謝 銳,劉 壯,巨曉潔,汪 偉,褚良銀
(四川大學(xué)化學(xué)工程學(xué)院,成都610065)
智能高分子開關(guān)膜的制備方法研究進(jìn)展
謝 銳,劉 壯,巨曉潔,汪 偉,褚良銀
(四川大學(xué)化學(xué)工程學(xué)院,成都610065)
智能高分子開關(guān)膜是將智能高分子與非刺激響應(yīng)型基材膜結(jié)合而成。由于智能高分子能夠響應(yīng)外界刺激發(fā)生親疏水性轉(zhuǎn)變和構(gòu)象變化,智能高分子開關(guān)膜也能根據(jù)外部刺激改變自身的表面/界面特性、滲透通量或選擇透過性。智能高分子膜被用作抗污染濾膜、親和分離、酶反應(yīng)的起/??刂埔约翱刂漆尫诺取V悄芨叻肿娱_關(guān)膜的制備方法直接影響其環(huán)境刺激響應(yīng)特性、穩(wěn)定性和可重復(fù)制備性等。因此,系統(tǒng)介紹了基材膜修飾法、基材修飾成膜法和共混成膜法等3種智能高分子開關(guān)膜制備方法的定義、分類、機(jī)理和研究進(jìn)展,并對比了3種方法的優(yōu)缺點(diǎn)?;哪ば揎椃ㄑ芯孔疃?,而共混成膜法最有望用于大規(guī)模制備智能高分子膜。本文以期為高效制備具有穩(wěn)定、優(yōu)良響應(yīng)特性的智能高分子開關(guān)膜提供指導(dǎo)和參考。
智能高分子膜;智能凝膠;智能線性高分子;制備方法;相轉(zhuǎn)化法
人類科技的進(jìn)步與發(fā)展離不開大自然的啟發(fā),比如受鳥類啟發(fā)發(fā)明飛機(jī),受蠅眼啟發(fā)發(fā)明蠅眼照相,受荷葉的微納結(jié)構(gòu)啟發(fā)構(gòu)筑了人工自清潔表面等。早在19世紀(jì)80年代,學(xué)者們受到生物膜選擇透過性的啟發(fā),開始致力于環(huán)境刺激響應(yīng)型智能高分子膜的研究[1,2]。環(huán)境刺激響應(yīng)型智能高分子膜是能夠感知外界微小的化學(xué)、物理刺激,并作出響應(yīng)改變自身的表面/界面特性、滲透通量或選擇透過性的高分子膜材料[3~5]。與傳統(tǒng)高分子膜相比,受生物膜啟發(fā)的環(huán)境刺激響應(yīng)型智能高分子膜具有環(huán)境響應(yīng)的選擇性和“開/關(guān)”特性[2]。因此,環(huán)境刺激響應(yīng)型智能膜在化學(xué)物質(zhì)/藥物的控制釋放、物質(zhì)分離、水處理、組織工程、化學(xué)傳感器等領(lǐng)域有著潛在的應(yīng)用價值。目前,已有智能高分子膜被用作抗污染濾膜[6]、親和分離[7]、酶反應(yīng)的起/??刂芠8]以及控制釋放[9]等的報道。
按照智能高分子膜的結(jié)構(gòu),智能高分子膜可以分為智能高分子凝膠膜和智能高分子開關(guān)膜兩種[4,10]。智能高分子凝膠膜是由智能高分子交聯(lián)而成的均質(zhì)凝膠膜(見圖1a),它在外界環(huán)境刺激的作用下會整體溶脹或收縮(見圖1c),從而改變其滲透特性和選擇透過性。智能高分子開關(guān)膜則是將智能高分子與非刺激響應(yīng)型基材膜結(jié)合而成,智能高分子作為智能開關(guān)調(diào)節(jié)膜孔大?。ㄒ妶D1d),從而實(shí)現(xiàn)滲透特性和選擇透過性的變化。智能高分子凝膠膜完全由交聯(lián)的智能高分子凝膠組成,強(qiáng)度低,多見于智能微囊膜。而智能高分子開關(guān)膜能夠結(jié)合基材膜的機(jī)械強(qiáng)度等方面的優(yōu)異性能和智能高分子的環(huán)境刺激響應(yīng)性能,研究最為廣泛。值得注意的是智能高分子開關(guān)膜中的智能高分子開關(guān)可以是交聯(lián)凝膠/微凝膠(圖1a)也可以是線性高分子(圖1b)。此外,智能高分子膜的形式可以是微囊膜、中空纖維膜和平板膜。
