朱瑞曦 張紅
角膜組織的透明性對于視力十分重要。角膜新生血管(corneal neovascularization,CNV)是角膜由于病原體感染或者外傷等原因形成的,是角膜自然愈合和防御過程[1]。當(dāng)新生血管超過一定范圍,將導(dǎo)致角膜的瘢痕、脂質(zhì)沉積、基質(zhì)出血、角膜水腫和嚴(yán)重的視力改變。
因此尋找治療CNV的方法是近年的研究熱點。大量動物和臨床研究已證明,抗血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)治療 CN 效果顯著[2]。目前不同的醫(yī)學(xué)領(lǐng)域中可用的VEGF拮抗劑包括:抗VEGF抗體(多克隆抗體如貝伐單抗、抗體衍生物如雷珠單抗)、核酸適體(派加他尼)、VEGF-trap、小干擾RNA(siRNA)以及酪氨酸受體激酶抑制劑(拉帕替尼舒尼替尼、索拉非尼、阿西替尼、帕唑帕尼)[3]。這些拮抗劑的治療效果和安全性各有利弊。本文就CN的抗VEGF治療的現(xiàn)狀進(jìn)行了綜述。
CN并非一個單獨的疾病,而是許多眼部疾病病理過程的關(guān)鍵環(huán)節(jié)。許多疾病能引起CN,常見的疾病包括眼部感染性疾病、長期配戴角膜接觸眼鏡、酸堿燒傷[4],以及角膜緣干細(xì)胞缺乏癥、眼表腫瘤(如乳頭狀瘤和結(jié)膜與角膜上皮內(nèi)瘤變)和退行性疾病(如翼狀胬肉和角結(jié)膜彌漫性增生)[1]。
導(dǎo)致CN的上游分子機(jī)制包括:炎癥、損傷或其他病理因素破壞了血管生長因子和抗血管生長因子的精確平衡,使血管生長因子的增加(如VEGF、堿性成纖維細(xì)胞生長因子及基質(zhì)金屬蛋白酶)和(或)抗血管生長因子減少(色素上皮衍生因子、內(nèi)皮他丁等)使天平倒向血管生長因子[1-2,4-5]。而在一系列的臨床和實驗觀察中,血管生成過程極有可能都涉及了 VEGF 信號[1-2,4],使得抗 VEGF 治療成為了一個合理的治療靶點[1]。
2.1 VEGF VEGF是相對分子質(zhì)量為48 000的同源二聚體的糖蛋白,它是生長因子的亞家族,并且是涉及到血管生成的重要信號蛋白。VEGF-A是首先被發(fā)現(xiàn)的[6],VEGF-A主要針對血管內(nèi)皮細(xì)胞發(fā)揮作用,但也對其他類型細(xì)胞產(chǎn)生作用,包括單核細(xì)胞/巨噬細(xì)胞、神經(jīng)細(xì)胞、癌細(xì)胞和腎上皮細(xì)胞。VEGFA是一種強(qiáng)有力的血管生成刺激劑,在正常和病理的血管生成過程中起著至關(guān)重要的作用[6-7];并且它是一種血管擴(kuò)張劑,增加了血管的通透性[7-9]。其他的成員包括:胎盤生長因子 (phosphatidylinositol-glycan biosynthesis class F protein,PIGF)、VEGF-B、VEGF-C和 VEGF-D。VEGF-E和 VEGF-F是 VEGF相關(guān)蛋白,它們由病毒編碼,并且分別在某些蛇毒液中被發(fā)現(xiàn);VEGF-B、VEGF-C分別涉及到胚胎血管和淋巴管生成;肺支氣管周圍淋巴管發(fā)展需要VEGFD。PIGF有助于血管生成和血管生長,在缺血、炎癥、傷口愈合、癌癥中發(fā)揮作用。VEGF-A基因通過選擇性剪接,根據(jù)分子結(jié)構(gòu)不同,將 VEGF分為VEGF115、 VEGF121、 VEGF165、 VEGF189 和VEGF206。這些亞型具有不同的相對分子質(zhì)量、溶解度和肝素結(jié)合能力[10]。
