmas. Journal of the Geological Society, 150(4): 637-651

    Bell K. 1989. Carbonatites: Genesis and Evolution. London: Unwin Hyman

    Bell K and Blenkinsop J. 1989. Neodymium and strontium isotope geochemistry of carbonatites. In: Bell K (ed.). Carbonatites: Genesis and Evolution. London: Unwin Hyman, 278-300

    Bell K, Kjarsgaard BA and Simonetti A. 1999. Carbonatites-into the twenty-first century. Journal of Petrology, 39: 1839-1845

    Bell K and Tilton GR. 2001. Nd, Pb, and Sr isotopic compositions of East African cabonatites: Evidence for mantle mixing and plume inhomogeneity. Journal of Petrology, 42(10): 1927-1945

    Bell K and Tilton GR. 2002. Probing the mantle: The story from carbonatites. EOS. Transactions of the American Geophysical Union, 83(25): 273-277

    Bell K and Rukhlov AS. 2004. Carbonatites from the Kola alkaline province: Origin, evolution and source characteristics. In: Wall F and Zaitsev AN (eds.). Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline. London: Mineralogical Society Series, 10: 421-455

    Burke K, Ashwal LD and Webb SJ. 2003. New way to map old sutures using deformed alkaline rocks and carbonatites. Geology, 31(5): 391-394

    Chen B and Zhai MG. 2003. Geochemistry of Late Mesozoic lamprophyre dykes from the Taihang Mountains, North China, and implications for the sub-continental lithospheric mantle. Geological Magazine, 140(1): 87-93

    Doucelance R, Hammouda T, Moreira M and Martins J. 2010. Geochemical constraints on depth of origin of oceanic carbonatites: The Cape Verde case. Geochimica et Cosmochimica Acta, 74(24): 7261-7282

    Fan HR, Hu FF, Chen FK, Yang KF and Wang KY. 2006. Intrusive age of No.1 carbonatite dyke from Bayan Obo REE-Nb-Fe deposit, Inner Mongalia: With answers to comment of Dr. Le Bas. Acta Petrologica Sinica, 22(2): 519-520 (in Chinese with English abstract)

    Feng GY, Liu S, Zhong H, Jia DC, Qi YQ, Wang T and Yang YH. 2010. Geochemical characteristics and petrogenesis of Late Paleozoic mafic rocks from Yumuchuan, Jilin Province. Geochimica, 39(5): 427-438 (in Chinese with English abstract)

    Feng GY, Liu S, Zhong H, Feng CX, Coulson IM, Qi YQ, Yang YH and Yang CG. 2012. U-Pb zircon geochronology, geochemical, and Sr-Nd isotopic constraints on the age and origin of basaltic porphyries from western Liaoning Province, China. International Geology Review, 54(9): 1052-1070

    Guo F, Guo JT, Wang CY, Fan WM, Li CW, Zhao L, Li HX and Li JY. 2013. Formation of mafic magmas through lower crustal AFC processes: An example from the Jinan gabbroic intrusion in the North China Block. Lithos, 179: 157-174

    Hall HC. 1982. The importance and potential of mafic dyke swarms in studies of geodynamic process. Geoscience Canada, 9(3); 145-154

    Hall HC and Fahrig WF. 1987. Mafic dyke swarms. Geological Association of Canada Special Paper, 34: 1-503

    Harmer RE. 1999. The petrogenetic association of carbonatite and alkaline magmatism: Constraints from the Spitskop complex, South Africa. Journal of Petrology, 40(4): 525-548

    He GZ, Shangguan ZG and Zhao YL. 1986. Carbonatites and their patterns of REE distribution in Erdaobian and Boshan areas, China. In: Kimberlite and Related Rocks. 39-41

    Hornig-Kjarsgaard I. 1998. Rare earth elements in sovitic carbonatites and their mineral phases. Journal of Petrology, 39: 2105-2121

    Hou GT, Liu YL and Li JH. 2006. Evidence for 1.8Ga extension of the Eastern Block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Sciences, 27(4): 392-401

    Hou GT, Santosh M, Qian XL, Lister GS and Li JH. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Research, 14(3): 395-409

    John DAP, Zhang JS, Huang BC and Andrew PR. 2010. Alaeomagnetism of Precambrian dyke swarms in the North China Shield: The 1.8Ga LIP event and crustal consolidation in Late Palaeoproterozoic times. Journal of Asian Earth Sciences, 41(6): 504-524

    Keppler H. 2003. Water solubility in carbonatite melts. American Mineralogist, 88(11-12): 1822-1824

    Le Bas MJ. 1977. Carbonatite-Nephelinite Volcanism. London: Wildy & Sons

    Le Bas MJ, Subbarao KV and Walsh JN. 2002. Metacarbonatite or marble? The case of the carbonate, pyroxenite, calcite-apatite rock complex at Borra, Eastern Ghats, India. Journal of Asian Earth Sciences, 20(2): 127-140

    Lee WJ and Wyllie PJ. 1997. Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 Gpa compared with mantle composition. Contributions to Mineralogy and Petrology, 127(1-2): 1-6

    Li TS, Zhai MG, Peng P, Chen L and Guo JH. 2010. Ca. 2.5 billion year old coeval ultramafic-mafic and syenitic dykes in eastern Hebei: Implications for cratonization of the North China Craton. Precambrian Research, 180(3): 143-155

