• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved preparation and chemical kinetics on fully automated synthesis of[18F]-THK523,a PET imaging probe for Tau pathologies?

    2014-03-07 12:24:23KONGYanYan孔艷艷SIZhan司展CAOGuoXian曹?chē)?guó)憲ZHANGZhengWei張政偉WUPing吳平XUEFangPing薛方平DUFuQiang杜富強(qiáng)ZHUJianHua朱建華LICong李聰CHENJian陳鍵andGUANYiHui管一暉
    Nuclear Science and Techniques 2014年4期
    關(guān)鍵詞:吳平方平

    KONG Yan-Yan(孔艷艷),SI Zhan(司展),CAO Guo-Xian(曹?chē)?guó)憲), ZHANG Zheng-Wei(張政偉),WU Ping(吳平),XUE Fang-Ping(薛方平),DU Fu-Qiang(杜富強(qiáng)), ZHU Jian-Hua(朱建華),LI Cong(李聰),CHEN Jian(陳鍵),and GUAN Yi-Hui(管一暉),

    1PET Center,Huashan Hospital,Fudan University,Shanghai 200235,China

    2Key Laboratory of Nuclear Medicine,Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine,Wuxi 214063,China

    3Key Laboratory of Smart Drug Delivery,Ministry of Educationamp;PLA, School of Pharmacy,Fudan University,Shanghai 200032,China

    Improved preparation and chemical kinetics on fully automated synthesis of[18F]-THK523,a PET imaging probe for Tau pathologies?

    KONG Yan-Yan(孔艷艷),1SI Zhan(司展),1CAO Guo-Xian(曹?chē)?guó)憲),2ZHANG Zheng-Wei(張政偉),1WU Ping(吳平),1XUE Fang-Ping(薛方平),1DU Fu-Qiang(杜富強(qiáng)),1ZHU Jian-Hua(朱建華),3LI Cong(李聰),3CHEN Jian(陳鍵),3and GUAN Yi-Hui(管一暉)1,?

    1PET Center,Huashan Hospital,Fudan University,Shanghai 200235,China

    2Key Laboratory of Nuclear Medicine,Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine,Wuxi 214063,China

    3Key Laboratory of Smart Drug Delivery,Ministry of Educationamp;PLA, School of Pharmacy,Fudan University,Shanghai 200032,China

    Extensive accumulation of neurofibrillary tangles(NFTs)consistently correlate with the degree of cognitive impairment and neuronal circuitry deterioration associated with Alzheimer’s disease.However,no PET probe is currently available for selective detection of NFTs in the living human brain.[18F]-THK523 was developed as a potential in vivo imaging probe for tau pathology.In this paper,we report a new protected precursor,2-((2-(4-((tert-butoxycarbonyl)amino)phenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate(THK-7),instead of 2-((2-(4-aminophenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate(BF241),and an improved automated radiosynthesis of[18F]-THK523 and the study on chemical kinetics of the labeling reaction of[18F]-THK523, with high-yield(70±5%,n=6,decay-corrected to end of bombardment),and high radiochemical purity (>90%)and specific activity(2.5±0.5Ci/μmol)from protected precursor on fully automated module at the end of radiosynthesis(45–55min).The chemical kinetics for[18F]-THK523 demonstrates that nucleophilic substitution can be carried out easily with protected precursor.

    Fluorine-18 radiolabeling,Neurofibrillary tangles,Alzheimer’s disease,Automated radiosynthesis,Chemical kinetics

    I.INTRODUCTION

    Alzheimer’s disease(AD)is characterized by progressive impairment of cognitive abilities,such as memory,learning, and social skills.The effects of AD are devastating for both the patients and their family,affecting their everyday life.AD mostly afflicts the elderly,resulting in an economic challenge for our healthcare system,as the elderly population grows[1].

    A clinical diagnosis of AD is assessed by several tools, such as medical history and neuropsychological criteria(e.g. National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s disease and Related Disorders Association)[2].However,a definitive diagnosis of AD can only be made by confirming the presence of cerebral extracellular senile plaques(SPs)and intracellular neurofibrillary tangles(NFTs)from a postmortem assessment.SPs and NFTs that consist of amyloid-β peptides (Aβ)and paired helical filaments(PHFs)of hyperphosphorylated tau protein are neuropathological hallmarks in AD. Tau protein is a microtubule-associated protein present in ax-ons,the roles of which include stabilization of the microtubules,modulation of the plasticity of the cytoskeleton,and the promotion of neurite outgrowths.When hyperphosphorylated,tau proteins aggregate into PHFs and NFTs,resulting in the destabilization of microtubules and disruption of axonal transport[3–5].Eventually,these stresses will cause neuronal deterioration and ultimately neuronal death.The severity of NFTs accumulation correlates with the degree of cognitive impairment and neuronal deterioration associated with AD[6–9].This correlation makes NFTs potential biomarkers that can be targeted to study how the AD pathology progresses and its association with cognitive deterioration[3,10,11].

    The detection of NFTs in the early stages of AD might be of great value for diagnostic and treatment purposes. Positron emission tomography(PET)is a noninvasive diagnostic imaging modality,which utilizes radioisotopelabeled target molecular probes and is considered as a diagnostic tool that enables early detection of pathologies. Synthesizing molecular probes with a high specificity and affinity to NFTs for PET imaging can allow an earlier diagnosis and monitoring the progression of AD in vivo[12]. Reports on PET imaging agents selectively targeting NFTs include:radioiodinated styrylbenzimidazole(SBIM)derivative[13];radioiodinated phenyldiazenylbenzothiazole(PDB) derivative[14];quinoline and benzimidazole derivatives, [11C]BF158[15]and[18F]-THK523[16];rhodanine and thiohydantoin derivative[17];phenyldiazenyl benzothiazole deriveatives,[18F]T807/808[3,18]and[18F]-(E)-4-((6-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)benzo[d]thiazol-2-yl)-diazenyl)-N,N-dimethylaniline([18F]FPPDB)[19],and 2-(1- 6-[(2-[F]fluoroethyl)(methyl)amino]-2-naphthylg ethylidene)malononitrile [18F]FDDNPg[20].One of the imaging agents,[18F]-THK523,displayed high affinity and selectivity for tau pathology both in vitro and in vivo[16,21].In this paper,we elevate the automated radiosynthesis and reaction kinetics of[18F]-THK523 from a new precursor,2-((2-(4-((tert-butoxycarbonyl)amino)phenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate(THK-7).This differs from the previous synthesis of[18F]-THK523 by Fodero-Tavoletti MT(Fig.1),which utilized 2-((2-(4-aminophenyl)quinolin-6-yl)oxy)ethyl4-methylbenzenesulfonate (BF241)asa precursor[17].

    Fig.1.Structure of precursor.