2.2 VEGF受體 VEGF通過結(jié)合酪氨酸激酶受體VEGF受體(vascular endothelial growth factor receptor,VEGFR)發(fā)揮作用。VEGFR主要表達(dá)于內(nèi)皮細(xì)胞表面,在單核細(xì)胞和巨噬細(xì)胞也有表達(dá),但低于在內(nèi)皮細(xì)胞表達(dá)水平。VEGF-A結(jié)合VEGFR-1(Flt-1)和VEGFR-2(Flk/KDR);VEGF-C和VEGF-D是VEGFR-3的配體。VEGFR-2被視為主要的VEGFR,幾乎調(diào)控著所有VEGF的細(xì)胞內(nèi)應(yīng)答;VEGFR-3(Flt-4)調(diào)控著淋巴管生成。當(dāng)VEGFR-2與VEGF結(jié)合后,細(xì)胞內(nèi)激酶結(jié)構(gòu)域自身發(fā)生二聚化和磷酸化,引起有絲分裂和增殖的信號[11]。
角膜也會表達(dá)一些“誘餌”受體,sVEGFR-1/sflt-1(可溶性VEGFR-1)通過螯合VEGF-A,能夠抑制血管生成[12]。sflt-1也能通過結(jié)合細(xì)胞膜VEGFR-1和VEGFR-2形成無活性的異二聚體。進(jìn)一步抑制VEGF 調(diào)控的血管生成[13-14]。
3.1 VEGF抗體 大量的研究和臨床試驗證明了貝伐單抗(Avastin)、雷珠單抗(Lucentis)用于視網(wǎng)膜疾病的有效性和安全性,現(xiàn)已應(yīng)用到臨床治療[15]。但對于CN的治療尚未獲FDA(美國食品與藥品管理局)批準(zhǔn)。
3.1.1 貝伐單抗和雷珠單抗 貝伐單抗是重組的人源化鼠單克隆抗體,它拮抗VEGF分子,能夠結(jié)合并抑制所有VEGF-A亞型的活性[16]。它是相對分子質(zhì)量為149 000的全長IgG1抗體,包含214個殘基的輕鏈和453個殘基的重鏈。因此可能引起免疫反應(yīng)。貝伐單抗已被美國FDA批準(zhǔn)靜脈應(yīng)用治療轉(zhuǎn)移性結(jié)腸癌[17]。對于貝伐單抗各種方式應(yīng)用到眼部(局部滴用、結(jié)膜下注射、眼內(nèi)注射)能夠部分減少CN已經(jīng)有大量研究[18-20]。雷珠單抗是一段相對分子質(zhì)量為48 000的Fab片段,來自于創(chuàng)建貝伐單抗的抗體,它只有貝伐單抗相對分子質(zhì)量的1/3,提示它更容易滲透角膜。并且雷珠單抗比貝伐單抗具有更強(qiáng)的親和力,通過更牢固的分子結(jié)合可能產(chǎn)生對VEGF的更有效的抑制作用。但是貝伐單抗的半衰期約 20 d,比雷珠單抗(約6 d)長[21-22]。
3.1.2 貝伐單抗和雷珠單抗給藥方式、效果和安全性比較 對于貝伐單抗回退CN的效果已有大量的研究報道[2,19-20],Hosseini等[23]總結(jié)了 VEGF 抗體的用藥方式:對于深在的、周邊的角膜病灶,結(jié)膜下注射方式更有效;而對于中心的、彌漫的、表面的CN,更適用于局部應(yīng)用。Iannetti等[24]進(jìn)行了一項病例報告研究,認(rèn)為結(jié)膜下注射貝伐單抗可以作為激素治療不敏感的堿燒傷產(chǎn)生的治療的二線用藥[21-22]。Akar等[21]研究證明大鼠角膜堿燒傷后,結(jié)膜下注射貝伐單抗比雷珠單抗和派加他尼鈉具有更強(qiáng)的治療效果。Stevenson等[25]對不同病因?qū)е碌腃N患者進(jìn)行貝伐單抗和雷珠單抗的對比治療(通過結(jié)膜下應(yīng)用和基質(zhì)注射方式),發(fā)現(xiàn)早期的局部用藥治療效果雷珠單抗優(yōu)于貝伐單抗。但在兔角膜實驗中,未發(fā)現(xiàn)早期兩者療效有明顯差別[26]??赡苡捎诶字閱慰沟南鄬Ψ肿淤|(zhì)量小,更容易滲透于角膜,且親和力更強(qiáng)。而使用雷珠單抗的患者停藥后1個月新生血管的面積增加,這可能是由于雷珠單抗的半衰期較貝伐單抗短。提示為達(dá)到更好的治療效果,雷珠單抗的用藥可能要更加頻繁[22]。