    Liu S, Hu RZ, Zhao JH, Feng CX, Zhong H, Cao JJ and Shi DN. 2005. Geochemical characteristics and petrogenetic investigation of the Late Mesozoic lamprophyres of Jiaobei, Shandong Province. Acta Petrologica Sinica, 21(3): 947-958 (in Chinese with English abstract)

    Liu S, Zou HB, Hu RZ, Zhao JH and Feng CX. 2006. Mesozoic mafic dykes from the Shandong Peninsula, North China Craton: Petrogenesis and tectonic implications. Geochemical Journal, 40(2): 181-195

    Liu S, Hu RZ, Gao S, Feng CX, Qi L, Zhong H, Xiao T, Qi YQ, Wang T and Coulson IM. 2008a. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, East China: Constrains on their petrogenesis and geodynamic significance. Chemical Geology, 255(3-4): 329-345

    Liu S, Hu RZ, Gao S, Feng CX, Qi YQ, Wang T, Feng GY and Coulson IM. 2008b. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dykes from Sulu orogenic belt, Eastern China. Lithos, 106(3-4): 365-379

    Liu S, Hu RZ, Gao S, Feng C, Yu BB, Feng GY, Qi YQ, Wang T and Coulson IM. 2009. Petrogenesis of Late Mesozoic mafic dykes in the Jiaodong Peninsula, eastern North China Craton and implications for the foundering of lower crust. Lithos, 113(3-4): 621-639

    Liu S, Hu RZ, Feng GY, Yang YH, Feng CX, Qi YQ and Wang T. 2010a. Distribution and significance of the mafic dyke swarms since Mesozoic in North China Craton. Geological Bulletin of China, 29(2-3): 259-267 (in Chinese with English abstract)

    Liu S, Hu RZ, Gao S, Feng CX, Zhong H, Qi YQ, Wang T, Feng GY and Yang YH. 2011. U-Pb zircon age along with geochemical and Sr-Nd-Pb isotopic constraints on the dating and origin of intrusive complexes from the Sulu orogenic belt, eastern China. International Geology Review, 53(1): 61-83

    Liu S, Hu RZ, Gao S, Feng CX, Feng GY, Qi YQ, Coulson IM, Yang YH, Yang CG and Tang L. 2012a. Geochemical and isotopic constraints on the age and origin of mafic dykes from eastern Shandong Province, eastern North China Craton. International Geology Review, 54(12): 1389-1400

    Liu S, Hu RZ, Gao S, Feng CX, Coulson IM, Feng GY, Qi YQ, Yang YH, Yang CG and Tang L. 2012b. U-Pb zircon age, geochemical and Sr-Nd isotopic data as constraints on the petrogenesis and emplacement time of the Precambrian mafic dyke swarms in the North China Craton (NCC). Lithos, 140-141(1): 38-52

    Liu S, Hu RZ, Gao S, Feng CX, Coulson IM, Feng GY, Qi YQ, Yang YH, Yang CG and Tang L. 2013. Zircon U-Pb age and Sr-Nd-Hf isotopic constraints on the age and origin of Triassic mafic dykes, Dalian area, Northeast China. International Geology Review, 55(2): 249-262

    Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546

    Ludwig KR. 2003. User’s manual for Isoplot/Ex, Version 3.00. A geochronological toolkit for Microsoft excel. Berkeley Geochronology Center Special Publication, 4: 1-70

    Lugmair GW and Harti K. 1978. Lunar initial143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349-357

    Mu BL and Yan GH. 1992. Geochemistry of Triassic alkaline or subalkaline igneous complexes in the Yanliao area and their significance. Acta Geologica Sinica, 66(2): 108-121(in Chinese with English abstract)

    Mu BL, Shao JA, Chu ZY, Yan GH and Qiao GS. 2001. Sm-Nd age and Sr, Nd isotopic characteristics of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei province, China. Acta Petrologica Sinica, 17(3): 358-365 (in Chinese with English abstract)

    Nelson DR, Chivas AR, Chapell BW and McCulloch MT. 1988. Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52(1): 1-17

    Peng P, Zhai MG, Zhang HF and Guo JH. 2005. Geochronological constraints on the Palaeoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dikes. International Geology Review, 47(5): 492-508

    Peng P, Zhai MG, Guo JH, Kusky T and Zhao TP. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78Ga mafic dykes in the central North China craton. Gondwana Research, 12(1): 29-46

    Peng P, Zhai MG, Li Z, Wu FY and Hou QL. 2008. Neoproterozoic (~820Ma) mafic dyke swarms in the North China craton: Implication for a conjoint to the Rodinia supercontinent? Abstracts of 13thGondwana Conference, Dali, China, 160-161

    Peng P. 2010. Reconstruction and interpretation of giant mafic dyke swarms: A case study of 1.78Ga magmatism in the North China craton. Geological Society, London, Special Publication, 338: 163-178

    Peng P, Guo JH, Zhai MG and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China Craton: Evidence of crust-mantle interaction. Precambrian Research, 183(3): 635-659

    Peng P, Bleeker W, Ernst RE, S?derlund U and McNicoll V. 2011a. U-Pb baddeleyite ages, distribution and geochemistry of 925Ma mafic dykes and 900Ma sills in the North China craton: Evidence for a Neoproterozoic mantle plume. Lithos, 127(1-2): 210-221