    II.EXPERIMENTAL

    A.Reagents and instrumentation

    KryptofixTM2.2.2,sodium bicarbonate,sodium hydroxide and hydrochloric acid of analytical grade were purchased from Sigma-Aldrich Corporation(St.Louis,MO,USA). Acetonitrile and ethanol of HPLC grade were obtained from Shanghai Lingfeng Chemical Reagent Co.,Ltd.(Shanghai, China).Sep-Pak tC18 solid phase extraction(SPE)cartridge (78.4μm of particle size)and sterile filters(0.22μm)were purchased from Waters Corporation(Milford,Massachusetts, USA).

    Semi-preparative high-performance liquid chromatography was conducted using a Waters pump(Waters Corporation,Milford,Massachusetts,USA)with a Bioscan radioactivity detector.Analytical radio-HPLC(Waters Corporation) was equipped with a dual λ absorbance detector(Waters 2487),binary HPLC pump(Waters 2487)and a Bioscan radioactivity detector.TLC plate radioactivity was measured on a Wizard 1470 automatic gamma counter(U.S.Perkin Elmer Company)equipped with a multi-channel analyzer. The [18F]-THK523 synthesis module(PET-IT-I Reactor Module) was purchased from PET Scienceamp;Technology Co.Ltd. (Beijing,China).NMR and LC-MS were purchased from Bruker Corporation(Germany).

    B.Precursor synthesis

    1. Preparation of 6-methoxy-2-(4-nitrophenyl)quinolone:THK-1

    A mixture of 4-nitro-cinnamic aldehyde (20g, 112.9mmol)and methoxyphenethylamine(25g,203mmol) were mixed into 37%HCl(70mL)under nitrogen,and the mixture was heated to 140?C reflux for 3h.The solution was poured into ice water and adjusted to pH 8 with ammonia. The aqueous layer was extracted with three portions of ethyl acetate.The combined organic layer was washed with saturated sodium chloride,dried,filtered and concentrated. The residue was purified by flash column chromatography (N-hexane:Dichloromethane=1∶1)to afford THK-1 (8.8g,31.4mmol)in 28%yield.1H NMR(300MHz, CDCl3)δ 8.30–8.40(m,4H),8.18(d,1H,J=9.3Hz),8.08 (d,1H,J=9.3Hz),7.89(d,1H,J=8.6Hz),7.43(dd, 1H,J=8.3,2.8Hz),7.12(d,1H,J=2.8Hz);LC-MS: calculated for C16H12N2O3,280.08;found[M+H]281.0.

    2. Preparation of 2-(4-nitrophenyl)quinolin-6-ol:THK-2

    THK-1(3g,10.7mmol)was added to 30%HBr(260mL) and heated to 125–130?C reflux for 3h. The solution was alkalized by NaHCO3and extracted with ethyl acetate.The combined organic layer was washed with saturated sodium chloride,dried,filtered and concentrated. The residue was purified by flash column chromatography (Dichloromethane∶Ethyl acetate=10∶1)to afford THK-2 (2.35g,8.8mmol)in 82.5%yield.1H NMR(300MHz,d-DMSO)δ 10.2(s,1H),8.51(d,2H,J=9.2Hz),8.37(d, 2H,J=9.0Hz),8.33(d,1H,J=8.5Hz),8.16(d,1H, J=8.6Hz),7.98(d,1H,J=9.1Hz),7.39(dd,1H,J=9.1, 2.7Hz),7.21(d,1H,J=2.7Hz);LC-MS:calculated for C16H12N2O3,266.07;found[M+H]267.0.

    C.Preparation of 6-(2-((tert-butyldiphenylsilyl)oxy)ethoxy)-2-(4-nitrophenyl)quinoline: THK-3

    THK-2(2.35g,8.8mmol)was dissolved in 80mL acetonitrile.To the solution were added K2CO3(14.6g,105.6mmol) and TBDPSOCH2CH2Br(4.8g,13.2mmol).The mixture was heated to 90?C reflux for 16h under nitrogen.The solution was filtered,washed with dichloromethane,and evaporated. The residue was purified by flash column chromatography(Dichloromethane∶N-hexane=1∶1)to afford compound THK-3(4.1g,7.5mmol)in 84.7%yield.1H NMR(300MHz,CDCl3)δ 8.31–8.59(m,4H),8.14(d, 1H,J=8.4Hz),8.07(d,2H,J=8.3Hz),7.88(d,1H, J=8.5Hz),7.71–7.74(m,4H),7.35–7.45(m,7H),7.09 (d,1H,J=2.7Hz),4.25(t,2H,J=5.1Hz),4.09(t,2H, J=5.0Hz),1.08(s,9H).

    D. Preparation of 4-(6-(2-((tertbutyldiphenylsilyl)oxy)ethoxy)quinolin-2-yl)aniline: THK-4

    THK-3(3g,5.5mmol)was dissolved in 300mL ethanol and cooled to 0?C with ice-bath. Anhydrous Cu(OAc)2(1.31g,7.2mmol)was added to the solution. NaBH4(10.41g,275.2mmol)was added portion wise within 25min. The mixture was cooled for 10min in ice-bath.Then the solution was warmed to room temperature and stirred for 3.5h. All the above reactions were carried out under nitrogen.The mixture was poured into 50mL water and ethanol was evaporated.The aqueous layer was extracted with ethyl acetate. The organic layer was washed,dried,filtered and concentrated to afford THK-4(2.4g,4.6mmol)in 83%yield.1H NMR(300MHz,CDCl3)δ 7.97–8.01(m,4H),7.71–7.76 (m,5H),7.30–7.43(m,7H),7.02(d,1H,J=2.8Hz),6.80 (d,2H,J=8.6Hz),4.21(t,2H,J=5.1Hz),4.07(t,2H, J=5.1Hz),3.80(brs,2H),1.07(s,9H);LC-MS:calculated for C33H34N2O2Si,518.24;found[M+H]519.2.

    E.Preparation of tert-butyl(4-(6-(2-((tertbutyldiphenylsilyl)oxy)ethoxy)quinolin-2-yl)phenyl) carbamate:THK-5

    THK-4(2.4g,4.6mmol),Boc2O(3g,13.7mmol)and triethylamine(1.8g,17.8mmol)were dissolved into tetrahydrofuran(THF)(30mL)and heated to 90?C reflux for 16h under the protection of nitrogen.The solvent was removed under reduced pressure.The residue was purified by column chromatography(Dichloromethane∶Ethyl acetate=8∶14∶1)to afford THK-5(2.4g,3.9mmol)in 84%yield.1H NMR(300MHz,CDCl3)δ 8.09(d,2H,J=8.8Hz),8.03 (d,1H,J=8.6Hz),8.02(d,1H,J=9.1Hz),7.79(d,1H, J=8.6Hz),7.70–7.75(m,4H),7.51(d,2H,J=8.7Hz), 7.32–7.45(m,7H),7.04(d,1H,J=2.8Hz),6.59(s,1H), 4.22(t,2H,J=5.1Hz),4.07(t,2H,J=5.1Hz),1.55(s, 9H),1.07(s,9H).