雖然Rusovici等[27]通過牛角膜內(nèi)皮(bovine corneal endothelial,BCE)細(xì)胞實驗證明貝伐單抗在臨床常用濃度下,對于BCE細(xì)胞安全且無毒性。但臨床研究顯示,貝伐單抗局部滴用對角膜上皮產(chǎn)生了負(fù)面影響,如傷口愈合延遲[28-29]、基質(zhì)溶解[30]以及神經(jīng)營養(yǎng)性角膜病變[31]等,因此貝伐單抗應(yīng)用于治療需要更嚴(yán)格的觀察和控制。雷珠單抗用藥并發(fā)癥罕見[32]。需要指出的是,抗VEGF抗體治療的回退作用都是部分的、不完全的,推測其他抗血管生長因子在血管生成過程中可能發(fā)揮著重要作用[4]。
3.2 核酸適體 派加他尼(pegaptanib)是28個堿基構(gòu)成的核酸適體,能夠特異性高親和力結(jié)合VEGF165亞型。它是核酸的單鏈,并且是FDA首個獲批的用于新生血管性年齡相關(guān)性黃斑變性的治療藥物[33]。由于它僅僅特異性結(jié)合單獨的亞型,因此與貝伐單抗、雷珠單抗相比,治療CN效果有限[21]。而這一特性恰恰增加了用藥的安全性,降低了副作用。出于安全性考慮,派加他尼可用于遠(yuǎn)期的抗VEGF 治療的維持[33]。
3.3 VEGF trap 由于VEGF抗體半衰期短,需要在數(shù)周內(nèi)反復(fù)注射,研究者致力于新型抗VEGF試劑的研發(fā)以延長注射間隔,VEGF trap就是這樣的拮抗劑之一。VEGF trap是由VEGFR-1的第二結(jié)構(gòu)域和VEGFR-2的第三個結(jié)構(gòu)域,以及人IgG Fc片段共同組成的,是高親和力的VEGF阻斷劑。它作為一個誘餌受體,能夠捕獲所有VEGF-A亞型,并且具有高親和力。并且它還能結(jié)合PIGF-1和PIGF-2。進(jìn)而又增加了它的抗血管生成效應(yīng)。Aflibercept(VEGF Trap-Eye/Eyelea,美國,阿柏西普)2011年獲得了FDA批準(zhǔn),用于治療滲出型年齡相關(guān)性黃斑變性[34]。Aflibercept能夠結(jié)合所有VEGF-A和VEGFB家族以及PIGF,對于治療新生血管性年齡相關(guān)性黃斑變性、視網(wǎng)膜中央和分支靜脈阻塞、黃斑水腫均顯示出可喜的成果[35-38]。在兩項III期臨床試驗中,Aflibercep顯示出和雷珠單抗類似的安全效果和安全性,而且其玻璃體內(nèi)注射頻率只有雷珠單抗的一半,從而減輕了患者的經(jīng)濟(jì)負(fù)擔(dān)[39]。VEGF trap也能夠減少鼠CN面積[40],使得它成為治療CN的一個新的選擇和研究方向。
3.4 小干擾RNA RNA干擾已成為探索基因功能的重要方法,同樣對于治療CN提出了新型治療辦法。siRNA是雙鏈的RNA片段,21~23個核苷酸長,是被抑制基因的同源片段,通過轉(zhuǎn)錄后基因沉默途徑(RNA干擾),能夠沉默引起疾病的基因。dsRNA(雙鏈RNA)觸發(fā)了RNA干擾,dsRNA經(jīng)過Dicer酶(RNA酶III)切割成siRNA片段,siRNA進(jìn)入細(xì)胞后整合到RNA誘導(dǎo)的沉默復(fù)合體,而后以序列特異性方式降解mRNA[41]。SIRNA-027是經(jīng)過化學(xué)修飾的siRNA分子,能夠靶向VEGFR-1 mRNA分子,通過玻璃體內(nèi)注射用于治療新生血管性黃斑變性,顯示出良好的安全性和耐受性,并有一定的生物學(xué)活性[42]。siRNA能夠穿越細(xì)胞屏障并且抑制轉(zhuǎn)錄后加工[43]。因此siRNA可能比抗VEGF抗體以及適體更有優(yōu)勢,它能夠同時靶向細(xì)胞內(nèi)VEGF及VEGFR,從源頭抑制了VEGF效應(yīng)[44]。