    Peng P, Zhai MG, Li QL, Wu FY, Hou QL, Li Z, Li TS and Zhang YB. 2011b. Neoproterozoic (900Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 20(1): 243-254

    Qi L, Hu J and Grégoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51: 507-513

    Qiu JX, Zeng GC and Li CN. 1993. The Alkaline Rocks in Qinling-Bashan Mountains. Beijing: Geological Publishing House, 1-176 (in Chinese with English abstract)

    Ren FG, Li SB, Ding SY, Chen ZH, Zhao JN and Wu B. 1999. Alkaline magma activities, mineralization and formation model in Xiong Er Fault Basin. Geological Review, 45(S1): 660-667 (in Chinese with English abstract)

    Rukhlov AS and Bell K. 2010. Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: Clues to mantle evolution. Mineralogy and Petrology, 98(1-4): 11-54

    Shao JA and Zhang LQ. 2002. Mesozoic dyke swarms in the north of North China. Acta Petrologica Sinica, 18(3): 312-318 (in Chinese with English abstract)

    Shao JA, Zhang YB, Zhang IX, Mu B, Wang PY and Guo F. 2003. Early Mesozoic dyke swarms of carbonatites and lamprophyres in Datong area. Acta Petrologica Sinica, 19(1): 93-104 (in Chinese with English abstract)

    Shao JA, Zhai MG, Zhang LQ and Li DM. 2005. Identification of 5 time-groups of dyke swarms in Shanxi-Hebei-Inner Mongolia Border area and its tectonic implications. Acta Geologica Sinica, 79(1): 56-67 (in Chinese with English abstract)

    Steiger RH and J?ger E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society of London, Special Publication, 42(1): 313-345

    Tarney J and Weaver BL. 1987. Geochemistry and petrogenesis of Early Proterozoic dyke swarms. In: Halls HC and Fahrig WC (eds.). Mafic Dyke Swarms. Geological Association of Canada, Special Publication, 34: 81-93

    Thompson RN, Smith PM, Gibson SA, Mattey DP and Dickin AP. 2002. Ankerite carbonatite from Swartbooisdrif, Namibia: The first evidence for magmatic ferrocarbonatite. Contribution to Mineralogy and Petrology, 143(3): 377-395

    Verhulst A, Balaganskaya E, Kirnarsky Y and Demaiffe D. 2000. Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovodor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos, 51(1-2): 1-25

    Woolley AR and Kempe DRC. 1989. Carbonatites: Nomenclature, average chemical compositions, and element distribution. In: Bell K (ed.). Carbonatites: Genesis and Evolution. London: Unwin Hyman, 1-14

    Wu LR. 1966. Research on the Alkaline Rock in Some Areas. Beijing: Science Press

    Xu C, Campbell IH, Allen CM, Huang ZL, Qi L, Zhang H and Zhang GS. 2007. Flat rare earth element patterns as an indicator of cumulate processes in the Lesser Qinling carbonatites, China. Lithos, 95(3-4): 267-278

    Xu C, Taylor RN, Kynicky J, Chakhmouradian AR, Song WL and Wang LJ. 2011. The origin of enriched mantle beneath North China block: Evidence from young carbonatites. Lithos, 127: 1-9

    Yan GH, Mu BL, Zeng YS, Cai JH, Ren KX and Li FT. 2007. Igneous carbonatites in North China Craton: The temporal and spatial distribution, Sr and Nd isotopic characteristics and their geological significance. Geological Journal of China Universities, 13(3): 463-473 (in Chinese with English abstract)

    Yang JH, Chung SL, Zhai MG and Zhou XH. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dykes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73: 156-160

    Yang XK, Chao HX and Yang YH. 2006. Magmatismthermal action in Zijinshan area in the east part of the Ordos basin. The Abstract Collection of 2006 Symposium on Petrology and Geodynamics in China, 459-461 (in Chinese)

    Ying JF and Zhou XH. 2001. Characterization of trace elements and Sr, Nd isotopes of carbonatites in the western Shandong Province. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 309-311 (in Chinese with English abstract)

    Ying JF, Zhou XH and Zhang HF. 2004. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos, 75(3-4): 413-426

    Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370

    Zhai MG, Fang HR, Yang JH and Miao LC. 2004. Large-scale cluster of cold deposits in east Shandong: Anorogenic metallogenesis. Earth Science Frontiers, 11(1): 95-98 (in Chinese with English abstract)

    Zhang FQ. 2007. Lamprophyre invasion’s effects on coal seam and its qualities in Tashan coal-field of Datong mining district. Shanxi Coal, 27(2): 17-20 (in Chinese with English abstract)

    Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG and Yin JF. 2002. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major-, traceelement and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contribution to Mineralogy and Petrology, 144(2): 241-253

    Zhang HF, Sun M, Zhou XH and Ying JF. 2005. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos, 81(1-4): 297-317

    Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural andP-Tpath constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73

    Zhao JX and McCulloch MT. 1993. Melting of a subduction-modified continental lithospheric, mantle: Evidence from Late Proterozoic mafic dyke swarms, in central Australia. Geology, 21(5): 463-466

    Zheng YF. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 328: 5-48

    Zou HB, Zindler A, Xu XS and Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations and tectonic significance. Chemical Geology, 171: 33-47

    附中文參考文獻(xiàn)