智能膜的類型多種多樣。目前,已有關(guān)于溫度響應(yīng)型智能膜[11]、pH響應(yīng)型智能膜[1]、離子強(qiáng)度響應(yīng)型智能膜[12]、光響應(yīng)型智能膜[13]、電場響應(yīng)型智能膜[14]、磁場響應(yīng)型智能膜[15]、特定化學(xué)物質(zhì)[16]或離子響應(yīng)型智能膜[17]、多重刺激響應(yīng)型智能膜[18]的報道。其中,在眾多的智能膜中溫度響應(yīng)型和pH響應(yīng)型智能膜的研究最為廣泛。目前報道的溫度響應(yīng)型智能膜主要是基于聚(N-異丙基丙烯酰胺)(poly(N-isopropylacrylamide),PNIPAM)的酰胺類高分子,它的低臨界溶液溫度(lower critical solution temperature,LCST)與人體溫度接近,且響應(yīng)速度快。而pH響應(yīng)型智能膜主要是基于聚丙烯酸(PAA)的聚弱電解質(zhì)。
智能高分子開關(guān)膜的環(huán)境刺激響應(yīng)特性、穩(wěn)定性、可重復(fù)制備性等重要參數(shù)一定程度上取決于膜的制備方法,因此本文將著重介紹智能高分子開關(guān)膜的各種制備方法及其優(yōu)缺點(diǎn),以期為制備甚至大規(guī)模生產(chǎn)具有穩(wěn)定、優(yōu)良響應(yīng)特性的智能高分子開關(guān)膜提供指導(dǎo)和參考。
圖1 環(huán)境刺激響應(yīng)型智能高分子膜的分類(修改自參考文獻(xiàn)[10]) Fig.1 Classification of stimuli-responsive smart polymeric membranes(modified from Ref.[10])
用于制備智能高分子開關(guān)膜的基膜材料可以是親水性材料,比如聚酰胺類(尼龍6,N6)和纖維素類(醋酸纖維素)等,但主要還是疏水性材料,比如聚砜類、聚醚砜(PES)、烴類聚合物(聚乙烯、聚丙烯)、氟代烴類聚合物(聚偏氟乙烯(PVDF)、聚四氟乙烯)、聚酯類(聚對苯二甲酸乙二醇酯、聚碳酸酯)等。這些膜材料不具有環(huán)境刺激響應(yīng)的特性,因此需要將智能高分子材料添加到基材膜中。智能高分子開關(guān)膜可以通過物理方法或者化學(xué)方法將智能高分子與基材膜結(jié)合得到。物理方法包括填充(filling)或共混(blending)等,該方法操作簡單,但制備的智能高分子與膜材料結(jié)合穩(wěn)定性低、分布均勻性差?;瘜W(xué)方法包括化學(xué)接枝法、等離子體接枝法、光接枝法、射線接枝法等。采用化學(xué)方法制備智能高分子開關(guān)膜,智能高分子和基材膜通過穩(wěn)定的共價鍵結(jié)合,因此得到的智能膜也具有穩(wěn)定的環(huán)境刺激響應(yīng)特性。但它通常會借助化學(xué)試劑或外源高能物種對基材膜進(jìn)行改性,對設(shè)備和制備條件要求高。根據(jù)智能高分子引入基材膜的時間,智能高分子開關(guān)膜的制備方法可以分為基材膜修飾法(成膜后添加智能高分子)、基材修飾成膜法(成膜前添加智能高分子)和共混成膜法(成膜中添加智能高分子),如圖2所示。
圖2 智能高分子開關(guān)膜的制備方法分類Fig.2 Different preparation methods of smart polymeric gating membranes
2.1 基材膜修飾法
基材膜修飾法顧名思義即在多孔的基材膜上,在不改變基材膜主體結(jié)構(gòu)的情況下,通過物理方法(比如填充(filling)等)或化學(xué)方法(各種接枝法(grafting))在膜表面和孔內(nèi)引入智能高分子開關(guān),如圖2a所示?;哪ば揎椃蛇x擇的基材膜材料范圍很大,且易于分析基材膜及引入智能高分子開關(guān)后的智能膜的孔結(jié)構(gòu)與孔徑大小,從而有助于研究智能高分子開關(guān)膜的響應(yīng)機(jī)理和環(huán)境刺激響應(yīng)性能與結(jié)構(gòu)的關(guān)系。因此,這種方法是最早采用也是迄今為止研究最多的智能膜制備方法[1]。