siRNA治療待解決的問題是:如何降低脫靶效應(yīng),如何增加人工合成siRNA的穩(wěn)定性,以及優(yōu)化siRNA的遞送[45]。Dicer酶切割后產(chǎn)生多種siRNA,一些可能靶向非預(yù)期的基因。根據(jù)靶基因序列設(shè)計使siRNA繞過了Dicer酶切割,減少了這一問題,但仍不能完全避免脫靶效應(yīng)[46]。siRNA僅能夠維持3~7 d活性即被自然降解,使其基因沉默效果短暫[45]。雖然藥物輸送至眼部比到達(dá)其他器官有優(yōu)勢,但尋找合適的轉(zhuǎn)染工具將siRNA有效輸送至靶組織或靶細(xì)胞進(jìn)而減少對其他組織細(xì)胞的作用仍然是siRNA技術(shù)的瓶頸和熱點研究方向[47-48]。siRNA能夠在活體和體外下調(diào)VEGF的mRNA以及蛋白質(zhì),重要的是無細(xì)胞核組織毒性,使得它成為一類抗CN的極有前途的拮抗劑[49]。
3.5 酪氨酸受體激酶抑制劑 除了中和VEGF以及減少其產(chǎn)生之外,通過阻斷VEGF信號途徑也成為一種治療辦法。一些酪氨酸受體激酶抑制劑能夠靶向VEGFR酪氨酸激酶信號途徑的下游信號。帕唑帕尼(Pazopanib VOTRIEN;葛蘭素史克公司)是VEGFR和血小板衍生因子受體抑制劑,已經(jīng)被FDA批準(zhǔn)用于治療晚期腎細(xì)胞癌和軟組織肉瘤[50-51]。動物實驗證明了帕唑帕尼對于視網(wǎng)膜疾病的有效性[52-53],這一方法也被應(yīng)用到CN。一項小鼠實驗證明應(yīng)用酪氨酸激酶抑制劑能夠增加角膜植片的存活[54]。Amparo 等[50]進(jìn)行了一項開放式研究,證明外用5 g·L-1帕唑帕尼治療顯著減少了患者的CN,安全且耐受性好。SU5416,一種選擇性VEGFR-2酪氨酸受體激酶抑制劑,對動物模型鼠CN具有抑制作用[55]。但仍需大量動物實驗和隨機(jī)雙盲的臨床試驗來評估用具體用藥劑量和治療時間。
各種VEGF拮抗劑治療CN顯示出良好治療的前景,通過臨床試驗探索用藥劑量、治療周期、新型給藥方式成為值得研究的方向。同時更高效、特異性靶向地輸送藥物、減少用藥次數(shù),以及聯(lián)合傳統(tǒng)方法治療有待于進(jìn)一步研究。
1 Cursiefen C,Colin J,Dana R,Diaz-Llopis M,F(xiàn)araj LA,Carcia-Delpech S,et al.Consensus statementon indications for anti-angiogenic therapy in the management of corneal diseases associated with neovascularization:outcome of an expert roundtable[J].Br J Ophthalmol,2012,96(1):3-9.
2 Maddula S,Davis DK,Madddula S,Burrow MK,Ambati BK.Horizons in therapy for corneal angiogenesis[J].Ophthalmology,2011,118(3):591-599.