    白鴿, 袁忠信. 1985. 碳酸巖地質(zhì)及其礦產(chǎn). 中國(guó)地質(zhì)科學(xué)院礦床地質(zhì)研究所所刊,第l號(hào):99-175

    范宏瑞, 胡芳芳, 陳福坤, 楊奎鋒, 王凱怡. 2006. 白云鄂博超大型REE-Nb-Fe礦區(qū)碳酸巖墻的侵位年齡-兼答Le Bas博士的質(zhì)疑. 巖石學(xué)報(bào), 22(2): 519-520

    馮光英, 劉燊, 鐘宏, 賈大成, 齊有強(qiáng), 王濤, 楊毓紅. 2010. 吉林晚古生代榆木川基性巖的地球化學(xué)特征及其巖石成因. 地球化學(xué), 39(5): 427-438

    劉燊, 胡瑞忠, 趙軍紅, 馮彩霞, 鐘宏, 曹建勁, 史丹妮. 2005. 膠北晚中生代煌斑巖的巖石地球化學(xué)特征及其成因研究. 巖石學(xué)報(bào), 21(3): 947-958

    劉燊, 胡瑞忠, 馮光英, 楊毓紅, 馮彩霞, 齊有強(qiáng), 王濤. 2010. 華北克拉通中生代以來(lái)基性巖墻群的分布和研究意義. 地質(zhì)通報(bào), 29(2-3): 259-267

    牟保磊,邵濟(jì)安,儲(chǔ)著銀,閻國(guó)翰,喬廣生. 2001. 河北礬山鉀質(zhì)堿性巖-正長(zhǎng)巖雜巖體Sm-Nd和Sr、Nd、Pb同位素特征. 巖石學(xué)報(bào),17(3): 358-365

    邱家驤,曾廣策,李昌年. 1993. 秦巴堿性巖. 北京:地質(zhì)出版社,1-176

    任富根, 李雙保, 丁士應(yīng), 陳志宏, 趙嘉農(nóng), 吳冰. 1999. 熊耳裂陷印支期堿性巖漿活動(dòng)成礦作用、生成模式. 地質(zhì)論評(píng), 45(S1): 659-667

    邵濟(jì)安, 張履橋. 2002. 華北北部中生代巖墻群. 地質(zhì)學(xué)報(bào), 18(3): 312-318

    邵濟(jì)安, 張永北, 張履橋, 牟保平, 王佩瑛, 郭鋒. 2003. 大同地區(qū)早中生代煌斑巖-碳酸巖巖墻群. 巖石學(xué)報(bào), 19(1): 93-104

    邵濟(jì)安, 翟明國(guó), 張履橋, 李大明. 2005. 晉冀蒙交界地區(qū)五期巖墻群的界定及其構(gòu)造意義. 地質(zhì)學(xué)報(bào), 79(1): 56-67

    吳利仁. 1966. 若干地區(qū)堿性巖研究. 北京:科學(xué)出版社

    閻國(guó)翰, 牟保磊, 曾貽善, 蔡劍輝, 任康緒, 李鳳棠. 2007. 華北克拉通火成碳酸巖時(shí)空分布和鍶釹同位素特征及其地質(zhì)意義. 高校地質(zhì)學(xué)報(bào), 13(3): 463-473

    楊興科,晁會(huì)霞,楊永恒. 2006. 鄂爾多斯盆地東部紫金山一帶巖漿-熱力作用問(wèn)題. 2006年全國(guó)巖石學(xué)與地球動(dòng)力學(xué)研討會(huì)論文摘要,459-461

    英基豐, 周新化. 2001. 魯西地區(qū)中生代碳酸巖類的微量元素和鍶、釹同位素組成特征. 礦物巖石地球化學(xué)通報(bào), 20(4): 309-311

    翟明國(guó),范宏瑞,楊進(jìn)輝,苗來(lái)成. 2004. 非造山帶型金礦-膠東型金礦的陸內(nèi)成礦作用. 地學(xué)前緣,11(1): 95-98