Li等[9]將多孔N6基材膜浸沒在N-異丙基丙烯酰胺(NIPAM)單體溶液中,并引發(fā)自由基聚合得到膜孔中物理填充PNIPAM智能凝膠的溫度響應(yīng)型智能膜。與物理方法相比,采用化學(xué)接枝方法制備智能高分子開關(guān)膜研究更為廣泛。按照不同的聚合機(jī)理,化學(xué)接枝法可分為“接枝自”(grafting from)和“接枝到”(grafting to)兩種方法?!敖又ψ浴狈椒ㄊ窃诙栊缘幕哪け砻娈a(chǎn)生活性位點(diǎn),然后從這些活性位點(diǎn)出發(fā)引發(fā)功能單體聚合,從而產(chǎn)生與基材膜共價連接的智能高分子開關(guān)。“接枝到”方法則是將預(yù)先聚合的智能高分子共價地結(jié)合到基材膜上,預(yù)先聚合的智能高分子和基材膜需要帶上可以相互反應(yīng)的活性基團(tuán)。通常,智能高分子和基材膜的相互反應(yīng)是基于巰基/雙硫鍵與金的鍵合、氨基與醛的加成反應(yīng)、氨基與環(huán)氧鍵的親核取代反應(yīng)等。由于篇幅原因,這里僅介紹常見的“接枝自”方法制備智能高分子膜的研究進(jìn)展?;哪け砻婊钚晕稽c(diǎn)可以通過外源高能物種(如γ射線[19]、紫外(UV)、等離子體、氧化還原對等)激發(fā)發(fā)生均裂而形成,也可以通過化學(xué)修飾帶上自由基引發(fā)劑。
等離子體接枝法是在一定的氣氛放電產(chǎn)生低溫等離子體,與等離子體接觸的基材膜表面會產(chǎn)生大量活性位點(diǎn),之后導(dǎo)入單體溶液便能引發(fā)智能高分子開關(guān)接枝在膜表面上。根據(jù)氣氛的不同,等離子體可以分為氨氣等離子體接枝法、氬氣等離子體接枝法、氫氣等離子體接技法、空氣等離子體接枝法等。它們都可以用于制備各種刺激響應(yīng)類型的智能高分子開關(guān)膜[20~23]。
UV光接枝法需要借助Ⅱ型光引發(fā)劑在UV光照下從其他分子上奪氫的特點(diǎn)在膜表面產(chǎn)生活性位點(diǎn),從而引發(fā)單體在膜表面接枝聚合[24]。目前常常采用二苯甲酮和安息香乙醚作為光引發(fā)劑在UV光照條件下制備pH響應(yīng)型和溫度響應(yīng)型智能高分子開關(guān)膜[25,26]。
氧化還原對(redox pair)可以作為引發(fā)劑引發(fā)單體在基材膜表面的接枝共聚,這種方法可以稱為氧化還原接枝法。目前報道的氧化還原對有強(qiáng)氧化劑硝酸鈰銨與還原性基團(tuán)(如醇羥基、醛、酮、胺和酰胺等)和亞硫酸鈉-過硫酸鉀等。該方法可以在尼龍膜、醋酸纖維素和聚醚砜類基材膜上接枝pH響應(yīng)型和溫度響應(yīng)型智能高分子開關(guān),從而得到相應(yīng)的智能高分子開關(guān)膜[1,27]。氧化還原接枝法反應(yīng)條件溫和,操作方便,但是會產(chǎn)生較多的均聚物。
原子轉(zhuǎn)移自由基聚合(atom transfer radical polymerization,ATRP)接枝法能夠利用特定類型的鹵代烴作為自由基聚合的引發(fā)劑,比傳統(tǒng)自由基引發(fā)劑更容易通過化學(xué)反應(yīng)共價結(jié)合到膜上,從而在一定的催化條件下引發(fā)功能單體的聚合。常見的鹵代烴引發(fā)劑為2-溴異丁酰溴(2-bromoisobutyryl bromide,BIBB)。ATRP是一種可控自由基聚合方法,相較于傳統(tǒng)自由基聚合,該方法能很好地抑制自由基轉(zhuǎn)移反應(yīng),從而很好地控制智能高分子鏈的長度和接枝率等。采用ATRP方法不僅能夠制備具有均聚或無規(guī)共聚的智能高分子開關(guān)的智能膜[7,28],還能得到具有嵌段智能高分子開關(guān)的智能膜[29]。由于嵌段聚合物中的每一嵌段能夠很好地保持各自的物化特性,與無規(guī)共聚相比能提供更廣闊的分子結(jié)構(gòu)設(shè)計空間,從而制備出結(jié)構(gòu)、性能更為優(yōu)越的智能高分子開關(guān)膜。
2.2 基材修飾成膜法
基材修飾成膜法是在成膜之前對高分子膜材料進(jìn)行化學(xué)改性從而引入智能高分子,然后將化學(xué)改性的膜材料制備成智能膜,如圖2b所示。通常用于基材修飾成膜法的高分子膜材料是疏水性的,制備智能高分子膜的方法是相轉(zhuǎn)化法。智能高分子材料可以通過無規(guī)共聚或嵌段共聚引入基材膜材料中。無規(guī)共聚主要應(yīng)用于可以從單體的加聚反
