• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An investigation on neutron induced reactions on stable CNO isotopes?

    2014-03-07 12:24:25MAChunWang馬春旺CuiJuan呂翠娟WEIHuiLing魏慧玲andCAOXiGuang曹喜光
    Nuclear Science and Techniques 2014年4期

    MA Chun-Wang(馬春旺),L¨U Cui-Juan(呂翠娟),WEI Hui-Ling(魏慧玲),and CAO Xi-Guang(曹喜光)

    1Institute of Particleamp;Nuclear Physics,Henan Normal University,Xinxiang 453007,China

    2Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    An investigation on neutron induced reactions on stable CNO isotopes?

    MA Chun-Wang(馬春旺),1,?L¨U Cui-Juan(呂翠娟),1WEI Hui-Ling(魏慧玲),1and CAO Xi-Guang(曹喜光)2

    1Institute of Particleamp;Nuclear Physics,Henan Normal University,Xinxiang 453007,China

    2Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    The neutron induced reactions on stable Carbon,Nitrogen,and Oxygen isotopes are investigated by using the Talys1.4 toolkit with the default parameters.The neutron incident energy covers a range from 0.20MeV to 85.00MeV.For12C and14N,the Talys1.4 results agree with the experimental data,while the parameters should be adjusted for16O.Some Enwindows are found by comparing the main channels of n+C/N/O reactions, which induce element change.In these Enwindows,a specific element is activated to a different one while leaving the other element atoms unchanged.The results will facilitate the research of doping effects in organic materials by using neutron activation technique.

    Neutron activation,Doping,Organic material,C/N/O activation

    I.INTRODUCTION

    Doping is an important method to change the properties of materials.For example,the substitutions of some atoms in organic semi-conductors promote the charge transport and stability greatly[1,2].The general method for doping is chemical synthesis which introduces new elements into the original material.Actually,neutron activation is an important method to make doping in material,which can even change one element to other one,directly or after the decay of unstable isotopes produced by activation.In this situation,different to the chemical doping,different doping effects can be expected.

    It is well known that for different nuclei,there are different threshold energy values for specific channels in neutron induced reactions[3].For material having different elements, the different threshold energy values for neutron reactions provide a chance for specific activation if the neutron energy is selected in experiments.

    In this article,the neutron induced reactions on stable carbon,nitrogen,and oxygen isotopes will be investigated by usingaTalystoolkit.Theenergywindowsbetweenthedifferent isotopes will be analyzed.The theory is briefly discussed in Sec.II.The results are discussed in Sec.III,and a summary is presented in Sec.IV.

    II.METHODS

    The optical model can describe the neutron induced reaction well in a wide range of incident energies.In Talys1.4,the ECIS-06 is implanted as a subroutine to deal with the optical model calculations[4].The description of Talys1.4 and the implanted functions can be found in the user manual[5,6].

    In statistical models for predicting cross sections,nuclear level densities are used at excitation energies where discrete level informationis notavailable orincomplete.Severalmodels are implanted to describe the level density in Talys,which range from phenomenological analytical expressions to tabulated level densities derived from microscopic models.The constant temperature and Fermi-gas model is set as the default parameter of level density at low excitation energy region,while the Fermi-gas model is used in the high excitation energy region[6].

    Due to the threshold energy exists for different channels in the neutron induced reaction on a nucleus,one channel can only happen if the incident energy of the neutron is above the threshold,which potentially provides energy windows only one channel can happen while the other channels are prohibited.In this work,the incident energy of the calculated reactions ranges from 0.20MeV to 85.00MeV,and the default parameters in Talys1.4 are adopted.The main reaction channels include(n,np),(n,p),(n,α),(n,2n)and(n,γ).The calculated results are compared to the measured data,which are extracted from the EXFOR library provided by the National Nuclear Data Center(NNDC)[7].All the natural abundance data and the half-life time of isotopes are taken from Wikipedia[8].

    III.RESULTS AND DISCUSSION

    A.neutron induced reactions on carbon isotopes

    The C element has two stable isotopes,12C and13C,with natural abundances of 98.93%and 1.07%,respectively.Only the n+12,13C reactions are calculated.

    1.n+12C reactions

    The12C(n,p)12B,12C(n,α)9Be,and12C(n,2n)11C channels have been measured previously.12B is an unstable nucleus,which decays to12C via electron emission with a half-life time of 20.20ms.9Be is a stable isotope.11C is also unstable,which decays to11B via positron emission with a relative long half-life time of 20.334min.Thus the12C(n,2n)11C and12C(n,np)11B channels are the main channels which result in element changes with the same final products,11B. The results are plotted in Fig.1.

    Fig.1.(Color online)The yield of residues produced in n+12C reactions.The measured results are denoted by symbols,and the calculated results are represented by lines.

    First,for the12C(n,α)9Be channel,the Talys1.4 results are consistent with the measured results when En<11.00MeV[9],while the Talys1.4 results differ largely with the results measured by Stevens et al.[10]in the range of 18.65MeV < En< 21.46MeV.In the energy range of 20.00MeV < En< 60.70MeV,the Talys1.4 results are also much larger than the calculated results by Dimbylow et al.[11].Above En> 11.00MeV,the results of the12C(n, α)9Be channel have large difference,which suggests that further experiment should be performed for a systematic understanding.

    Second,for the12C(n,p)12B channel,the measured results by Kreger et al.[12]and Rimmer et al.[13]coincide when En<16.00MeV,but differ when Enis higher. The Talys1.4 results agree well with the measured results when En< 16.00MeV,but overestimate the measured results by Kreger et al.[12]in the range of 16.00MeV <En< 22.00MeV.The calculated results of12C(n,p)12B in the range of 20.00MeV< En< 60.70MeV by Dimbylow et al.[11],which also uses the optical model,prefer the measured results by Kreger et al.[12].Meanwhile,the Talys1.4 predicts similar results between12C(n,p)12B and12C(n,np)11B reactions when En<20.00MeV.