    F.Preparation of tert-butyl (4-(6-(2-hydroxyethoxy)quinolin-2-yl)phenyl)carbamate: THK-6

    THK-5(1.01g,1.6mmol)was dissolved in 60mL THF. Bu4NF·3H2O(2g,6.3mmol)in 10mL THF was added to the solution.The reaction was allowed to stir at room temperature for 15–20min under nitrogen.The solvent was removed under reduced pressure.The residue was purified by column chromatography(Dichloromethane∶Ethyl acetate=4∶1) to afford THK-6(0.5g,1.3mmol)in 65%yield.1H NMR (300MHz,CDCl3)δ 9.55(s,1H),8.27(d,1H,J=8.5Hz), 8.13(d,2H,J=8.8Hz),8.02(d,1H,J=8.7Hz),7.93(d, 1H,J=8.9Hz),7.61(d,2H,J=8.8Hz),7.35–7.42(m, 2H),4.93(t,1H,J=5.5Hz),4.13(t,2H,J=4.8Hz),3.80 (dd,2H,J=4.8,5.4Hz),1.50(s,9H).

    G. Preparation of 2-((2-(4-((tertbutoxycarbonyl)amino)phenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate:THK-7

    THK-6(0.48g,1.2mmol)was dissolved in 27mL dichloromethane.After the mixture was cooled to?5?C in an ice/sodium chloride bath,triethylamine(0.842g, 8.3mmol)and DMAP(0.154g,1.3mmol)were added.TsCl (1.07g,5.6mmol)was added at?10?C.Then the ice bath was removed and the mixture was allowed to stir overnight at room temperature.The above reaction was carried out under N2atmosphere.The solvent was removed under reduced pressure.The residue was purified by column chromatography(Dichloromethane∶Ethyl acetate=30∶1!8∶1) to afford 600mg of a yellow solid.Finally,pure product THK-7(0.59g,1.1mmol)in 87.5%yield was crystallized from Ethyl acetate(20mL)and N-hexane(35mL).1H NMR (300MHz,CDCl3)δ 9.56(s,1H),8.23(d,1H,J=8.7Hz), 8.14(d,2H,J=8.8Hz),8.03(d,1H,J=8.8Hz),7.91 (d,1H,J=9.0Hz),7.82(d,2H,J=8.3Hz),7.62(d,2H, J=8.8Hz),7.46(d,2H,J=8.0Hz),7.24–7.30(m,2H), 4.42–4.45(m,2H),4.30–4.33(m,2H),2.39(s,3H),1.50 (s,9H);LC-MS:calculated for C29H30N2O6S,534.18;found [M+H]535.0.

    H.Standard synthesis for[18F]-THK523,tert-butyl (4-(6-(2-fluoroethoxy)quinolin-2-yl)phenyl)carbamate (THKF-2)

    1. Preparation of 6-fluoro-2-(4-nitrophenyl)quinoline:THKF-1

    THK-2(0.5g,1.9mmol),K2CO3(2.6g,18.8mmol)and BrCH2CH2F(0.5g,3.9mmol)were added to 24mL acetonitrile.The mixture was refluxed for 16h at room temperature under nitrogen.The solution was filtered and evaporated.The residue was purified by column chromatography (N-hexane∶Ethyl acetate=4∶1!3∶1)to afford THKF-1(0.55g,1.8mmol)in 93.4%yield.1H NMR(300MHz, CDCl3)δ 8.31–8.39(m,4H),8.18(d,1H,J=8.5Hz),8.12 (d,1H,J=9.3Hz),7.90(d,1H,J=8.6Hz),7.48(dd,2H, J=9.2,2.8Hz),7.14(d,2H,J=2.8Hz),4.86(dm,2H, J=47.4Hz),4.36(dm,2H,J=27.6Hz).

    Fig.2.Schematic diagram for synthesis of[18F]-THK523.

    2. Preparation of tert-butyl (4-(6-(2-fluoroethoxy)quinolin-2-yl)phenyl)carbamate:THKF-2

    THKF-1(0.55g,1.8mmol)was dissolved in ethanol (120mL)under nitrogen.The solution was cooled to 0?C and then anhydrous Cu(OAc)2(0.42g,2.3mol)was added. NaBH4(2g,52.9mol)was added portionwise at?5?C.The solution was allowed to stir at?5?C for 30min.Then the mixture was allowed to warm up to room temperature while stirring for 1h.The solvent was evaporated and the mixture was poured into 50mL water.The aqueous layer was extracted with ethyl acetate.The organic layer was washed, dried,filtered and concentrated.The residue was purified by flash column chromatography(N-hexane∶Ethyl acetate= 6∶1!3∶1)to afford THKF-2(0.21g,0.7mmol)in 42% yield.1H NMR(300MHz,CDCl3)δ 7.97–8.04(m,4H),7.76 (d,1H,J=8.7Hz),7.39(dd,1H,J=9.3,2.7Hz),7.07(d, 1H,J=2.7Hz),6.80(d,1H,J=8.6Hz),4.88(dm,2H, J=47.4Hz),4.34(dm,2H,J=27.6Hz);LC-MS:calculated for C17H15FN2O,283.13;found[M+H]283.0.

    I.Radiosynthesis of[18F]-THK523

    [18F]-THK523 was synthesized using an automated module(PET Scienceamp;Technology Co.Ltd.,Beijing China) (Fig.2).The no carrier added aqueous[18F]fluoride–was produced by the18O(p,n)18F nuclear reaction on an Eclipse HP Cyclotron(Siemens).

    The synthesis of[18F]-THK523 includes five steps:1) azeotropic evaporation,2)nucleophilic substitution,3)hydrolysis for deprotection,4)purification,and 5)sterile filtration(Fig.3).Briefly,[18F]fluoride was trapped on a QMA cartridge and eluted into the reaction vial with 1.5mL mixture of K2CO3in water and KryptofixTM2.2.2 in Acetonitrile(19/31mmol/L)which was pre-added in bottle 1#.The mixture in the vial was evaporated at 116?C for 206s under a N2flow and was co-evaporated to dryness with anhydrous acetonitrile(2mL)in bottle 2#at 116?C for another 203s.The tosylated precursor(2mg in 1mL acetonitrile)in bottle 3#was added to the dried K[18F]and the nucleophilic substitution reaction was carried out at 120?C for 15min to afford[18F]-THK.After excess of acetonitrile was removed at 120?C under a flow of nitrogen,HCl(1mol/L,250μL)in bottle 4#was added to hydrolyze the Boc protecting group. The mixture was allowed to react at 105?C for 5min,and NaOH(2mol/L,125μL)stored in bottle 5#was added followed by saturated NaHCO3(1mol/L,125μL)in bottle 6#to neutralize the solution.

    The neutralized solution was loaded on a C-18 Sep-Pak,which was further washed with water to remove free18F–,KryptofixR?TM2.2.2,and other polar byproducts.The cartridge was then eluted with ethanol(2mL). The obtained crude product was collected and injected onto a semipreparative column(Waters XBridgeTMprep Shield RP18 10μm,250mm×10mm,part No.186003990,serial No. 101/123041GG01)at a flow rate of 4mL/min(70%EtOH: 30%H2O).The fraction containing[18F]-THK523 was collected from 6.0–6.5min on semi-preparative HPLC and was evaporated to dryness.To the residual,10%ethanol in saline (5mL)was added and the resulting solution was stabilized with ascorbic acid(2mg,0.011mmol)before sterile filtration through a 0.22μm membrane filter into a sterile vial.