3 Campa C,Harding SP.Anti-VEGF compounds in the treatment of neovascular age related macular degeneration[J].Curr Drug Targets,2011,12(2):173-181.
4 Qazi Y,Maddula S,Ambati BK.Mediators of ocular angiogenesis[J].J Genet,2009,88(4):495-515.
5 Qazi Y,Wong G,Monson B,Stringham J,Ambati BK.Corneal transparency:genesis,maintenance and dysfunction[J].Brain Res Bull,2010,81(2-3):198-210.
6 Ferrara N,Houck KA,Jakeman LB,Winer J,Leung DW.The vascular endothelial growth factor family of polypeptides[J].J Cell Biochem,1991,47(3):211-218.
7 Aiello LP,Wong JS.Role of vascular endothelial growth factor in diabetic vascular complications[J].Kidney Int Suppl,2000,58:S113-119.
8 Dvorak HF,Brown LF,Detmar M,Dvorak AM.Vascular permeability factor/vascular endothelial growth factor,microvascular hyperper meability,andangiogenesis[J].Am J Pathol,1995,146(5):1029-1039.
9 Senger DR,Ledbetter SR,Claffey KP,Papadopoulos-Sergiou A,Peruzzi CA,Detmar M.Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin,osteopontin,and thrombin[J].Am J Pathol,1996,149(1):293-305.
10 Ferrara N,Gerber HP,LeCouter J.The biology of VEGF and its receptors[J].Nat Med,2003,9(6):669-676.
11 Klettner A,Roider J.Treating age-related macular degeneration—interaction of VEGF-antagonists with their target[J].Mini Rev Med Chem,2009,9(9):1127-1135.
12 Ambati BK,Patterson E,Jani P,Jenkins C,Higgins E,Singh N.Soluble vascular endothelial growth factor receptor-1 contributes to the corneal antiangiogenic barrier[J].Br J Ophthalmol,2007,91(4):505-508.
13 Kendall RL,Thomas KA.Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor[J].Proc Natl Acad Sci U S A,1993,90(22):10705-10709.
14 Kendall RL,Wang G,Thomas KA.Identification of a natural soluble form of the vascular endothelial growth factor receptor,F(xiàn)LT-1,and its hetero-dimerization with KDR[J].Biochem Biophys Res Commun,1996,226(2):324-328.
15 Avila MP,F(xiàn)arah ME,Santos A,Carla L,F(xiàn)uji G,Rossi J,et al.Threeyear safety and visual acuity results of epimacular 90strontium/90yttrium brachytherapy with bevacizumab for the treatment of subfoveal choroidal neovascularization secondary to age-related macular degeneration[J].Retina,2011,32(1):10-18.
16 Ferrara N,Hillan KJ,Novotny W.Bevacizumab(Avastin),a humanized anti-VEGF monoclonal antibody for cancer therapy[J].Biochem Biophys Res Commun,2005,333(2):328-335.
17 Ranieri G,Patruno R,Ruggieri E,Montemurro S,Valerio P,Ribatti D.Vascular endothelial growth factor(VEGF)as a target of bevacizumab in cancer:from the biology to the clinic[J].Curr Med Chem,2006,13(16):1845-1857.
18 Avisar I,Weinberger D,Kremer I.Effect of subconjunctival and intraocular bevacizumab injections on corneal neovascularization in a mouse model[J].Curr Eye Res,2010,35(2):108-115.
19 Chu HS,Hu FR,Yang CM,Yeh PT,Chen YM,Hou YC,et al.Subconjunctival injection of bevacizumab in the treatment of corneal neovascularization associated with lipid deposition[J].Cornea,2011,30(1):60-66.
20 Habot-Wilner Z,Barequet IS,Ivanir Y,Moisseiev J,Rosner M.The inhibitory effect of different concentrations of topical bevacizumab on corneal neovascularization[J].Acta Ophthalmol,2010,88(8):862-867.
21 Akar EE,Oner V,Kü?ükerd?nmez C,Ayd?n Akova Y.Comparison of subconjunctivally injected bevacizumab,ranibizumab,and pegaptanib for inhibition of corneal neovascularization in a rat model[J].Int J Ophthalmol,2013,6(2):136-140.