    Third,forthe12C(n,2n)11Cchannel,whichhavebeenmeasured by many groups,the measured data agree well when En<27.00MeV.The results can be divided into two groups in the range of 27.00MeV<En<40.00MeV,of which the upper group was measured by Welch et al.[14],Anders et al.[15],and Kim et al.[16];and the bottom group by Brill et al.[17],Uno et al.[18],Brolley et al.[19],and Soewarsono et al.[20].The calculated results by Dimbylow et al.[11]prefer the upper group results when En< 35.00MeV.Kim et al.[16]measured the results in the energy range from 55.00MeV to 64.00MeV.The calculated results by Talys1.4 largely overestimate the measured ones when En<50.00MeV,but agree with the measured results by Kim et al.[16].The calculated results by Dimbylow et al.[11]underestimate the measured results by Kim et al.[16].

    The threshold energies of the12C(n,α)9Be,12C(n,p)12B,12C(n,np)11B and12C(n,2n)11C channels increase,which are about 6.18MeV,13.64MeV,14.89MeV and 20.30MeV,respectively.The12C(n,γ)13C channel happens in the whole energy range,but have a much smaller probability compared to other channels.

    2.n+13C reactions

    Fig.2.(Color online)The yield of residues produced in the different channels of the n+13C reactions calculated by Talys1.4.

    No measured data for the neutron induced reactions on13C is found.The Talys1.4 calculated results are plotted in Fig.2.The threshold energy values increase with the(n,α), (n,2n),(n,p)and(n,np)channels,with the values 4.13MeV, 5.33MeV,13.64MeV and 16.50MeV,respectively.The(n, γ)channel has no lowest energy threshold.The(n,γ)and (n,p)channels have relatively low probabilities compared to the other channels.In the whole energy range calculated, when En<15.00MeV,the main channel is13C(n,α)10Be, in which10Be decays to10B by electron emission with a very long half-life time 1.39×106years;when En>15.00MeV, the dominant channel is13C(n,np)12B,in which12B mainly decays to12C with a half-life time 20.20ms.

    B. Neutron induced reactions on nitrogen isotopes

    The N element has two stable isotopes,14N and15N,with a natural abundance of 99.64%and 0.36%,respectively.Only the n+14,15N reactions are calculated.

    Fig.3.(Color online)The yield of residues produced in the different channel of n+14N reactions:(a)14N(n,α)11B;(b)14N(n,p)14C;(c) 14N(n,2n)13N;and(d)14N(n,np)13C and14N(n,γ)15N.The calculated results are plotted as different lines.

    1. n+14N reactions

    The calculated channels for the n+14N reaction are14N(n, np)13C,14N(n,p)14C,14N(n,α)11B,14N(n,γ)15N,and14N(n, 2n)13N reactions,respectively.The nuclei13C,15N,and11B are stable,while14C and13N are unstable.13N decays to13C by positron emission with a half-life time 9.965min.The(n, np),(n,p),(n,2n),and(n,α)channels are the main ones which will result in element changes.

    The results of the n+14N reaction are plotted in Fig.3.For clarity,the results are plotted in different panels.The14N(n, α)11B and14N(n,p)14C have small threshold energies,which are very similar.The14N(n,α)11B channel has been measured by different groups[21–25],and the14N(n,p)14C has also been measured[21,23–25].For the two channels,the data measured by different groups is consistent.The Talys1.4 results agree with the measured data in the low incident energies,but overestimate the measured results when the Enincreases.

    For the14N(n,2n)13N channel,the measured results[26–30]are consistent when En< 19.00MeV.When En>24.00MeV,the measured results by Brill et al.[17]and Yashima et al.[31]are relatively consistent,and the calculated results by Dimbylow et al.[11]also agree with the measured data but have relatively large errors.The predicted threshold energy value by Talys1.4 is En≈11.00MeV,but the Talys1.4 cross sections overestimate the measured results in the whole energy range,which increases fast with Enand reaches maximum at En=24.00MeV and decreases with Enwhen En> 24.00MeV.Since13N decays to13C,the final production is the same as the14N(n,np)13C channel. The14N(n,np)13C channel has a low threshold energy value of about 6.00MeV,and the cross section of the channel increase fast with En,which peaks at about En=14.00MeV.

    Fig.4.(Color online)The yield of residues produced in the different channel of the n+15N reactions calculated by Talys1.4.

    Fig.5.(Color online)The yield of residues produced in different channels of n+16O reaction.(a)16O(n,α)13C;(b)16O(n,p)16N;(c)16O(n, 2n)15O;and(d)16O(n,np)15N and16O(n,γ)17O.The results calculated by Talys1.4 are plotted as lines.

    The threshold energies increase in the order of(n,α), (n,np),and(n,2n),which are about 0.13MeV,5.67MeV and 11.27MeV,respectively.The(n,γ)and(n,p)channel happens in the whole Enrange and forms a peak around 19.00MeVand 9.50MeV with a wide width,but the cross sections are very small compared to other channels.