    張富強(qiáng). 2007. 大同塔山井田煌斑巖侵入對(duì)煤層煤質(zhì)的影響. 山西煤炭, 27(2): 17-20

    猜你喜歡
    碳酸巖巖石學(xué)斑巖
    碳酸巖研究進(jìn)展*
    四川冕寧包子山稀土礦床富Sr碳酸巖的發(fā)現(xiàn)及意義*
    四川得榮新州輝長(zhǎng)閃長(zhǎng)巖體巖石學(xué)及地球化學(xué)特征
    斑巖型礦床含礦斑巖與非含礦斑巖鑒定特征綜述
    巖型礦床含礦斑巖與非含礦斑巖鑒定特征綜述
    煌斑巖的研究進(jìn)展
    碳酸巖研究新進(jìn)展*
    《沉積巖石學(xué)》獲批國(guó)家精品資源共享課建設(shè)項(xiàng)目
    鄂爾多斯盆地上古生界太原組儲(chǔ)層巖石學(xué)特征及其對(duì)物性的控制研究
    鈣巖屑砂巖巖石學(xué)特征及成巖作用——以川西豐谷地區(qū)須家河組四段為例
    斷塊油氣田(2014年6期)2014-03-11 15:33:56
    色视频在线一区二区三区| 国产一区二区三区av在线| 国产女主播在线喷水免费视频网站| 免费高清在线观看日韩| 永久免费av网站大全| 哪个播放器可以免费观看大片| 最近最新中文字幕大全免费视频 | 免费av不卡在线播放| 男人添女人高潮全过程视频| 久久狼人影院| 人人妻人人爽人人添夜夜欢视频| 波野结衣二区三区在线| 欧美精品人与动牲交sv欧美| 日韩制服骚丝袜av| 多毛熟女@视频| 亚洲情色 制服丝袜| 又粗又硬又长又爽又黄的视频| 亚洲在久久综合| 亚洲经典国产精华液单| 亚洲精品自拍成人| 亚洲国产精品专区欧美| av免费观看日本| 超色免费av| 国产极品天堂在线| 国产精品偷伦视频观看了| 色婷婷av一区二区三区视频| 少妇的逼好多水| 久久久久久久久久久久大奶| 菩萨蛮人人尽说江南好唐韦庄| 丰满乱子伦码专区| 99热网站在线观看| 欧美日韩视频精品一区| 午夜福利在线观看免费完整高清在| 久久人妻熟女aⅴ| 制服诱惑二区| 最新的欧美精品一区二区| 免费观看av网站的网址| 亚洲成人一二三区av| 九色亚洲精品在线播放| 一区二区三区四区激情视频| 9色porny在线观看| 午夜91福利影院| 亚洲婷婷狠狠爱综合网| 中文字幕最新亚洲高清| 欧美人与性动交α欧美精品济南到 | 欧美老熟妇乱子伦牲交| 天天影视国产精品| 亚洲,欧美,日韩| 午夜福利网站1000一区二区三区| 亚洲综合色惰| 亚洲精品久久久久久婷婷小说| 看非洲黑人一级黄片| 日韩三级伦理在线观看| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧洲国产日韩| 69精品国产乱码久久久| 亚洲精品一二三| www.av在线官网国产| 精品国产露脸久久av麻豆| 成人亚洲精品一区在线观看| 亚洲,欧美精品.| 丝袜喷水一区| 亚洲精品国产av蜜桃| 韩国高清视频一区二区三区| 一区二区三区四区激情视频| 青青草视频在线视频观看| 一区二区三区乱码不卡18| 丰满少妇做爰视频| 99久久综合免费| 色吧在线观看| 香蕉国产在线看| 成人手机av| 在线看a的网站| 免费看光身美女| 九九在线视频观看精品| 性高湖久久久久久久久免费观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美+日韩+精品| 免费在线观看完整版高清| 永久免费av网站大全| 亚洲av中文av极速乱| 久久久国产一区二区| 18禁在线无遮挡免费观看视频| 啦啦啦在线观看免费高清www| 久久午夜综合久久蜜桃| 亚洲精品日本国产第一区| 99久久人妻综合| 亚洲精华国产精华液的使用体验| 两个人免费观看高清视频| 日韩一区二区视频免费看| 免费在线观看完整版高清| 母亲3免费完整高清在线观看 | 精品亚洲成国产av| 国产在线免费精品| 国产黄频视频在线观看| 母亲3免费完整高清在线观看 | 亚洲国产精品一区二区三区在线| 女人精品久久久久毛片| 亚洲欧洲精品一区二区精品久久久 | av免费在线看不卡| 少妇人妻 视频| 丰满乱子伦码专区| 在线观看国产h片| 一区二区三区四区激情视频| 精品久久久精品久久久| 秋霞在线观看毛片| 亚洲精品一区蜜桃| 亚洲精华国产精华液的使用体验| 美女大奶头黄色视频| 美女主播在线视频| √禁漫天堂资源中文www| 午夜福利视频精品| 好男人视频免费观看在线| 亚洲av免费高清在线观看| 欧美亚洲日本最大视频资源| 夜夜爽夜夜爽视频| 亚洲,欧美精品.