22 Kim JH,Seo HW,Han HC,Lee JH,Choi SK,Lee D.The effect of bevacizumab versus ranibizumab in the treatment of corneal neovascularization:a preliminary study[J].Korean J Ophthalmol,2013,27(4):235-242.
23 Hosseini H,Nowroozzadeh MH,Salouti R,Nejabat M.Anti-VEGF therapy with bevacizumab for anterior segment eye disease[J].Cornea,2012,31(3):322-334.
24 Iannetti L,Abbouda A,F(xiàn)abiani C,Zito R,Campanella M.Treatment of corneal neovascularization in ocular chemical injury with an off-label use of subconjunctival bevacizumab:a case report[J].J Med Case Rep,2013,7(1):199.
25 Stevenson W,Cheng SF,Dastjerdi MH,F(xiàn)errari G,Dana R.Corneal neovascularization and the utility of topical VEGF inhibition:ranibizumab(lucentis)vs bevacizumab(avastin)[J].Ocul Surf,2012,10(2):67-83.
26 Kim EK,Kong SJ,Chung SK.Comparative study of ranibizumab and bevacizumab on corneal neovascularization in rabbits[J].Cornea,2014,33(1):60-64.
27 Rusovici R,Sakhalkar M,Chalam KV.Evaluation of cytotoxicity of bevacizumab on VEGF-enriched corneal endothelial cells[J].Mol Vis,2011,17:3339-3342.
28 Kim TI,Chung JL,Hong JP,Min K,Seo KY,Kim EK.Bevacizumab application delays epithelial healing in rabbit cornea[J].Invest Ophthalmol Vis Sci,2009,50(10):4653-4659.
29 Kim EC,Lee WS,Kim MS.The inhibitory effects of bevacizumab eye drops on NGF expression and corneal wound healing in rats[J].Invest Ophthalmol Vis Sci,2010,51(9):4569-4573.
30 Galor A,Yoo SH.Corneal melt while using topical bevacizumab eye drops[J].Ophthalmic Surg Lasers Imaging,2010,9(1):1-3.
31 Anijeet DR,Zheng Y,Tey A,Hodson M,Sueke H,Kaye SB.Imaging and evaluation of corneal vascularization using fluorescein and indocyanine green angiography[J].Invest Ophthalmol Vis Sci,2012,53(2):650-658.
32 Galor A,Yoo SH,Piccoli FV,Schmitt AJ,Chang V,Perez VL.Phase I study of subconjunctival ranibizumab in patients with primary pterygium undergoing pterygium surgery[J].Am J Ophthalmol,2010,149(6):926-931.
33 Pieramici DJ,Rabena MD.Anti-VEGF therapy:comparison of current and future agents[J].Eye,2008,22(10):1330-1336.
34 Browning DJ,Kaiser PK,Rosenfeld PJ,Stewart MW.Aflibercept for age-related macular degeneration:a game-changer or quiet addition[J]?Am J Ophthalmol,2012,154(2):222-226.
35 Holz FG,Roider J,Ogura Y,Korobelnik JF,Simader C,Groetzbach G.VEGF Trap-eye for macular oedema secondary to central retinal vein occlusion:6-month results of the phase III GALILEO study[J].Br J Ophthalmol,2013,97(3):278-284.
36 Xu D,Kaiser PK.Intravitreal aflibercept for neovascular age-related macular degeneration[J].Immunotherapy,2013,5(2):121-130.
37 Korobelnik JF,Holz FG,Roider J,Ogura Y,Simader C,Schmidt-Erfurth U.Intravitreal aflibercept injection for macular edema resulting from central retinal vein occlusion:one-year results of the phase 3 Galileo study[J].Ophthalmology,2014,121(1):202-208.
38 Pielen A,F(xiàn)eltgen N,Isserstedt C,Callizo J,Junker B,Schmucker C.Efficacy and safety of intravitreal therapy in macular edema due to branch and central retinal vein occlusion:a systimatic review[J].PLoS One,2013,8(10):e78538.`
39 Heier JS,Brown DM,Chong V,Korobelnik JF,Kaiser PK,Nguyen QD,et al.Intravitreal aflibercept(VEGF trap-eye)in wet age-related macular degeneration[J].Ophthalmology,2012,119(12):2537-2548.