    2. n+15N reactions

    No measured data for the n+15N reaction is found.Only the Talys1.4 calculated results are plotted in Fig.4.The calculated results for the(n,np)and(n,α)channels have almost the same values when En<12.00MeV and the(n,np)channel has much larger values than that of the(n,α)channel.At the same time,the cross sections of(n,p)and(n,2n)channels only have small difference when En>17.00MeV.The (n,np),(n,α),(n,p),and(n,2n)channels have relatively similar threshold energy values,which are about 8.57MeV, 8.09MeV,9.55MeV and 11.56MeV,respectively. The cross sections of the(n,γ)channel are much smaller compared to the other channels.When En>40.00MeV,large fluctuations are found in the results of the(n,p)and(n,γ) channels.

    C. Neutron induced reactions on oxygen isotopes

    The O element has three stable isotopes,16O,17O,and18O, with a natural abundance of 99.75%,0.0038%,and 0.205%. Only the n+16,18O reactions are calculated.

    1. n+16O reactions

    In Fig.5,the results of the n+16O reactions are plotted.The channels include16O(n,α)13C,16O(n,p)16N,16O(n, 2n)15O,16O(n,np)15N,and16O(n,γ)17O.16N decays to16O by emitting electron with a half-life time of 7.13s.Thus the main channels which make the element change are16O(n, α)13C and16O(n,np)15N.

    For the16O(n,α)13C channel,the Talys1.4 calculated results are consistent with these measured by Johnson et al.[32],andSeitz etal.[33]exceptthose byDivatia etal.[34] when Enis smaller than 5.00MeV.When En>7.00MeV, the measured results by Dickens et al.[35],Bormann et al.[36],and Dandy et al.[37]are consistent,but the Talys1.4 calculated results are unable to reproduce measured data well.

    Fig.6. (Color online)The yields of residues produced in the different channels of the n+18O reactions calculated by Talys1.4.

    For the16O(n,p)16N channel,the measured results by Martin et al.[38],Bormann et al.[39],and Seeman et al.[40] agree well.The measured results by Subashi et al.[41]and DeJuren et al.[42]also agree with those results but have relatively large difference.The Talys1.4 calculated results largely underestimate the measured results but have similar trend to the measured ones.

    For the16O(n,2n)15O channel,the measured results by Yashima et al.[33]and Brill et al.[17]are in different energy ranges,but for the overlapping range of En,the results have some difference.The Talys1.4 results overestimate the measured ones when En<40.00MeV,but underestimate the measured ones when En>40.00MeV.

    The16O(n,np)15N and16O(n,γ)17O channels have not been measured.For the16O(n,np)15N channel,the probability increases fast above the threshold energy of 10.57MeV and has a maximum value around En=20.00MeV.The16O(n,γ)17O channel happens in the whole Enrange but have much smaller values.

    The Talys1.4 calculated threshold energies of the(n,α), (n,p),(n,np)and(n,2n)channels for16O are 2.36MeV, 10.25MeV,10.57MeV and 16.65MeV,with peaks form at around 10.00MeV,14.50MeV,26.00MeV and 28.00MeV, respectively.

    2.n+18O reactions

    The main channels that the n+18O reactions cover are18O(n,α)15C,18O(n,np)17N,18O(n,p)18N,18O(n,2n)17O, and18O(n,γ)19O.17N can decay to16O and17O with a halflife time of 4.173s;18N can decay to18O,14C,or17O with a half-life time of 622ms,which are all stable nuclei(14C has a very long half-life time).

    In Fig.6,the calculated results for the channels are plotted. The thresholds of the(n,α),(n,2n),(n,p), and(n,np)channels are 5.29MeV,8.49MeV,13.85MeV and 14.49MeV,and the peaks form at around 10.00MeV, 17.00MeV,18.00MeV and 49.50MeV,respectively.When En> 33.00MeV,the yield of the(n,p)channel has large fluctuations with En.

    D.Comparison between main channels of n+C/N/O isotopes

    The differences between the threshold energies of the different channels make it possible to change one element to another. To change the element in organic materials specifically,the incident energy of the neutron should be selected to fit the energy window,as has been illustrated in the results above.The comparison between the thresholds of the main channel inducing element changes will show the Enwindow more clearly.

    For12C,both the final production of12C(n,np)11B and12C(n,2n)11C are11B since11C decays to11B via positron emission with a half-life time of 20.30ms.The threshold energy of12C(n,α)9Be is about 6.18MeV.When En>7.00MeV,12C can be changed to9Be.The threshold energy of12C(n,np)11B is about 14.89MeV.When En>16.00MeV,12C can be changed to9Be and11B.This provides actual application of neutron activation on C isotopes. The chemically synthesized compound,in which a C atom is substituted by a B atom,demonstrates a novel molecular engineering concept of organic semiconductors[43].For14N,the most important channel is(n,2n),which happens at very low neutron incident energy.Since the final yields in the n+14,15N reactions are mainly carbon isotopes,we do not discuss the energy window for these channels.For16O, the main channels are16O(n,α)13C and16O(n,np)15N when En<15.00MeV,withtheproductionof13Cand15N,respectively.There is also an Enwindow between the two channels in the range from 4.00MeV to 11.00MeV.With larger En, the16O(n,2n)15O channel is opened.15O decays to14N by emitting a positron with a half-life time of 70.60s,i.e.,16O is changed to14N finally.