    Fig.3.Radiosynthesis of[18F]-THK523.

    J.Quality control of[18F]-THK523

    The labeling yield was determined by thin layer chromatography(TLC).Apply 2–4μL of the crude reaction solution to an activated silica gel G60 with?uorescence (F254)plates.Develop the chromatogram in a solvent system consisting of a mixture of ethyl acetate∶n-hexane∶triethylamine=4∶1∶0.005(v/v)until the solvent has moved about 3/4 of the length of the hromotogram.Remove the chromatogram,and allow the chromatogram to dry at room temperature.Determine the radioactivity distribution by cutting the chromatogram into 10 pieces of strips with equal length from sampling spot to where the solvent developed and counting each strip in a Wizard 1470 automatic gamma counter(U.S.Perkin Elmer Company)equipped with a multi-channel analyzer.The Rf value of[18F]-THK523 was 0.7–0.8,and Rf value of free F-18 was 0.0.Two TLCs were run for each tested reaction condition and radiolabelling yields were obtained by averaging the yields of the two runs.

    Radiochemical purity(RCP)was determined by analytical radio-HPLC(high-performance liquid chromatography).The final product(20μL)was injected into the HPLC column(PurospherR?STAR LPRP-18e endcapped(5μm), 250mm×4.6mm,sorbent Lot No.TA1752311,column No. 210072,acetonitrile/0.05%triethylamine in water= 8/2 (v/v),flow rate at 0.6mL/min)at room temperature.The absorbance measured at 350nm retention time(tR)of the standard and[18F]-THK523 were 6.12 and 5.93min,respectively. The chemical identity was verified by co-injection with cold standard THKF-2.

    K.Studies of reaction kinetics

    The reaction conditions for the nucleophilic substitution were optimized by studying the reaction kinetics.Six vials, each containing a 30–50mCi activity of18F–,were used. After azeotropic evaporation,THK-7(1mL,3.7mmol/L)in DMSO/CAN(1/5)was added to the vials and reacted at 25?C,120?C and 160?C according to the procedure described above. Three reaction times,2min,15min and 30min,were investigated at each temperature.After the same deprotecting reaction workup,solutions were sampled with a capillary and labeling yields were determined TLC.Films were dried and cut into 10 sections,then counted with γcounter.Order of reaction(n),rate constant(k)and activation energy(Ea)of the labeling reaction were calculated with the CHEMKIN code,developed by Cao et al.[22],to quantitatively study the labeling reaction for optimal conditions of nucleophilic substitution.

    The rate constant,k,for the formation of[18F]-THK523, was calculated as follows.The reaction can be expressed as (let a=[K18F]0,b=[THK]0,x=[18F?THK523]t):

    Integrating of each side of Eq.(3)between t=0!t and x=0!x gives:

    Since a≈ x=10-9~ 10-8mol/L,b=10-5~10-4mol/L,b?a≈x,Eq.(4)can be simplified as

    Fig.4.Synthesis of 2-((2-(4-((tert-butoxycarbonyl)amino)phenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate(THK-7).

    Fig.5.Synthesis of tert-butyl(4-(6-(2-fluoroethoxy)quinolin-2-yl)phenyl)carbamate(THKF-2).

    Since Rf value of[18F]-THK523 and18F are 0.7 and 0.0, respectively,the above x/a was the count percentage of[18F]-THK523 to18F.In fact x/a is the labeling yield of[18F]-THK523,and it can be determined by TLC.Let P=x/a, Eq.(6)can be written as:

    The plot of ln[1/(1?P)]vs.t shows a linear relationship and the rate constant k for the[18F]-THK523 formation can be calculated from the slope.

    III.RESULTS AND DISCUSSION

    There are several types of fluorinated precursor including the following substitute groups:(a)-OTs(tosylate),(b)-OTf (triflate),(c)-OMs(mesylate),and(d)-ONs(nosylate).In general,thereactivityisb>a>c>d,whilethestability for the groups is d>a>c>b.The tosylate was chosen for design of the[18F]-THK523 precursor because it compromises stability and reactivity.Figs.4 and 5 describe the synthesis of protected precursor THK-7 and cold standard of THKF-2. The synthesis of THK-7 involves the tosylation of a primary alcohol(THK-6).The Boc protection of the primary amino group in the intermediate THK-6 is important for a number of reasons.First,primary amino groups are generally morereactive towards tosyl chloride than primary alcohols.So,in the reaction conditions used to form precursor THK-7,it is expected that the amino group would be tosylated preferentially to the alcohol.Further,it is difficult to remove the aminotosyl protecting group by acid hydrolysis in a short reaction time and this would be detrimental for the radiolabelling reaction.

    The choice of Boc as the protective group has the following advantages:Boc can be easily hydrolyzed by acid in a short reaction time and the by-products are CO2and iso-butanol(or isobutene),which can be easily evaporated.In addition,the presence of a free amino group in precursor BF241,used in Ref.[16],could lead to low radiosynthesis yield,as THK-6 may interact with K18F to form hydrogen bonds reducing the nucleophilicity of18F–.Fluorine is the most electronegative element.It can form hydrogen bonds with hydrogens on theamino group,while the Boc protected amino is a carbamate and it is less prone to the formation of hydrogen bonding. Comparing to the work of Fodero-Tavoletti et al.[16],the mostprominentadvantageofusingTHK-7,insteadofBF241, for radiolabeling of[18F]-THK523 was the improvement of radiochemical yields,as 40±5%and 24%(non-decay corrected)and at end of synthesis for THK-7 and BF241,respectively.There were no significant difference in radiochemical purity and specific activity.

    TABLE 1.Mean labeling yields and specific radioactivity of[18F]-THK523 at different reaction time and temperature

    Therefore,Boc protection of the primary amino group in the precursor,THK-7,is important to prevent side reactions, tosimplifyproductpurification,andtoimproveprecursorstability.

    Radiolabelling yield of[18F]-THK523 was assayed by TLC.As shown in Table 1,the radiolabelling yield is relatively high,ranging from 11.91%to 75.11%(decay corrected to end of bombardment,EOB)and the synthesis time is 45–55min from EOB.

    Radio-HPLC analysis showed the radiochemical purity (RCP)of[18F]-THK523 was≥90%.As shown in Fig.6, the retention time(tR)of[18F]-THK523 and precursor THK-7 were 6.12min and 12.94min,respectively.The chemical identity of[18F]-THK523 was verified by co-injection with the non-labelled standard THKF-2(tR=5.93min). The specific activity of[18F]-THK523 was determined as 2.5±0.5Ci/μmol(end of synthesis,EOS).