| 中文天堂在线官网| 国产成人免费观看mmmm| 中国国产av一级| 在线观看免费高清a一片| 99热这里只有是精品在线观看| 国产日韩欧美在线精品| 黄色一级大片看看| 欧美bdsm另类| 黄色怎么调成土黄色| 一级毛片我不卡| 啦啦啦在线观看免费高清www| 黄色怎么调成土黄色| 香蕉精品网在线| 国产不卡av网站在线观看| 寂寞人妻少妇视频99o| 精品久久久久久电影网| 看非洲黑人一级黄片| 一区二区三区四区激情视频| 麻豆乱淫一区二区| 久久久精品免费免费高清| videosex国产| 国产精品秋霞免费鲁丝片| 人人澡人人妻人| 国产亚洲一区二区精品| 成人综合一区亚洲| 日本黄色日本黄色录像| 男人操女人黄网站| 91在线精品国自产拍蜜月| 国产精品久久久久久久久免| 午夜免费男女啪啪视频观看| 国产精品国产av在线观看| 亚洲精品美女久久av网站| 久久人妻熟女aⅴ| 欧美日韩精品成人综合77777| 久久ye,这里只有精品| 中文字幕精品免费在线观看视频 | 精品亚洲乱码少妇综合久久| 亚洲三级黄色毛片| 欧美日韩综合久久久久久| 国产精品无大码| 免费观看无遮挡的男女| 国产乱人偷精品视频| 亚洲成人av在线免费| 亚洲一级一片aⅴ在线观看| 一本久久精品| 国产xxxxx性猛交| 永久网站在线| 高清av免费在线| 欧美xxxx性猛交bbbb| 午夜免费观看性视频| 亚洲精品日韩在线中文字幕| 色视频在线一区二区三区| 久久久久国产精品人妻一区二区| 午夜视频国产福利| 国产精品国产三级专区第一集| 美女xxoo啪啪120秒动态图| 51国产日韩欧美| 欧美人与善性xxx| 一区二区三区精品91| 日本猛色少妇xxxxx猛交久久| 国产亚洲精品久久久com| 亚洲美女搞黄在线观看| 亚洲三级黄色毛片| 天天躁夜夜躁狠狠久久av| 夫妻午夜视频| 老司机影院成人| 日韩电影二区| 亚洲精品视频女| www.熟女人妻精品国产 | av视频免费观看在线观看| 90打野战视频偷拍视频| av福利片在线| 美女xxoo啪啪120秒动态图| 国产亚洲一区二区精品| 免费看光身美女| 久久99精品国语久久久| 成人18禁高潮啪啪吃奶动态图| 99热6这里只有精品| 中国美白少妇内射xxxbb| √禁漫天堂资源中文www| 免费av中文字幕在线| 亚洲欧美一区二区三区国产| 国产黄色视频一区二区在线观看| 极品少妇高潮喷水抽搐| 成人免费观看视频高清| 亚洲精品av麻豆狂野| 欧美老熟妇乱子伦牲交| 国产极品天堂在线| 精品一区在线观看国产| 丝袜美足系列| 欧美人与性动交α欧美软件 | 国产精品国产三级专区第一集| 日韩制服骚丝袜av| av国产精品久久久久影院| 国产精品一二三区在线看| 又黄又爽又刺激的免费视频.| 99re6热这里在线精品视频| 波多野结衣一区麻豆| 中国国产av一级| 免费看av在线观看网站| 伦精品一区二区三区| 国产精品偷伦视频观看了| 综合色丁香网| 麻豆乱淫一区二区| 不卡视频在线观看欧美| 日韩中字成人| 国产成人av激情在线播放| 亚洲av综合色区一区| 99re6热这里在线精品视频| 一区在线观看完整版| 国产综合精华液| 99热这里只有是精品在线观看| 亚洲欧美成人精品一区二区| 国产男女超爽视频在线观看| 校园人妻丝袜中文字幕| 午夜视频国产福利| 777米奇影视久久| 黄色 视频免费看| 男女下面插进去视频免费观看 | 黑丝袜美女国产一区| 亚洲精品色激情综合| 国产免费视频播放在线视频| 久久午夜福利片| 国产永久视频网站| 成人黄色视频免费在线看| 日日摸夜夜添夜夜爱| 亚洲国产精品成人久久小说| 欧美激情极品国产一区二区三区 | 亚洲激情五月婷婷啪啪| 亚洲激情五月婷婷啪啪| 热re99久久国产66热| 男女无遮挡免费网站观看| 男女免费视频国产| 成人影院久久| 午夜激情av网站| 亚洲国产日韩一区二区| 亚洲av欧美aⅴ国产| 美女脱内裤让男人舔精品视频| 熟妇人妻不卡中文字幕| 久久精品国产亚洲av涩爱| 少妇人妻 视频| 欧美xxxx性猛交bbbb| 中国美白少妇内射xxxbb| 国产精品亚洲av一区麻豆| 麻豆成人av在线观看| 国产一区二区三区在线臀色熟女 | 制服诱惑二区| 亚洲欧洲精品一区二区精品久久久| 大型黄色视频在线免费观看| 99精国产麻豆久久婷婷| 欧美日韩亚洲国产一区二区在线观看 | 美女国产高潮福利片在线看| 在线观看免费视频网站a站| av超薄肉色丝袜交足视频| 久久久久久久久免费视频了| 国产精品乱码一区二三区的特点 | 在线观看日韩欧美| 9191精品国产免费久久| 99久久人妻综合| 高清黄色对白视频在线免费看| 国产片内射在线| 女人被躁到高潮嗷嗷叫费观| 捣出白浆h1v1| av片东京热男人的天堂| 国产精品国产高清国产av | 欧美一级毛片孕妇| 又紧又爽又黄一区二区| 午夜福利一区二区在线看| 国产欧美日韩一区二区精品| 精品高清国产在线一区| 亚洲av成人不卡在线观看播放网| 狠狠婷婷综合久久久久久88av| 老司机午夜福利在线观看视频| 一二三四在线观看免费中文在| 