    For a better understanding of the energy windows,the energy above the Talys calculated threshold energy for each channel is plotted in Fig.8.The numbers from 1 to 24 represent the channels and the alphabet from a to w represent the values of the threshold energies,of which are also listed as follows(the unit is MeV):1,En=0 for the14N(n,p)14C and(n,γ)channel of C/N/O;2,14N(n,α)11B (a=0.13);3,16O(n,α)13C(b=2.36);4,13C(n,α)10Be (c=4.13);5,18O(n,α)15C(d=5.29);6,13C(n,2n)12C (e=5.33);7,14N(n,np)13C(f=5.67);8,12C(n,α)9Be (g=6.18);9,15N(n,α)12B(h=8.09);10,18O(n,2n)17O (i=8.49);11,15N(n,np)14C(j=8.57);12,15N(n,p)15C (k=9.55);13,16O(n,p)16N(l=10.25);14,16O(n,np)15N (m=10.57);15,14N(n,2n)13N(n=11.27);16,15N(n, 2n)14N(o=11.56);17,13C(n,p)13B(p=13.635);18,12C(n,p)12B(q=13.645);19,18O(n,p)18N(r=13.85);20,18O(n,np)17N(s=14.49);21,12C(n,np)11B(t=14.89);22,13C(n,np)12B(u=16.49);23,16O(n,2n)15O(v=16.65); 24,12C(n,2n)11C(w=20.30).Though the energy windows are clearly shown in Fig.8,it should be carefully analyzed when the neutron is used to activate special compounds,including different elements.

    Fig.7.(Color online)Comparison among the results of the main channels of n+C/N/O reactions which induce element changes.

    Fig.8.(Color online)The comparison among the threshold energies of different channels which induce element changes(See the text for explanation).

    IV.CONCLUSION

    In this article,the neutron induced reactions on the stable C,N,and O isotopes are investigated by using the Talys1.4 toolkit,which calculates the reactions in the framework of optical model.On the one hand,it is found that for12C and14N, the Talys1.4 results agree with the experimental data,while for16O,the parameters in Talys1.4 should be adjusted for a better prediction.On the other hand,a systematic comparison among the main channels of n+C/N/O reactions which induce element change are performed to find Enwindows among the original C,N,and O stable isotopes(by considering the final production of the channel,i.e.,direct change or indirect change through decay to a different element isotope). In these Enwindows,specific elements can be activated to a different one while leaving the other element unchanged.The results may help to study material modification by using neutron induced doping techniques such as in organic materials like the organic semiconductor.

    [1]Ikai M,Tokito S,et al.Appl Phys Lett,2001,79:156–158.

    [2]Scherf U and List E J W.Adv Mater,2002,14:477–487.

    [3]Ding D Z,Ye C T,Zhao Z X,et al.Neutron Physics.Bejing (China):Atomic Energy Publishing,2005.

    [4]Raynal J.Notes on ECIS94,CEA Saclay Report No.CEA-N-2772,1994.

    [5]Ma C W,Jing R Y,Feng X,et al.Chinese Phys C,2014.(in press)

    [6]Koning A J,Hilaire S,Duijvestijn M C,et al.User Manual of Talys-1.4.(http://www.talys.eu/_leadmin/ talys/user/docs/talys1.4.pdf).

    [7]https://www-nds.iaea.org/exfor/exfor.htm

    [8]http://en.wikipedia.org/wiki/Isotope

    [9]Brede H J,Dietze G,Klein H,et al.Nucl Sci Eng,1991,1: 22–34.

    [10]Stevens A P.INIS microfiche,No.3596,1976.

    [11]Dimbylow P J.Phys Med Biol,1980,4:637–649.

    [12]Kreger W E and Kern B D.Phys Rev,1959,113:890–894.

    [13]Rimmer E M and Fisher P S.Nucl Phys A,1968,108:567–576.

    [14]Welch P,Johnson J,Randers-Pehrson G,et al.B Am Phys Soc, 1981,26:708.

    [15]Anders B,Herges P,Scobel W.Z Phys A-Hadron Nucl,1981, 4:353–361.

    [16]Kim E,Nakamura T,Konno A,et al.Nucl Sci Eng,1998,129: 209–223.

    [17]Brill O D,Vlasov N A,Kalinin S P,et al.Dokl Akad Nauk+, 1961,1,55.

    [18]UnoY,UwaminoY,SoewarsonoTS,etal.NuclSciEng,1996, 122:247–257.

    [19]Brolley J E,Jr,Fowler J L,et al.Phys Rev,1952,88:618–621.

    [20]Soewarsono T S,Uwamino Y,Nakamura T.JAERI-M Reports, No.92,027,354,1992.

    [21]Gabbard F,Bichsel H,Bonner T W.Nucl Phys,1959,14:277–294.

    [22]Khryachkov V Y,Kuzminov B D,Dunaev M V,et al.Atomnaya Energiya,2006,101:760–765.

    [23]Morgan G L.Nucl Sci Eng,1979,70:163–176.

    [24]Johnson C H and Barschall H H.Phys Rev,1950,80:818–823.

    [25]Bollmann W and Zuenti W.Helve Phys Acta,1951,24:517–550.

    [26]SakaneH,KasugaiY,ShibataM,etal.AnnNuclEnergy,2001, 28:1175–1192.

    [27]RyvesTB,KolkowskiP,ZiebaKJ.JPhysGNuclPartic,1978, 4:1783–1792.

    [28]Bormann M,Fretwurst E,Schehka P,et al.Nucl Phys,1965, 63:438–448.

    [29]Mc Crary J H and Morgan I L.B Am Phys Soc,1960,5:246.

    [30]Ferguson J M and Thompson W E.Phys Rev,1960,118:228–232.

    [31]Yashima H,Terunuma K,Nakamura T,et al.J Nucl Sci Technol,2004,4:70–73.

    [32]Johnson C H,Fowler J L,Feezel R M.Oak Ridge National Lab.Reports,No.4743,37,1972.

    [33]Seitz J and Huber P.Helvetica Physica Acta,1955,28:227–244.

    [34]Divatia A S,Sekharan K K,Mehta M K,et al.Nucl Data React Conf,1966,1:233.