    Labeling of radiopharmaceuticals is influenced by reaction time and temperature.Their relationship can be evaluated by chemical kinetics.Although TsO,as a leaving group during nucleophilic substitution,has been applied in many18F labeled radiopharmaceuticals,different molecular structures lead to different labeling yields.Evaluation of chemical kinetics is authentically necessary because of the importance of reaction temperature for labeling reaction.Labeling yields of[18F]-THK523 at different temperatures and minutes are listed in Table 1.The mean labeling yields and mean specific radioactivity increase with the temperature and time. At 120?C,the rate constants were 4.95,4.97,5.00 and 5.04 for THK-7 contents of 5.24,26.2,52.4 and 131,respectively (Table 2).

    For reaction chemical kinetics parameters,rate constant (k)increases with the increase of temperature,indicating that high temperature is conducive to increased reaction rate.In order to improve radiosynthesis yield,it is necessary to increase reaction temperature.However,[18F]-THK523 may be unstable or the binding of C-O or C-N may be broken down under such high temperature.

    Fig.6.(Color online)HPLC identification of[18F]-THK523:analytical C18 column;80%ACN:20%H2O(0.05%triethylamine); flow 0.6mL/min.

    TABLE 2.Rate constants under different concentration of THK-7 (120?C)

    As shown in Table 1,labeling yields were high at 120?C for reactions 15min and 30min(decay-corrected to EOB).Due to favorable thermal stability of[18F]-THK523 and for convenience in experiment operation,the optimal reaction temperature was chosen as 120?C when labeling yields were larger than 70%at 15min. Calculations show the order of reaction is 1. The chemical kinetics study demonstrated the labeling reaction of 2-(2-(4-(tert-butoxycarbonyl)phenyl)quinolin-6-yloxy)ethyl 4-methylbenzenesulfonate(THK-7)was quite easily. This method can be applied to study labeling reactions of other radiopharmaceuticals.

    The plot of ln[1/(1-P)]vs.t at four different concentration of THK-7 didn’t show significant linear relationship. The changesofrate constantsunderdifferentconcentration of precursor were shown in Table 2.The rate constant k didn’t change greatly with the concentration of THK-7.

    The plot of ln[1/(1-P)]vs.t at different temperatures also showed a better linear relationship.The rate constant k increased with temperature,being 0.04,4.85 and 5.18 at 25?C,120?C and 160?C,respectively.It demonstrated that k of the reaction was temperature dependent.From the variation of the order of magnitude,k had a significant increase from temperature 25?C(0.04)to temperature 120?C(4.95). These were the further evidence to validate the fact that temperature must be higher than 120?C.

    IV.CONCLUSION

    [18F]-THK523 can be synthesized at CPCU with high synthesis yield(70±5%,n=6,decay-corrected to EOB).The total synthesis time was 45–55min and the average specific activity were 2.5±0.5Ci/μmol for[18F]-THK523(EOS)under optimum conditions.The chemical kinetics for[18F]-THK523 showed that the reaction order was 1 because concentration of precursor was much larger than that of18F.Low Eawas indicative of a low activation barrier.The fact that k increased with reaction temperature indicated that a rise of temperature favors an accelerated reaction rate.t1/2(the time for half of the reactant reacted)shortened with increased reaction temperature,which means that increasing temperature accelerates the labeling reaction.The protected precursor used in this method should be applicable for high yield automated production in a commercial synthesis module for clinical application in the future.The use of THK-7 might be suitable for routine production of high yield[18F]-THK523 and the radiosynthesis can be easily performed on an automated synthesis module.

    [1]Wimo A and Winblad B.Handbook of Clinical Neurology.Elsevier,2008,89:137–146.

    [2]McKhann G,Drachman D,Folstein M,et al.Neurology,1984, 34:939–939.

    [3]Zhang W,Arteaga J,Cashion D K,et al.J Alzheimers Dis, 2012,31:601–612.

    [4]Bulic B,Pickhardt M,Mandelkow E M,et al.Neuropharmacology,2010,59:276–289.

    [5]Pritchard S M,Dolan P J,Vitkus A,et al.J Cell Mol Med, 2011,15:1621–1635.

    [6]Aizenstein H J,Nebes R D,Saxton J A,et al.Arch Neurol-Chicago,2008,65:1509–1617.

    [7]Lai M K,Chen C P,Hope T,et al.Neuroreport,2010,21: 1111–1115.

    [8]Arriagada P V,Growdon J H,Hedley-Whyte E T,et al.Neurology,1992,42:631–639.

    [9]VillemagneV,PikeK,DarbyD,etal.Neuropsychologia,2008, 46:1688–1797.

    [10]Braskie M N,Klunder A D,Hayashi K M,et al.Neurobiol Aging,2010,31:1669–1778.

    [11]Karran E,Mercken M,De Strooper B.Nat Rev Drug Discov, 2011,10:698–712.

    [12]L?angstr¨om B,Andr′en P E,Lindhe¨O,et al.Mol Imaging Biol, 2007,9:161–175.

    [13]Matsumura K,Ono M,Yoshimura M,et al.Bioorg Med Chem, 2013,21:3356–3362.

    [14]Matsumura K,Ono M,Hayashi S,et al.Med Chem Comm, 2011,2:596–600.

    [15]Okamura N,Suemoto T,Furumoto S,et al.J Neurosci,2005, 25:10857–10962.

    [16]Fodero-Tavoletti M T,Okamura N,Furumoto S,et al.Brain, 2011,134:1089–1100.

    [17]Ono M,Hayashi S,Matsumura K,et al.ACS Chem Neurosci, 2011,2:269–275.

    [18]Xia C F,Arteaga J,Chen G,et al.Alzheimers Dement,2013, 9:666–676.

    [19]Matsumura K,Ono M,Kimura H,et al.ACS Med Chem Lett, 2011,3:58–62.

    [20]Liu J,Kepe V,ˇZabjek A,et al.Mol Imaging Biol,2007,9: 6–16.

    [21]Harada R,Okamura N,Furumoto S,et al.Eur J Nucl Med Mol I,2013,40:125–132.

    [22]Cao G X,Zhou X Q,Liu Y T,et al.Nucl Sci Tech,2012,23: 52–56.

    (

    Received October 22,2013;accepted in revised form February 13,2014;published online August 6,2014)

    10.13538/j.1001-8042/nst.25.040302

    ?Supported by National Natural Science Foundation of China(Nos. 81271516 and 81371625),Program of Shanghai Science and Technology Commission(Nos.13JC1401503 and 14DZ1930402),the exchange program fund of doctoral student under the office for Graduate Medical Education,Fudan University and Shanghai Municipal Health and Family Planning Commission(No.2013313)