亚洲成av片中文字幕在线观看| 精品国产一区二区久久| a级毛片黄视频| 精品一品国产午夜福利视频| 欧美精品一区二区免费开放| 王馨瑶露胸无遮挡在线观看| 国产野战对白在线观看| 1024视频免费在线观看| 久久 成人 亚洲| 一级a爱片免费观看的视频| 高清毛片免费观看视频网站 | 欧美日韩亚洲国产一区二区在线观看 | 亚洲av成人不卡在线观看播放网| 交换朋友夫妻互换小说| 国产人伦9x9x在线观看| 久久久久久久国产电影| 亚洲av日韩在线播放| 久久国产精品人妻蜜桃| 好男人电影高清在线观看| 国产有黄有色有爽视频| 国产在线精品亚洲第一网站| 老司机靠b影院| а√天堂www在线а√下载 | 搡老岳熟女国产| а√天堂www在线а√下载 | 精品国产美女av久久久久小说| 后天国语完整版免费观看| 国产1区2区3区精品| 亚洲国产欧美日韩在线播放| 大陆偷拍与自拍| 高清在线国产一区| 女人被躁到高潮嗷嗷叫费观| 午夜亚洲福利在线播放| 美女扒开内裤让男人捅视频| 久久久精品区二区三区| 日韩三级视频一区二区三区| 黄色片一级片一级黄色片| 亚洲色图av天堂| 国产91精品成人一区二区三区| 欧美日韩一级在线毛片| 女性被躁到高潮视频| 美女高潮喷水抽搐中文字幕| 国产成人一区二区三区免费视频网站| 久久久国产精品麻豆| 成人三级做爰电影| 不卡一级毛片| 亚洲av第一区精品v没综合| 久久国产精品人妻蜜桃| 18禁观看日本| 亚洲国产精品一区二区三区在线| 啪啪无遮挡十八禁网站| av有码第一页| tocl精华| 亚洲色图综合在线观看| www.自偷自拍.com| 18在线观看网站| 91在线观看av| 国产欧美日韩一区二区三| 精品国产一区二区三区久久久樱花| 国产成人精品无人区| 免费在线观看黄色视频的| 国产成人免费无遮挡视频| 建设人人有责人人尽责人人享有的| 两个人免费观看高清视频| 日韩有码中文字幕| 91九色精品人成在线观看| 久热这里只有精品99| 69精品国产乱码久久久| а√天堂www在线а√下载 | 午夜福利影视在线免费观看| 美女午夜性视频免费| 国产成人精品无人区| www.精华液| 久久婷婷成人综合色麻豆| 久久久久久久午夜电影 | 黄片大片在线免费观看| 精品第一国产精品| 人人妻,人人澡人人爽秒播| 在线看a的网站| 淫妇啪啪啪对白视频| 国产亚洲一区二区精品| 91成年电影在线观看| 国产成人啪精品午夜网站| 亚洲精品成人av观看孕妇| 国产一区二区激情短视频| 多毛熟女@视频| 中文亚洲av片在线观看爽 | 一夜夜www| www.熟女人妻精品国产| 老汉色∧v一级毛片| 国产亚洲欧美在线一区二区| 日本撒尿小便嘘嘘汇集6| 又黄又粗又硬又大视频| av在线播放免费不卡| 国产成人精品无人区| 久久久久久久久免费视频了| 老熟女久久久| 满18在线观看网站| 一级毛片高清免费大全| 久久精品熟女亚洲av麻豆精品| 成人手机av| 亚洲av片天天在线观看| 色在线成人网| 免费人成视频x8x8入口观看| av一本久久久久| 国产亚洲精品第一综合不卡| 大香蕉久久成人网| 亚洲精品久久午夜乱码| 99国产极品粉嫩在线观看| 日本a在线网址| 正在播放国产对白刺激| 欧美日韩黄片免| 亚洲精品粉嫩美女一区| 国产成人免费观看mmmm| 欧美不卡视频在线免费观看 | 色尼玛亚洲综合影院| 天堂俺去俺来也www色官网| 日韩熟女老妇一区二区性免费视频| av片东京热男人的天堂| 成年人午夜在线观看视频| 亚洲成人国产一区在线观看| 日韩有码中文字幕| 亚洲欧美一区二区三区久久| 亚洲少妇的诱惑av| 亚洲av熟女| 日韩人妻精品一区2区三区| 丰满人妻熟妇乱又伦精品不卡| 不卡一级毛片| 亚洲七黄色美女视频| 国产精品电影一区二区三区 | 亚洲五月天丁香| 9色porny在线观看| 国产男靠女视频免费网站| 国产精华一区二区三区| 香蕉久久夜色| 久久狼人影院| 精品熟女少妇八av免费久了| 美国免费a级毛片| 成年动漫av网址| 制服诱惑二区| 又黄又粗又硬又大视频| 久热这里只有精品99| 精品一区二区三区四区五区乱码| 欧美日韩av久久| 人人妻人人澡人人爽人人夜夜| 久久ye,这里只有精品| 在线视频色国产色| 国产欧美日韩综合在线一区二区| 亚洲午夜精品一区,二区,三区| 精品人妻熟女毛片av久久网站| 99久久综合精品五月天人人| 身体一侧抽搐| 天堂中文最新版在线下载| 日日摸夜夜添夜夜添小说| 国产一区有黄有色的免费视频| 亚洲一区二区三区欧美精品| 精品一区二区三区av网在线观看| 欧美在线黄色| 久久精品亚洲av国产电影网| 女人爽到高潮嗷嗷叫在线视频| 国产精品二区激情视频| 大码成人一级视频| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲综合一区二区三区_| 