    [35]Dickens J K and Perey F G.Nucl Sci Eng,1970,40:283–293.

    [36]Bormann M,Cierjacks S,Fretwurst E,et al.Z Phys,1963,174: 1.

    [37]Dandy D,Wankling J L,Parnell C J.Aldermaston Reports, No.60/68,1968.

    [38]Martin H C.Phys Rev,1954,93:498–499.

    [39]Bormann M,Dreyer F,Neuert H,et al.Nucl Data React Conf, 1967,1:225.

    [40]Seeman K W and Moore W E.Knolls Atomic Power Lab.No. 2214,1962.

    [41]Subashi M,Gueltekin E,Reyhankan I A,et al.Nucl Sci Eng, 2000,135:260–266.

    [42]DeJuren J A,Stooksbury R W,Wallis M.Phys Rev,1962,127: 1229–1232.

    [43]Wang X Y,Lin H R,Lei T,et al.Angew Chem Int Edit,2013, 52:3117–3120.

    (Received April 24,2014;accepted in revised form May 27,2014;published online July 4,2014)

    10.13538/j.1001-8042/nst.25.040501

    ?Supported by the National Natural Science Foundation of China(No. 11305239),the Program for Science and Technology Innovation Talents in Universities of Henan Province(13HASTIT046)

    ?Corresponding author,machunwang@126.com

    少妇猛男粗大的猛烈进出视频| 性高湖久久久久久久久免费观看| 国产深夜福利视频在线观看| 国产精品熟女久久久久浪| 久久久精品94久久精品| 中亚洲国语对白在线视频| 亚洲av日韩精品久久久久久密| 亚洲av日韩精品久久久久久密| 精品久久久久久久毛片微露脸 | 欧美日本中文国产一区发布| 91麻豆精品激情在线观看国产 | 亚洲精华国产精华精| a级毛片在线看网站| 中文字幕人妻熟女乱码| 亚洲伊人久久精品综合| 国产亚洲午夜精品一区二区久久| 国产欧美日韩一区二区三区在线| 动漫黄色视频在线观看| 亚洲精品在线美女| 亚洲精品国产av蜜桃| 女性被躁到高潮视频| 亚洲精品国产一区二区精华液| 亚洲avbb在线观看| 黑人欧美特级aaaaaa片| 国产免费视频播放在线视频| 黑人操中国人逼视频| 9191精品国产免费久久| 色婷婷久久久亚洲欧美| 欧美精品亚洲一区二区| 久久热在线av| 亚洲性夜色夜夜综合| 久久狼人影院| 一本久久精品| 国精品久久久久久国模美| av在线播放精品| 国产成人啪精品午夜网站| 久久中文字幕一级| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线观看99| 国产精品自产拍在线观看55亚洲 | 亚洲国产精品一区三区| 免费在线观看日本一区| 热99久久久久精品小说推荐| 99久久人妻综合| 天天影视国产精品| 亚洲国产精品999| 国产一区二区三区在线臀色熟女 | 免费一级毛片在线播放高清视频 | 成人免费观看视频高清| 午夜福利在线免费观看网站| 国产成人精品无人区| 男女之事视频高清在线观看| 69av精品久久久久久 | 亚洲精品自拍成人| 波多野结衣一区麻豆| 亚洲色图 男人天堂 中文字幕| 香蕉国产在线看| 久久九九热精品免费| 青草久久国产| 亚洲av男天堂| 正在播放国产对白刺激| 久久国产亚洲av麻豆专区| 91精品国产国语对白视频| 亚洲精品国产av成人精品| 韩国精品一区二区三区| 大陆偷拍与自拍| 18禁黄网站禁片午夜丰满| 日本av手机在线免费观看| 天堂俺去俺来也www色官网| 精品人妻在线不人妻| 大型av网站在线播放| 国产成人欧美在线观看 | 成人影院久久| 999久久久精品免费观看国产| 国产免费av片在线观看野外av| 亚洲av日韩在线播放| 国产国语露脸激情在线看| 亚洲 欧美一区二区三区| 国产亚洲av高清不卡| 人妻 亚洲 视频| 天天操日日干夜夜撸| 成年女人毛片免费观看观看9 | 国产成人av教育| 一区二区三区四区激情视频| 999久久久国产精品视频| 十八禁网站免费在线| 欧美亚洲 丝袜 人妻 在线| 夫妻午夜视频| 精品少妇一区二区三区视频日本电影| 亚洲男人天堂网一区| 午夜福利在线观看吧| 国产精品免费大片| 久久久久网色| 国产欧美日韩一区二区三 | 久久精品国产综合久久久| 成人av一区二区三区在线看 | 