    ?Corresponding author,guanyihui@hotmail.com

    猜你喜歡
    吳平方平
    Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode
    Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
    Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
    春雪
    吳平:戶(hù)外語(yǔ)文課,用觀察擺脫寫(xiě)作空洞
    醫(yī)院感染管理在醫(yī)院內(nèi)傳染病防控工作中的作用探討
    改姓
    春雪
    血染“不出軌保證書(shū)”,“武隆好人”婚姻無(wú)性
    女友有求于我
    一级毛片精品| 久久国产精品影院| 日韩欧美一区二区三区在线观看| 国产单亲对白刺激| 国产av一区二区精品久久| 我的亚洲天堂| 久久天躁狠狠躁夜夜2o2o| 在线观看免费视频网站a站| 日韩国内少妇激情av| 99香蕉大伊视频| 深夜精品福利| 色哟哟哟哟哟哟| 天堂影院成人在线观看| 午夜亚洲福利在线播放| av天堂在线播放| 欧美国产精品va在线观看不卡| 两性夫妻黄色片| 午夜福利一区二区在线看| 日韩精品中文字幕看吧| 国产成人欧美在线观看| 国产精品一区二区三区四区久久 | 国产成人精品久久二区二区91| 18禁观看日本| 精品久久久久久成人av| 男女之事视频高清在线观看| 精品电影一区二区在线| 高潮久久久久久久久久久不卡| 日本 欧美在线| 亚洲全国av大片| 多毛熟女@视频| 久久亚洲真实| 一二三四在线观看免费中文在| 可以在线观看的亚洲视频| 国产蜜桃级精品一区二区三区| 看黄色毛片网站| 99久久精品国产亚洲精品| 99国产精品免费福利视频| 国产精品国产高清国产av| 午夜精品久久久久久毛片777| av中文乱码字幕在线| 高潮久久久久久久久久久不卡| 如日韩欧美国产精品一区二区三区| 亚洲九九香蕉| 又紧又爽又黄一区二区| 十分钟在线观看高清视频www| 亚洲精品美女久久久久99蜜臀| 成人国产综合亚洲| 欧美一级毛片孕妇| 制服丝袜大香蕉在线| www.自偷自拍.com| 久久人妻av系列| 女人被狂操c到高潮| 免费高清在线观看日韩| 久久欧美精品欧美久久欧美| 精品国内亚洲2022精品成人| aaaaa片日本免费| 51午夜福利影视在线观看| 波多野结衣高清无吗| 两性午夜刺激爽爽歪歪视频在线观看 | 免费在线观看完整版高清| 国产精品免费视频内射| 最近最新中文字幕大全电影3 | 成人国产一区最新在线观看| 国产激情久久老熟女| 香蕉国产在线看| 国产成年人精品一区二区| 精品不卡国产一区二区三区| 脱女人内裤的视频| 在线观看免费午夜福利视频| 人人妻人人爽人人添夜夜欢视频| 12—13女人毛片做爰片一| 丰满人妻熟妇乱又伦精品不卡| 两个人看的免费小视频| 999久久久精品免费观看国产| 黄片小视频在线播放| 老司机福利观看| 色综合站精品国产| av天堂在线播放| 黄色成人免费大全| 最新美女视频免费是黄的| 欧美人与性动交α欧美精品济南到| 日本精品一区二区三区蜜桃| 91字幕亚洲| 亚洲国产日韩欧美精品在线观看 | 久久人人爽av亚洲精品天堂| 国产成人影院久久av| 女生性感内裤真人,穿戴方法视频| 午夜精品国产一区二区电影| 亚洲国产高清在线一区二区三 | 国产成人啪精品午夜网站| 女性生殖器流出的白浆| 亚洲国产精品sss在线观看| 侵犯人妻中文字幕一二三四区| 久久国产亚洲av麻豆专区| 美女 人体艺术 gogo| 亚洲九九香蕉| 亚洲国产看品久久| 亚洲精品在线美女| 91老司机精品| 久久性视频一级片| 女性生殖器流出的白浆| 天天躁夜夜躁狠狠躁躁| 色婷婷久久久亚洲欧美| 窝窝影院91人妻| 在线观看免费午夜福利视频| 男女之事视频高清在线观看| 久久天堂一区二区三区四区| 在线观看www视频免费| 怎么达到女性高潮| 国产国语露脸激情在线看| 99热只有精品国产| 一进一出抽搐gif免费好疼| 九色国产91popny在线| 国产成人影院久久av| 欧美在线黄色| 欧美一级a爱片免费观看看 | 99香蕉大伊视频| 国产精品自产拍在线观看55亚洲| 黑人巨大精品欧美一区二区蜜桃| 国产1区2区3区精品| x7x7x7水蜜桃| 国产精品爽爽va在线观看网站 | 日本 欧美在线| 一二三四社区在线视频社区8| 精品电影一区二区在线| 国产精品 欧美亚洲| 人成视频在线观看免费观看| 黄色视频不卡| 久久久久亚洲av毛片大全| 亚洲精品一卡2卡三卡4卡5卡| 天堂影院成人在线观看| 免费在线观看亚洲国产| 免费女性裸体啪啪无遮挡网站| 国产精品香港三级国产av潘金莲| 亚洲一区二区三区色噜噜| 免费一级毛片在线播放高清视频 | 久久国产精品影院| 熟妇人妻久久中文字幕3abv| 国产aⅴ精品一区二区三区波| 操美女的视频在线观看| 欧美成人一区二区免费高清观看 | 老司机午夜福利在线观看视频| 搡老妇女老女人老熟妇| 亚洲熟妇熟女久久| 免费看a级黄色片| 色尼玛亚洲综合影院| 无人区码免费观看不卡| 久久久久久久精品吃奶| 国产一区二区激情短视频| 午夜福利18| 97人妻天天添夜夜摸| 亚洲欧美日韩高清在线视频| 欧美一级毛片孕妇| tocl精华| 一级片免费观看大全| 国产亚洲精品久久久久5区| 色综合亚洲欧美另类图片| 在线观看免费视频日本深夜| 国产99久久九九免费精品| 人妻久久中文字幕网| 免费在线观看亚洲国产| 亚洲五月天丁香| 91成年电影在线观看| 国产成人精品无人区| 国产亚洲精品久久久久5区| 色在线成人网| 国产精品免费一区二区三区在线| 啦啦啦免费观看视频1| 欧美av亚洲av综合av国产av| 久久人人97超碰香蕉20202| 国产乱人伦免费视频| 国产激情欧美一区二区| 18美女黄网站色大片免费观看| 亚洲精品国产精品久久久不卡| 精品国产美女av久久久久小说| 亚洲第一av免费看| 免费少妇av软件| 精品电影一区二区在线| 精品国产亚洲在线| 欧美 亚洲 国产 日韩一| 美国免费a级毛片| 免费在线观看视频国产中文字幕亚洲| 国产精品国产高清国产av| 亚洲欧美精品综合一区二区三区| 国产亚洲精品av在线| 