40 Oliveira HB,Sakimoto T,Javier JA,Azar DT,Wiegand SJ,Jain S,et al.VEGF Trap(R1R2)suppresses experimental corneal angiogenesis[J].Eur J Ophthalmol,2010,20(1):48-54.
41 Dykxhoorn DM,Novina CD,Sharp PA.Killing the messenger:short RNAs that silence gene expression[J].Nat Rev Mol Cell Biol,2003,4(6):457-467.
42 Kaiser PK,Symons RC,Shah SM,Quinlan EJ,Tabandeh H,Do DV,et al.RNA-based treatment for neovascular age-related macular degeneration by Sirna-027[J].Am J Ophthalmol,2010,150(1):33-39.
43 Caplen NJ,F(xiàn)leenor J,F(xiàn)ire A,Morgan RA.DsRNA-mediated gene silencing in cultured Drosophila cells:A tissue culture model for the analysis of RNA interference[J].Gene,2002,252(1-2):95-105.
44 Zuo L,F(xiàn)an Y,Wang F,Xu X.A siRNA targeting vascular endothelial growth factor-A inhibiting experimental corneal neovascularization[J].Curr Eye Res,2010,35(5):375-384.
45 Guzman-Aranguez A,Loma P,Pintor J.Small-interfering RNAs(siRNAs)as a promising tool for ocular therapy[J].Br J Pharmacol,2013,170(4):730-747.
46 Elbashir SM,Lendeckel W,Tuschl T.RNA interference is mediated by 21-and 22-nucleotide RNAs[J].Genes Dev,2001,15(2):188-200.
47 Peeters L,Sanders NN,Demeester J,De Smedt SC.Challenges in nonviral ocular gene transfer[J].Biochem Soc Trans,2007,35(7):47-49.
48 Turchinovich A,Zoidl G,Dermietzel R.Non-viral siRNA delivery into the mouse retinain vivo[J].BMC Ophthalmol,2010,10(1):25-28.
49 Murata M,Takanami T,Shimizu S,Kubota Y,Horiuchi S,Habano W.Inhibition of ocular angiogenesis by diced small interfering RNAs(siRNAs)specific to vascular endothelial growth factor(VEGF)[J].Curr Eye Res,2006,31(2):171-180.
50 Amparo F,Sadrai Z,Jin Y,Alfonso-Bartolozzi B,Wang H,Shikari H,et al.Safety and efficacy of the multitargeted receptor kinase inhibitor pazopanib in the treatment of corneal neovascularization[J].Invest Ophthalmol Vis Sci,2013,54(2):537-544.
51 Drabkin HA.Pazopanb and anti-VEGF therapy[J].Open Access J Urol,2010,2(1):35-40.
52 Iwase T,Oveson BC,Hashida N,Limae-Silva R,Shen J,Krauss AH,et al.Topical pazopanib blocks VEGF-induced vascular leakage and neovascularization in the mouse retina but is ineffective in the rabbit[J].Invest Ophthalmol Vis Sci,2013,54(1):503-511.
53 Thakur A,Scheinman RI,Rao VR,Kompella UB.Pazopanib,a multitargeted tyrosine kinase inhibitor,reduces diabetic retinal vascular leukostasis and leakage[J].Microvasc Res,2011,82(3):346-350.
54 Hos D,Bock F,Dietrich T,Onderka J,Kruse FE,Thierauch KH,et al.Inflammatory corneal(lymph)angiogenesis is blocked by VEGFR-tyrosine kinase inhibitor ZK 261991,resulting in improved graft survival after corneal transplantation[J].Invest Ophthalmol Vis Sci,2008,49(5):1836-1842.
55 Keskin U,Totan Y,KaradagˇR,Erdurmu? M,Ayd?n B.Inhibitory effects of SU5416,a selective vascular endothelial growth factor receptor tyrosine kinase inhibitor,onexperimental corneal neovascularization[J].Ophthalmic Res,2012,47(1):13-18.