9191精品国产免费久久| av天堂在线播放| 天天添夜夜摸| 日韩大片免费观看网站| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| av网站免费在线观看视频| 人妻久久中文字幕网| 超碰成人久久| 国产欧美日韩一区二区三 | 老司机深夜福利视频在线观看 | 久久午夜综合久久蜜桃| 啦啦啦啦在线视频资源| 亚洲男人天堂网一区| 亚洲va日本ⅴa欧美va伊人久久 | 欧美在线一区亚洲| 中文字幕制服av| 极品少妇高潮喷水抽搐| 午夜两性在线视频| 精品一区二区三区av网在线观看 | 少妇裸体淫交视频免费看高清 | 国产高清国产精品国产三级| 91精品三级在线观看| 亚洲国产日韩一区二区| 久久精品人人爽人人爽视色| 日韩欧美免费精品| av网站免费在线观看视频| tocl精华| 多毛熟女@视频| 亚洲精品国产av成人精品| 不卡一级毛片| 亚洲欧美色中文字幕在线| 日本欧美视频一区| av天堂久久9| 日本av手机在线免费观看| 午夜精品国产一区二区电影| 精品卡一卡二卡四卡免费| 麻豆乱淫一区二区| 精品福利永久在线观看| 啪啪无遮挡十八禁网站| tocl精华| 精品欧美一区二区三区在线| 久久久久久久大尺度免费视频| 午夜成年电影在线免费观看| 亚洲情色 制服丝袜| 热re99久久国产66热| 一级a爱视频在线免费观看| 精品国产超薄肉色丝袜足j| 好男人电影高清在线观看| 午夜福利,免费看| 亚洲精品中文字幕一二三四区 | 十八禁网站网址无遮挡| 色精品久久人妻99蜜桃| 最黄视频免费看| √禁漫天堂资源中文www| 91精品伊人久久大香线蕉| 一区二区三区激情视频| 精品国产一区二区三区四区第35| 亚洲美女黄色视频免费看| 国产av国产精品国产| 人人妻,人人澡人人爽秒播| 精品国产乱码久久久久久男人| 欧美一级毛片孕妇| 国产亚洲av高清不卡| 99re6热这里在线精品视频| av福利片在线| 夜夜骑夜夜射夜夜干| 国产淫语在线视频| 亚洲人成电影观看| 亚洲精品国产av成人精品| 精品一品国产午夜福利视频| 女警被强在线播放| 免费在线观看视频国产中文字幕亚洲 | 午夜老司机福利片| 精品国产乱码久久久久久男人| 亚洲欧美成人综合另类久久久| 久久国产精品人妻蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 一进一出抽搐动态| 一区在线观看完整版| www.999成人在线观看| 日韩欧美免费精品| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品免费大片| 男人爽女人下面视频在线观看| 国产日韩欧美在线精品| 肉色欧美久久久久久久蜜桃| 国产成人欧美在线观看 | 高清视频免费观看一区二区| 亚洲精品久久久久久婷婷小说| www.精华液| 女人爽到高潮嗷嗷叫在线视频| 久久人人97超碰香蕉20202| 男女床上黄色一级片免费看| 亚洲美女黄色视频免费看| 亚洲国产欧美在线一区| 亚洲欧洲日产国产| 欧美激情久久久久久爽电影 | 一本久久精品| 国产高清视频在线播放一区 | 天堂8中文在线网| 下体分泌物呈黄色| 精品国产乱子伦一区二区三区 | 男人爽女人下面视频在线观看| 亚洲专区中文字幕在线| 国产精品国产av在线观看| 满18在线观看网站| 国产一区二区在线观看av| 啦啦啦在线免费观看视频4| 亚洲精品一卡2卡三卡4卡5卡 | 人妻一区二区av| 亚洲九九香蕉| 人人妻人人澡人人看| av天堂久久9| 亚洲自偷自拍图片 自拍| 亚洲 国产 在线| 美女高潮喷水抽搐中文字幕| 亚洲人成77777在线视频| 国产亚洲午夜精品一区二区久久| 精品国产国语对白av| 亚洲三区欧美一区| 中文字幕人妻丝袜一区二区| 视频区图区小说| 精品一区二区三区av网在线观看 | 国产片内射在线| 成人av一区二区三区在线看 | 超碰成人久久| 欧美精品高潮呻吟av久久| 国产一区二区三区在线臀色熟女 | 色婷婷av一区二区三区视频| 免费一级毛片在线播放高清视频 | 欧美国产精品va在线观看不卡| 另类精品久久| 午夜免费观看性视频| 国产亚洲欧美在线一区二区| 国产精品久久久久久人妻精品电影 | 国产一区二区三区综合在线观看| 黑人猛操日本美女一级片| 国产精品 国内视频| 18禁裸乳无遮挡动漫免费视频| 咕卡用的链子| 亚洲欧美色中文字幕在线| 国产精品久久久久久人妻精品电影 | 丝瓜视频免费看黄片| 久久天堂一区二区三区四区| 亚洲激情五月婷婷啪啪| 亚洲免费av在线视频| 中国国产av一级| 黄色视频在线播放观看不卡| 日韩电影二区| 大型av网站在线播放| 老司机午夜福利在线观看视频 | 国产片内射在线| 嫩草影视91久久| 亚洲精品自拍成人| 岛国在线观看网站| 国产一区二区三区在线臀色熟女 | 亚洲成av片中文字幕在线观看| 久久久久视频综合| 97人妻天天添夜夜摸| 国产成人啪精品午夜网站| 欧美日韩亚洲高清精品| 国产成人影院久久av| 美国免费a级毛片| 国产精品国产av在线观看| 色婷婷av一区二区三区视频| 老熟妇仑乱视频hdxx| 亚洲欧美精品自产自拍| 欧美日韩国产mv在线观看视频| 久久毛片免费看一区二区三区| 日韩制服骚丝袜av| 欧美 日韩 精品 国产| 精品免费久久久久久久清纯 | 国产亚洲午夜精品一区二区久久| 亚洲国产毛片av蜜桃av| 久久这里只有精品19| 亚洲三区欧美一区| 最近最新免费中文字幕在线| 国产精品久久久久成人av| 老汉色av国产亚洲站长工具| 搡老乐熟女国产| 欧美av亚洲av综合av国产av| 日韩制服骚丝袜av| 午夜精品国产一区二区电影| 亚洲激情五月婷婷啪啪| 一边摸一边抽搐一进一出视频| 女人久久www免费人成看片| www.