国产1区2区3区精品| 无遮挡黄片免费观看| 国产亚洲av高清不卡| 在线观看66精品国产| 欧美成人午夜精品| 亚洲精品国产区一区二| 大型黄色视频在线免费观看| 国产精品影院久久| 在线视频色国产色| 他把我摸到了高潮在线观看| 日韩欧美三级三区| 国产亚洲欧美在线一区二区| 欧美激情极品国产一区二区三区| 男女床上黄色一级片免费看| 美女高潮喷水抽搐中文字幕| 变态另类丝袜制服| 国产一区二区在线av高清观看| 亚洲九九香蕉| 国产精品 国内视频| 99riav亚洲国产免费| 青草久久国产| 国产麻豆69| 亚洲国产中文字幕在线视频| 久久国产精品人妻蜜桃| 窝窝影院91人妻| 精品卡一卡二卡四卡免费| 香蕉久久夜色| 一边摸一边抽搐一进一出视频| 精品卡一卡二卡四卡免费| 激情在线观看视频在线高清| 国产亚洲精品久久久久久毛片| 欧美亚洲日本最大视频资源| 国产野战对白在线观看| 亚洲精品在线观看二区| 亚洲国产看品久久| 久久久国产欧美日韩av| 搡老岳熟女国产| 久久亚洲精品不卡| 午夜福利一区二区在线看| 两个人免费观看高清视频| 久久婷婷人人爽人人干人人爱 | 亚洲九九香蕉| 国产av精品麻豆| 美女高潮到喷水免费观看| 久久久久久大精品| 精品免费久久久久久久清纯| 日韩欧美三级三区| 午夜a级毛片| 91成人精品电影| 欧美日韩黄片免| 麻豆久久精品国产亚洲av| 精品电影一区二区在线| 欧美不卡视频在线免费观看 | 村上凉子中文字幕在线| 韩国精品一区二区三区| 成人av一区二区三区在线看| 亚洲欧美激情在线| 国产亚洲精品综合一区在线观看 | 在线观看www视频免费| 999久久久精品免费观看国产| 91字幕亚洲| 午夜免费成人在线视频| 一进一出抽搐gif免费好疼| av中文乱码字幕在线| 亚洲精品久久成人aⅴ小说| 老汉色av国产亚洲站长工具| 欧美日韩乱码在线| 老鸭窝网址在线观看| 成年人黄色毛片网站| 亚洲一区高清亚洲精品| 国产激情欧美一区二区| 在线播放国产精品三级| 麻豆成人av在线观看| 国产免费男女视频| 侵犯人妻中文字幕一二三四区| 国产精品久久久久久亚洲av鲁大| 91成人精品电影| 黄色女人牲交| 亚洲成人国产一区在线观看| 黄色视频,在线免费观看| 国产成人精品久久二区二区91| 一区在线观看完整版| 国产区一区二久久| 九色国产91popny在线| 久久精品国产综合久久久| av免费在线观看网站| 国产一区二区三区视频了| 精品一品国产午夜福利视频| 亚洲无线在线观看| 大型av网站在线播放| 国产国语露脸激情在线看| 久久久精品欧美日韩精品| 色综合站精品国产| 国产aⅴ精品一区二区三区波| 国产激情欧美一区二区| 很黄的视频免费| 香蕉国产在线看| 可以免费在线观看a视频的电影网站| 国产在线精品亚洲第一网站| 色婷婷久久久亚洲欧美| 男人舔女人的私密视频| 99re在线观看精品视频| 变态另类丝袜制服| www.www免费av| 国产成人欧美在线观看| 亚洲欧美日韩高清在线视频| 精品福利观看| 国产精品影院久久| 亚洲激情在线av| 日本精品一区二区三区蜜桃| 一级片免费观看大全| 免费在线观看亚洲国产| 中文字幕最新亚洲高清| 天堂影院成人在线观看| 精品高清国产在线一区| 国产精品乱码一区二三区的特点 | 十八禁网站免费在线| 亚洲av电影在线进入| 最近最新免费中文字幕在线| 国产色视频综合| 免费在线观看黄色视频的| 精品久久久久久成人av| 可以在线观看毛片的网站| 国产精品98久久久久久宅男小说| 亚洲中文字幕一区二区三区有码在线看 | 99国产精品一区二区蜜桃av| 久久人妻熟女aⅴ| 黄片大片在线免费观看| 老司机福利观看| 国产亚洲精品一区二区www| 一区二区三区高清视频在线| 国产真人三级小视频在线观看| 久久中文看片网| 1024视频免费在线观看| 日韩欧美在线二视频| 人妻丰满熟妇av一区二区三区| 欧美激情久久久久久爽电影 | 又黄又粗又硬又大视频| 久久人妻av系列| 人人澡人人妻人| 久久影院123| 两个人看的免费小视频| 天堂影院成人在线观看| 久久久久久久久中文| www日本在线高清视频| 97人妻天天添夜夜摸| 久久人人97超碰香蕉20202| 宅男免费午夜| 精品久久久久久,| 制服诱惑二区| 黄片大片在线免费观看| 欧美黄色淫秽网站| 女人被狂操c到高潮| 午夜成年电影在线免费观看| 欧美一级毛片孕妇| 亚洲第一欧美日韩一区二区三区| 日韩欧美国产在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久人人爽av亚洲精品天堂| 女人爽到高潮嗷嗷叫在线视频| 看片在线看免费视频| 精品国产乱子伦一区二区三区| 国产亚洲精品综合一区在线观看 | 亚洲一区中文字幕在线| 男男h啪啪无遮挡| 好看av亚洲va欧美ⅴa在| 欧美乱码精品一区二区三区| 精品国产亚洲在线| 久热爱精品视频在线9| 国产日韩一区二区三区精品不卡| 亚洲 欧美一区二区三区| 久久 成人 亚洲| 国产精品98久久久久久宅男小说| 国产乱人伦免费视频| 757午夜福利合集在线观看| 亚洲成人久久性| 亚洲欧美日韩无卡精品| 精品人妻在线不人妻| 亚洲一码二码三码区别大吗| 好男人在线观看高清免费视频 | 国产午夜福利久久久久久| 777久久人妻少妇嫩草av网站| 久久久国产欧美日韩av| av在线播放免费不卡| 精品免费久久久久久久清纯| 国产精品秋霞免费鲁丝片| 亚洲 欧美一区二区三区| 日日爽夜夜爽网站| 九色亚洲精品在线播放| 99久久99久久久精品蜜桃| 亚洲国产欧美日韩在线播放| 国产又爽黄色视频| 亚洲精品中文字幕一二三四区| 国产亚洲av嫩草精品影院| xxx96com| 国产亚洲精品综合一区在线观看 | 亚洲中文日韩欧美视频| 黄色毛片三级朝国网站| 久久久久久久久免费视频了| 搡老熟女国产l中国老女人| 一边摸一边抽搐一进一出视频| 又紧又爽又黄一区二区| 亚洲片人在线观看| 日本精品一区二区三区蜜桃| 欧美日韩中文字幕国产精品一区二区三区 | 少妇 在线观看| 亚洲最大成人中文| 国产一区在线观看成人免费| 久热这里只有精品99| 老汉色av国产亚洲站长工具| 日韩视频一区二区在线观看| av在线天堂中文字幕| 亚洲第一欧美日韩一区二区三区| 国产成人av激情在线播放| 久久精品91蜜桃| 精品国产一区二区三区四区第35| 