圖3 臭氧預(yù)處理PVDF高分子并熱引發(fā)NIPAM聚合及制備溫度響應(yīng)型智能膜過程示意圖[35]Fig.3 Schematic illustration of thermo-induced polymerization on ozone-pretreated PVDF polymer and fabrication of thermo-responsive membrane[35]
應(yīng)獲得高分子的膜材料,如(氟代)烴類聚合物和聚丙烯腈。Kobayashi等[30]通過丙烯酸、甲基丙烯酸與丙烯腈的無規(guī)共聚獲得共聚高分子,然后利用相轉(zhuǎn)化法制備了pH響應(yīng)型聚丙烯腈超濾膜。而嵌段共聚則是通過如γ射線接枝法[31,32]、化學(xué)接枝法[33]、ATRP接枝法[34]以及臭氧預(yù)處理[35~38]等方法對高分子膜材料直接進(jìn)行化學(xué)修飾,從而引入智能高分子。Kang等[34]采用ATRP接枝法從PVDF主鏈上引發(fā)甲基丙烯酸N,N-二甲氨基乙酯(DMAEMA)的聚合,通過控制反應(yīng)的時間,可以控制接枝鏈的長度,從而改變制備的pH、溫度雙重刺激響應(yīng)型膜的形貌和分離特性。針對較難改性的氟代聚烯烴高分子PVDF,新加坡國立大學(xué)的Kang等[35~38]開發(fā)了采用O3對PVDF高分子進(jìn)行預(yù)處理的技術(shù)。該技術(shù)可以使PVDF主鏈上帶上過氧基團(tuán),進(jìn)而熱引發(fā)自由基聚合、可逆加成-斷裂鏈轉(zhuǎn)移可控自由基聚合(RAFT)親水性功能單體,制備以PVDF為主鏈的兩親智能高分子或者具有功能接枝側(cè)鏈的兩親高分子。隨后,再將得到的兩親智能高分子采用相轉(zhuǎn)化法制備出溫度響應(yīng)型、pH響應(yīng)型、pH和溫度雙重刺激響應(yīng)型的智能高分子膜。圖3是采用臭氧對PVDF進(jìn)行預(yù)處理并熱引發(fā)自由基接枝聚合得到PNIPAM-g-PVDF高分子、然后利用相轉(zhuǎn)化法制備溫度響應(yīng)型智能PVDF膜的示意圖。在相轉(zhuǎn)化法制備智能高分子膜過程中,含有兩親高分子的鑄膜液在含水的凝固浴中固化時,親水的高分子鏈會在膜孔形成的過程中大量富集到膜孔表面,從而自發(fā)地形成膜孔表面“接枝”有環(huán)境刺激響應(yīng)高分子開關(guān)的智能高分子膜[39]。
2.3 共混成膜法
共混成膜法是在成膜過程中先物理共混智能高分子材料,緊接著采用相轉(zhuǎn)化法制備智能高分子開關(guān)膜,如圖2c所示。添加的智能高分子材料可以是交聯(lián)凝膠,也可以是線性高分子;可以是親水的均聚物,也可以是無規(guī)共聚或兩親嵌段共聚高分子。這里的兩親嵌段高分子的疏水嵌段不同于基材膜材料,但它是容易合成、物化性能優(yōu)異且與基材膜材料相容性好的高分子材料,以保證兩親嵌段高分子在智能膜材料中的穩(wěn)定性。
Wang等[40]在海藻酸鈣毫米囊的凝膠囊壁中物理共混了PNIPAM納米凝膠,制備得到了溫度響應(yīng)型智能毫米囊。類似地,Wang等[41]和Song等[42]在PES鑄膜液中物理共混PNIPAM納米凝膠,再通過相轉(zhuǎn)化制備了具有溫度響應(yīng)性和乙醇濃度響應(yīng)性的智能高分子開關(guān)膜。Kang等[43]將PNIPAM與PAA-g-PVDF高分子膜材料共混,再用相轉(zhuǎn)化法制備了智能高分子PVDF膜。由于PNIPAM可以與PAA-g-PVDF膜材料的PAA高分子鏈之間產(chǎn)生氫鍵作用,PNIPAM高分子可以穩(wěn)定地留在多孔的PVDF膜中,所制備的膜具有pH及溫度雙重響應(yīng)特性。
Jiang等[6]采用分步加料的自由基聚合法合成了化學(xué)組成類似于嵌段聚合物的聚甲基丙烯酸正丁酯-嵌段-聚甲基丙烯酸-嵌段-聚甲基丙烯酸六氟正丁酯(PBMA-b-PMAA-b-PHFBM)。該三嵌段聚合物與PES共混,利用相轉(zhuǎn)化法制備了具有pH響應(yīng)特性的智能高分子PES膜。采用分步加料的自由基聚合法,當(dāng)改變單體的投料量時,可以改變嵌段聚合物各個嵌段的含量。