熟女人妻精品国产| 青春草视频在线免费观看| 黄色片一级片一级黄色片| 亚洲精品成人av观看孕妇| 久久中文字幕一级| 99久久99久久久精品蜜桃| 国产精品二区激情视频| 久久午夜综合久久蜜桃| 在线观看一区二区三区激情| 操美女的视频在线观看| 天天躁夜夜躁狠狠躁躁| 国产成人精品久久二区二区91| 久久国产亚洲av麻豆专区| 国产91精品成人一区二区三区 | 热99国产精品久久久久久7| 在线永久观看黄色视频| 国产精品av久久久久免费| 成人三级做爰电影| 国产一区有黄有色的免费视频| 欧美人与性动交α欧美精品济南到| 一本久久精品| 他把我摸到了高潮在线观看 | √禁漫天堂资源中文www| 一边摸一边抽搐一进一出视频| 午夜福利,免费看| 亚洲国产av新网站| av免费在线观看网站| 欧美激情 高清一区二区三区| 亚洲一区二区三区欧美精品| 国产精品欧美亚洲77777| 亚洲精品一卡2卡三卡4卡5卡 | 黄片大片在线免费观看| 久久99热这里只频精品6学生| 亚洲少妇的诱惑av| 精品福利永久在线观看| 欧美精品av麻豆av| 飞空精品影院首页| 男女之事视频高清在线观看| 国产欧美亚洲国产| 人人妻人人澡人人爽人人夜夜| www.熟女人妻精品国产| 纯流量卡能插随身wifi吗| 亚洲国产精品一区二区三区在线| 日韩大片免费观看网站| 秋霞在线观看毛片| 中文字幕人妻丝袜一区二区| 三级毛片av免费| 亚洲国产欧美网| 中文字幕制服av| 免费女性裸体啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 久热爱精品视频在线9| 久久亚洲国产成人精品v| 人人妻人人澡人人看| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 人妻一区二区av| 岛国毛片在线播放| 操出白浆在线播放| 午夜福利影视在线免费观看| 啦啦啦免费观看视频1| 成年美女黄网站色视频大全免费| 国产精品免费大片| 丰满饥渴人妻一区二区三| 一级毛片女人18水好多| 一本综合久久免费| 80岁老熟妇乱子伦牲交| 美女大奶头黄色视频| 熟女少妇亚洲综合色aaa.| a级毛片黄视频| 亚洲,欧美精品.| 国产成人一区二区三区免费视频网站| 热99国产精品久久久久久7| 亚洲精品一二三| 午夜精品久久久久久毛片777| 老司机深夜福利视频在线观看 | 国产黄频视频在线观看| 日日爽夜夜爽网站| 午夜免费观看性视频| 操出白浆在线播放| 国产精品久久久久久精品电影小说| 深夜精品福利| 国产精品秋霞免费鲁丝片| 老熟妇乱子伦视频在线观看 | 免费人妻精品一区二区三区视频| 日日夜夜操网爽| 国产淫语在线视频| 别揉我奶头~嗯~啊~动态视频 | 免费高清在线观看日韩| 亚洲国产中文字幕在线视频| 午夜两性在线视频| 亚洲av电影在线进入| 日本猛色少妇xxxxx猛交久久| 欧美 日韩 精品 国产| 日本a在线网址| 天堂8中文在线网| 啦啦啦免费观看视频1| 成人黄色视频免费在线看| 欧美激情久久久久久爽电影 | 性少妇av在线| 男女午夜视频在线观看| 日韩大片免费观看网站| 天天影视国产精品| 欧美日韩亚洲国产一区二区在线观看 | 三级毛片av免费| 狠狠精品人妻久久久久久综合| 免费观看a级毛片全部| 国产精品久久久久久精品古装| 两性夫妻黄色片| 天堂俺去俺来也www色官网| 丝袜人妻中文字幕| 丰满饥渴人妻一区二区三| 嫁个100分男人电影在线观看| 精品少妇一区二区三区视频日本电影| 超色免费av| 国产精品免费视频内射| 亚洲精品一二三| 蜜桃在线观看..| 亚洲国产av影院在线观看| 妹子高潮喷水视频| 久久香蕉激情| 自线自在国产av| 视频区图区小说| 老熟妇仑乱视频hdxx| 99香蕉大伊视频| 狠狠精品人妻久久久久久综合| 日韩有码中文字幕| 午夜精品国产一区二区电影| 少妇人妻久久综合中文| 亚洲国产毛片av蜜桃av| 欧美中文综合在线视频| 久久中文看片网| 国产成人av激情在线播放| 国产在线视频一区二区| 国产成人a∨麻豆精品| 久久精品人人爽人人爽视色| 美国免费a级毛片| 免费女性裸体啪啪无遮挡网站| 热99国产精品久久久久久7| 最近最新中文字幕大全免费视频| 亚洲精品一卡2卡三卡4卡5卡 | 国产免费视频播放在线视频| 亚洲人成77777在线视频| 国产成人精品久久二区二区免费| 亚洲精品粉嫩美女一区| 在线观看舔阴道视频| 成人手机av| 久久久精品区二区三区| 麻豆国产av国片精品| 在线亚洲精品国产二区图片欧美| 日韩制服骚丝袜av| 搡老岳熟女国产| 国产激情久久老熟女| 他把我摸到了高潮在线观看 | 建设人人有责人人尽责人人享有的| 91国产中文字幕| 999精品在线视频| 