在线永久观看黄色视频| 69av精品久久久久久| 麻豆国产av国片精品| 亚洲第一电影网av| 国产人伦9x9x在线观看| 我的亚洲天堂| 波多野结衣高清无吗| 国产高清激情床上av| 亚洲精品粉嫩美女一区| 精品免费久久久久久久清纯| 午夜老司机福利片| 一本大道久久a久久精品| 久久久久久人人人人人| 久久香蕉国产精品| 日本 欧美在线| 欧美大码av| 久久国产亚洲av麻豆专区| 99国产极品粉嫩在线观看| 97人妻精品一区二区三区麻豆 | 国产成人免费无遮挡视频| 激情在线观看视频在线高清| 此物有八面人人有两片| videosex国产| 丝袜人妻中文字幕| 操出白浆在线播放| 美国免费a级毛片| 亚洲欧美日韩另类电影网站| 一二三四社区在线视频社区8| 国产精品久久久久久人妻精品电影| 女人精品久久久久毛片| 不卡av一区二区三区| 亚洲成人精品中文字幕电影| 色播亚洲综合网| 十分钟在线观看高清视频www| 我的亚洲天堂| 涩涩av久久男人的天堂| 亚洲成人国产一区在线观看| 一级作爱视频免费观看| 亚洲第一电影网av| 亚洲国产欧美日韩在线播放| 久久久国产成人免费| 色精品久久人妻99蜜桃| 老司机午夜十八禁免费视频| 黑人欧美特级aaaaaa片| 国产精品免费视频内射| 国产欧美日韩一区二区三| 午夜精品久久久久久毛片777| 国语自产精品视频在线第100页| 黄片小视频在线播放| 国产精品秋霞免费鲁丝片| 国产在线精品亚洲第一网站| 在线国产一区二区在线| 国产xxxxx性猛交| 色综合站精品国产| 久久久国产成人免费| 成人18禁高潮啪啪吃奶动态图| 国产亚洲精品久久久久久毛片| 国产一区二区三区综合在线观看| 桃红色精品国产亚洲av| 日日夜夜操网爽| 欧美亚洲日本最大视频资源| 亚洲九九香蕉| 亚洲成a人片在线一区二区| 成人国产综合亚洲| 国产精品影院久久| 最近最新免费中文字幕在线| 亚洲欧美日韩高清在线视频| 老汉色∧v一级毛片| 亚洲七黄色美女视频| 老司机福利观看| 亚洲精品国产区一区二| 久久精品国产清高在天天线| 久久这里只有精品19| 激情视频va一区二区三区| 亚洲精品久久成人aⅴ小说| 国产精华一区二区三区| 亚洲国产精品久久男人天堂| 国产精品1区2区在线观看.| 一级a爱片免费观看的视频| 禁无遮挡网站| 精品第一国产精品| 久久国产精品影院| 亚洲熟妇中文字幕五十中出| 久久精品成人免费网站| 亚洲精品国产一区二区精华液| 变态另类成人亚洲欧美熟女 | 变态另类丝袜制服| 午夜成年电影在线免费观看| 搞女人的毛片| 99在线人妻在线中文字幕| 免费在线观看黄色视频的| 欧美精品亚洲一区二区| 国产一卡二卡三卡精品| 极品人妻少妇av视频| 中文字幕精品免费在线观看视频| 深夜精品福利| 久久香蕉激情| 一级a爱视频在线免费观看| 精品一品国产午夜福利视频| 国产成人av教育| av电影中文网址| 99国产精品免费福利视频| 男人的好看免费观看在线视频 | 怎么达到女性高潮| 久久国产乱子伦精品免费另类| 久久久久久国产a免费观看| 精品日产1卡2卡| 免费在线观看视频国产中文字幕亚洲| 国产三级在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产成年人精品一区二区| 亚洲精品美女久久久久99蜜臀| 亚洲,欧美精品.| 亚洲第一青青草原| 国产欧美日韩一区二区三| 最近最新中文字幕大全免费视频| 淫妇啪啪啪对白视频| 国产一级毛片七仙女欲春2 | 国产高清视频在线播放一区| 黄色视频不卡| 日本在线视频免费播放| 亚洲成人久久性| 日韩大码丰满熟妇| 久久人人爽av亚洲精品天堂| 少妇 在线观看| 亚洲第一青青草原| 视频在线观看一区二区三区| 又黄又粗又硬又大视频| 婷婷六月久久综合丁香| 亚洲欧美激情综合另类| 九色亚洲精品在线播放| 亚洲精品中文字幕一二三四区| 久久草成人影院| 99国产极品粉嫩在线观看| 久久久精品欧美日韩精品| 很黄的视频免费| 久久久久久免费高清国产稀缺| 欧美激情 高清一区二区三区| 女人被狂操c到高潮| 超碰成人久久| 琪琪午夜伦伦电影理论片6080| e午夜精品久久久久久久| 黄色 视频免费看| 免费高清视频大片| www国产在线视频色| 999久久久国产精品视频| 国产成人精品无人区| 久久精品亚洲精品国产色婷小说| 国产精品久久久久久精品电影 | 欧美精品亚洲一区二区| 日本欧美视频一区| 最近最新免费中文字幕在线| 中文字幕精品免费在线观看视频| 日韩欧美一区视频在线观看| 在线av久久热| 一级黄色大片毛片| 精品免费久久久久久久清纯| 九色国产91popny在线| 巨乳人妻的诱惑在线观看| a在线观看视频网站| 看片在线看免费视频| 久久国产乱子伦精品免费另类| 精品乱码久久久久久99久播| 亚洲一区高清亚洲精品| 欧美精品啪啪一区二区三区| 久久精品国产清高在天天线| 亚洲国产中文字幕在线视频| 悠悠久久av| 91国产中文字幕| 精品久久久久久久人妻蜜臀av | 国产精品秋霞免费鲁丝片| 久久国产亚洲av麻豆专区| 欧美老熟妇乱子伦牲交| 国产精品美女特级片免费视频播放器 | 精品一区二区三区四区五区乱码| 波多野结衣巨乳人妻| 国产主播在线观看一区二区| 久久久国产成人免费| 免费在线观看日本一区| 亚洲国产欧美日韩在线播放| 丝袜美腿诱惑在线| 亚洲男人的天堂狠狠| 美女免费视频网站| 老鸭窝网址在线观看| 久久伊人香网站| 中文字幕人成人乱码亚洲影| 99国产精品一区二区蜜桃av| 黄色a级毛片大全视频| 中文亚洲av片在线观看爽| 嫩草影院精品99| 99久久精品国产亚洲精品| 午夜免费鲁丝| 国产xxxxx性猛交| 一个人观看的视频www高清免费观看 | 热re99久久国产66热| 精品国产一区二区三区四区第35| 少妇裸体淫交视频免费看高清 | 国产片内射在线| 免费av毛片视频| 三级毛片av免费| 免费无遮挡裸体视频| 日韩欧美一区视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 悠悠久久av| 久久久久九九精品影院| 亚洲国产欧美网| 亚洲国产看品久久| 日韩大码丰满熟妇| 好看av亚洲va欧美ⅴa在| 乱人伦中国视频| 日韩一卡2卡3卡4卡2021年| 亚洲熟女毛片儿| 国产亚洲精品久久久久5区| 国产精品永久免费网站|