欧美人与性动交α欧美精品济南到| 一本综合久久免费| 一二三四社区在线视频社区8| 成人三级做爰电影| 亚洲自偷自拍图片 自拍| 中文字幕色久视频| 久久久久国产精品人妻aⅴ院 | 男人操女人黄网站| 两性午夜刺激爽爽歪歪视频在线观看 | 天堂√8在线中文| 精品国产一区二区三区久久久樱花| 国产日韩一区二区三区精品不卡| 久久国产精品男人的天堂亚洲| 免费不卡黄色视频| 欧美亚洲日本最大视频资源| 中亚洲国语对白在线视频| 9191精品国产免费久久| 国产三级黄色录像| 最近最新中文字幕大全电影3 | 亚洲avbb在线观看| 亚洲精品中文字幕在线视频| 精品免费久久久久久久清纯 | 男女床上黄色一级片免费看| 性少妇av在线| 欧美日韩精品网址| 日韩三级视频一区二区三区| svipshipincom国产片| 啦啦啦免费观看视频1| 热99re8久久精品国产| 老司机靠b影院| 久久久久久久久久久久大奶| 夜夜躁狠狠躁天天躁| 国产精品免费一区二区三区在线 | 王馨瑶露胸无遮挡在线观看| 两个人免费观看高清视频| 嫁个100分男人电影在线观看| 久久精品国产综合久久久| 国产一区二区三区综合在线观看| 免费av中文字幕在线| 精品一区二区三卡| e午夜精品久久久久久久| 9热在线视频观看99| 国产亚洲精品久久久久5区| 久久国产亚洲av麻豆专区| 99国产精品免费福利视频| 成人影院久久| 精品一品国产午夜福利视频| 亚洲avbb在线观看| 韩国精品一区二区三区| 老司机影院毛片| 99久久99久久久精品蜜桃| 五月开心婷婷网| xxx96com| 热99久久久久精品小说推荐| 成熟少妇高潮喷水视频| 午夜影院日韩av| 精品久久久久久电影网| 久久久久久久国产电影| 成人黄色视频免费在线看| 变态另类成人亚洲欧美熟女 | 建设人人有责人人尽责人人享有的| 国产一区二区三区在线臀色熟女 | 成人18禁高潮啪啪吃奶动态图| 国产av一区二区精品久久| 色婷婷av一区二区三区视频| www.自偷自拍.com| 美女 人体艺术 gogo| 国产精品99久久99久久久不卡| 91av网站免费观看| 黄色怎么调成土黄色| 久久精品国产亚洲av香蕉五月 | 婷婷成人精品国产| 99riav亚洲国产免费| 亚洲色图av天堂| 亚洲av欧美aⅴ国产| 777久久人妻少妇嫩草av网站| 精品福利永久在线观看| 国产乱人伦免费视频| 欧美日韩乱码在线| 丰满迷人的少妇在线观看| a级片在线免费高清观看视频| 大片电影免费在线观看免费| 极品少妇高潮喷水抽搐| 操美女的视频在线观看| 免费在线观看影片大全网站| 亚洲国产欧美一区二区综合| 日日摸夜夜添夜夜添小说| 一本一本久久a久久精品综合妖精| 精品午夜福利视频在线观看一区| 91成人精品电影| 人人妻人人澡人人看| 亚洲精品中文字幕在线视频| 丝袜人妻中文字幕| 9热在线视频观看99| 免费观看人在逋| 欧美乱码精品一区二区三区| 岛国毛片在线播放| 精品久久久久久久久久免费视频 | 9191精品国产免费久久| 叶爱在线成人免费视频播放| 丁香六月欧美| 亚洲精品美女久久久久99蜜臀| 老司机福利观看| 亚洲成人免费av在线播放| 精品一区二区三区四区五区乱码| 亚洲专区中文字幕在线| 日本wwww免费看| 99国产极品粉嫩在线观看| 99久久国产精品久久久| 亚洲伊人色综图| 女警被强在线播放| 身体一侧抽搐| 亚洲色图 男人天堂 中文字幕| 好看av亚洲va欧美ⅴa在| 国产免费现黄频在线看| av国产精品久久久久影院| 一进一出好大好爽视频| 色尼玛亚洲综合影院| 精品人妻在线不人妻| 国产单亲对白刺激| 女人高潮潮喷娇喘18禁视频| 很黄的视频免费| 日韩欧美国产一区二区入口| 一进一出抽搐动态| 亚洲全国av大片| 99riav亚洲国产免费| 久久国产精品影院| 一级,二级,三级黄色视频| 日韩免费高清中文字幕av| 欧美日韩亚洲综合一区二区三区_| 王馨瑶露胸无遮挡在线观看| 国产亚洲欧美在线一区二区| 精品久久久久久久久久免费视频 | 欧美性长视频在线观看| 亚洲九九香蕉| 一本综合久久免费| 国产亚洲精品久久久久5区| 亚洲一区二区三区不卡视频| 国产精品av久久久久免费| 丰满人妻熟妇乱又伦精品不卡| 精品人妻在线不人妻| 夫妻午夜视频| 国产免费av片在线观看野外av| 欧洲精品卡2卡3卡4卡5卡区| 操出白浆在线播放| www.自偷自拍.com| 国产精品亚洲av一区麻豆| 无遮挡黄片免费观看| 久久精品国产99精品国产亚洲性色 | 超碰成人久久| 51午夜福利影视在线观看| 色婷婷久久久亚洲欧美| 一个人免费在线观看的高清视频| 亚洲欧美一区二区三区久久| 久久人妻熟女aⅴ| 91九色精品人成在线观看| 国产av精品麻豆| 欧美国产精品va在线观看不卡| 免费观看人在逋| 亚洲一区中文字幕在线|