Zhu等[44]在一種商品化的兩親三嵌段高分子F127(poly(ethylene oxide)100-block-poly(propylene oxide)65-block-poly(ethylene oxide)100)兩端共價連接ATRP引發(fā)劑2-溴異丁酸酯,然后通過ATRP反應(yīng)在三嵌段的F127的兩端共聚上不同聚合度的聚丙烯酸N,N-二甲氨基乙酯(PDMAEMA)嵌段,獲得F127-b-PDMAEMA五嵌段聚合物;然后將F127-b-PDMAEMA五嵌段聚合物與PES共混,利用相轉(zhuǎn)化法制備pH、溫度雙重響應(yīng)的智能高分子PES膜。該研究中F127-b-PDMAEMA高分子結(jié)構(gòu)可控,可以方便地通過改變PDMAEMA嵌段的聚合度在一定程度上調(diào)整膜的刺激響應(yīng)性通量變化;但是該智能高分子膜的缺點(diǎn)在于F127-b-PDMAEMA的五嵌段聚合物水溶性不利于其長期穩(wěn)定地留在PES膜中。Luo等[45]采用ATRP方法成功制備了具有相同疏水嵌段鏈長度,不同親水嵌段鏈長度的兩親嵌段聚苯乙烯-嵌段-聚丙烯酸(PS-b-PAA)高分子,并與PES膜材料共混后通過相轉(zhuǎn)化法成膜(見圖4)。該研究實(shí)現(xiàn)了添加兩親嵌段高分子的精確控制,從而獲得pH響應(yīng)性能可控的智能膜。
圖4 共混兩親嵌段PS-b-PAA高分子制備pH響應(yīng)型智能PES膜的示意圖(a~c)及其pH響應(yīng)開關(guān)特性(d,e)[45]Fig.4 Schematic illustration of fabrication process(a~c)and pH-responsive gating function(d,e)of pH-responsive PES membranes blended with amphiphilic PS-b-PAA block polymers[45]
制備智能高分子開關(guān)膜的方法可以分為基材膜修飾法(成膜后添加智能高分子)、基材修飾成膜法(成膜前添加智能高分子)和共混成膜法(成膜中添加智能高分子)。
基材膜改性法適用的基材膜種類多、方法多種多樣,易于表征智能高分子開關(guān)的含量和智能膜的結(jié)構(gòu),研究較廣泛;但是,往往改性后智能膜的孔徑較基材膜有所減小,滲透通量也會相應(yīng)減小。目前的改性方法針對微孔尺寸的膜孔改性比較有效,膜孔越小,整個膜斷面上孔內(nèi)的改性越難。改性方法的可重復(fù)性欠佳,個別方法如γ射線接枝法和等離子體接枝法對設(shè)備要求高,目前尚不適用于大規(guī)模制膜。
采用基材修飾成膜法制備智能高分子開關(guān)膜,智能兩親高分子的疏水嵌段構(gòu)成膜主體,而親水嵌段則作為智能膜孔中共價接枝的智能高分子開關(guān)。因此,基材修飾成膜法能夠?qū)崿F(xiàn)對智能高分子開關(guān)膜整個斷面的孔進(jìn)行化學(xué)改性。但是,基材修飾成膜法通常是PVDF、聚砜類、PES等疏水性膜材料,化學(xué)改性的難度較大。與γ射線接枝法相比,臭氧預(yù)處理方法適合用于大規(guī)模生產(chǎn),但該方法迄今尚難以對智能兩親高分子的結(jié)構(gòu)進(jìn)行控制。
共混成膜法成膜的過程簡單,有望實(shí)現(xiàn)智能高分子開關(guān)膜的大規(guī)模制備。該法制備智能高分子開關(guān)膜的難易度取決于智能高分子的制備。當(dāng)添加均聚或無規(guī)共聚高分子作為智能高分子時,方法簡單易行,有望用于大規(guī)模生產(chǎn)智能高分子開關(guān)膜。當(dāng)采用兩親嵌段聚合物作為智能高分子時,可以借助ATRP等可控自由基聚合方法對智能高分子的結(jié)構(gòu)精確控制,從而精確調(diào)控智能高分子開關(guān)膜的環(huán)境刺激響應(yīng)特性。
[1] Okahata Yoshio,Ozaki Koji,Seki Takahiro.pH-sensitive permeability control of polymer-grafted nylon capsule membranes[J]. Journal of the Chemical Society,Chemical Communications,1984(8):519-521.