欧美人与性动交α欧美精品济南到| 国产精品99久久99久久久不卡| 精品久久久久久久毛片微露脸 | 精品少妇黑人巨大在线播放| 性少妇av在线| 在线观看www视频免费| 精品国产乱码久久久久久男人| 亚洲欧美日韩高清在线视频 | 考比视频在线观看| 国产成人免费观看mmmm| 老汉色∧v一级毛片| 欧美激情高清一区二区三区| 午夜日韩欧美国产| 亚洲欧美精品自产自拍| 精品少妇一区二区三区视频日本电影| 免费观看a级毛片全部| 成人国产一区最新在线观看| 成年女人毛片免费观看观看9 | 国产老妇伦熟女老妇高清| 色精品久久人妻99蜜桃| 亚洲国产欧美日韩在线播放| av福利片在线| 国产av精品麻豆| 亚洲国产av影院在线观看| 涩涩av久久男人的天堂| 亚洲avbb在线观看| 亚洲精品一二三| 国产99久久九九免费精品| 亚洲人成77777在线视频| 色播在线永久视频| 捣出白浆h1v1| 黄片播放在线免费| 国产91精品成人一区二区三区 | 久久久久精品国产欧美久久久 | 美女高潮到喷水免费观看| √禁漫天堂资源中文www| 波多野结衣av一区二区av| 欧美日韩福利视频一区二区| 国产视频一区二区在线看| 黑丝袜美女国产一区| 日本av手机在线免费观看| 欧美老熟妇乱子伦牲交| 国产精品欧美亚洲77777| 精品一区二区三卡| 亚洲免费av在线视频| 好男人电影高清在线观看| 成人国语在线视频| 国产欧美日韩一区二区三 | 成年动漫av网址| 国产精品一区二区免费欧美 | 色婷婷久久久亚洲欧美| 日韩大码丰满熟妇| 久久人人97超碰香蕉20202| 亚洲成国产人片在线观看| 久久精品国产亚洲av香蕉五月 | 国产精品免费大片| 国产欧美日韩精品亚洲av| 午夜91福利影院| 老鸭窝网址在线观看| 精品国产超薄肉色丝袜足j| 黄色片一级片一级黄色片| 天天影视国产精品| 久久综合国产亚洲精品| 日韩视频一区二区在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 一级黄色大片毛片| bbb黄色大片| 美女午夜性视频免费| 大码成人一级视频| 日本欧美视频一区| 欧美一级毛片孕妇| 日本五十路高清| 日韩有码中文字幕| 国产精品久久久久久精品古装| 十八禁人妻一区二区| 一边摸一边抽搐一进一出视频| 男女之事视频高清在线观看| 人妻人人澡人人爽人人| 亚洲中文av在线| 国产成人免费无遮挡视频| 女性生殖器流出的白浆| 欧美国产精品va在线观看不卡| 51午夜福利影视在线观看| 久久精品亚洲熟妇少妇任你| 亚洲精华国产精华精| 18禁观看日本| 午夜久久久在线观看| 欧美日本中文国产一区发布| 亚洲自偷自拍图片 自拍| 黄片大片在线免费观看| 男女午夜视频在线观看| 欧美大码av| 午夜福利在线免费观看网站| 侵犯人妻中文字幕一二三四区| 视频区图区小说| 午夜福利乱码中文字幕| 在线观看免费高清a一片| 亚洲一码二码三码区别大吗| 成人av一区二区三区在线看 | 欧美老熟妇乱子伦牲交| 天天躁日日躁夜夜躁夜夜| 丝袜人妻中文字幕| 精品人妻一区二区三区麻豆| 国产高清国产精品国产三级| 最近中文字幕2019免费版| 一级黄色大片毛片| 性少妇av在线| 亚洲第一青青草原| 一本久久精品| 香蕉国产在线看| 波多野结衣av一区二区av| 国产精品一区二区免费欧美 | 秋霞在线观看毛片| 两人在一起打扑克的视频| 亚洲视频免费观看视频| 黑人操中国人逼视频| 亚洲精品久久久久久婷婷小说| 97在线人人人人妻| 久久国产精品人妻蜜桃| 日韩欧美免费精品| 亚洲国产看品久久| 免费一级毛片在线播放高清视频 | 婷婷丁香在线五月| 精品久久久久久久毛片微露脸 | 人人妻人人澡人人爽人人夜夜| 国产精品1区2区在线观看. | 日本精品一区二区三区蜜桃| 国产精品久久久久成人av| 亚洲五月婷婷丁香| 午夜影院在线不卡| 国产99久久九九免费精品| 纵有疾风起免费观看全集完整版| 中文字幕制服av| 国产男女内射视频| 国产亚洲欧美在线一区二区| 国产精品免费视频内射| 99热网站在线观看| 男女床上黄色一级片免费看| 高清欧美精品videossex| 国产黄色免费在线视频| 国产日韩欧美亚洲二区| 黄色a级毛片大全视频| 日本a在线网址| 中文字幕制服av| 免费av中文字幕在线| 久久国产精品大桥未久av| 丰满饥渴人妻一区二区三| 老司机午夜福利在线观看视频 | 精品国产乱码久久久久久男人| 999久久久精品免费观看国产| 老司机福利观看| 女人久久www免费人成看片| 亚洲欧美日韩另类电影网站| 亚洲免费av在线视频| 一二三四社区在线视频社区8| 亚洲国产精品成人久久小说| 午夜老司机福利片| 亚洲,欧美精品.| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美国产精品一级二级三级| 免费高清在线观看日韩| 热re99久久精品国产66热6| 一级片'在线观看视频| 91成年电影在线观看| 国产视频一区二区在线看| 成年女人毛片免费观看观看9 | 欧美 日韩 精品 国产| 国产精品欧美亚洲77777| 亚洲九九香蕉| 欧美亚洲日本最大视频资源| 亚洲欧洲日产国产| 天天添夜夜摸| 亚洲精品中文字幕在线视频| 人妻久久中文字幕网| 久久久国产精品麻豆|