[2] Chu Liangyin,Xie Rui,Ju Xiaojie.Stimuli-responsive membranes:Smart tools for controllable mass-transfer and separation processes[J].Chinese Journal of Chemical Engineering,2011,19(6):891-903.
[3] Chu Liang-Yin.Smart Membrane Materials and Systems[M]. Berlin,Heidelberg and Hangzhou:Springer-Verlag Berlin and Heidelberg GmbH&Co.K and Zhejiang University Press,2011.
[4] Wandera Daniel,Wickramasinghe S Ranil,Husson Scott M. Stimuli-responsive membranes[J].Journal of Membrane Science,2010,357(1/2):6-35.
[5] 謝 銳,褚良銀.環(huán)境響應(yīng)型智能開關(guān)膜的研究進(jìn)展膜[J].膜科學(xué)與技術(shù),2007,27(4):1-7.
[6] Zhao Xueting,Su Yanlei,Chen Wenjuan,et al.pH-responsive and fouling-release properties of PES ultrafiltration membranes modified by multi-functional block-like copolymers[J].Journal of Membrane Science,2011,382(1/2):222-230.
[7] Singh Nripen,Wang Jun,Ulbricht Mathias,et al.Surface-initiated atom transfer radical polymerization:A new method for preparation of polymeric membrane adsorbers[J].Journal of Membrane Science,2008,309(1/2):64-72.
[8] Kokufuta Etsuo,Shimizu Noboru,Nakamura Isei.Preparation of polyelectrolyte-coated pH-sensitive poly(styrene)microcapsules and their application to initiation-cessation control of an enzyme reaction[J].Biotechnology and Bioengineering,1988,32 (3):289-294.
[9] Li P-F,Ju X-J,Chu L-Y,et al.Thermo-responsive membranes with cross-linked poly(N-isopropyl-acrylamide)hydrogels inside porous substrates[J].Chemical Engineering and Technology,2006,29(11):1333-1339.
[10] Tokarev Ihor,Minko Sergiy.Multiresponsive,hierarchically structured membranes:New,challenging,biomimetic materials for biosensors,controlled release,biochemical gates,and nanoreactors[J].Advanced Materials,2009,21(2):241-247.
[11] Chu Liang-Yin,Park Sang-Hoon,Yamaguchi Takeo,et al. Preparation of thermo-responsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide)gates[J]. Journal of Membrane Science,2001,192(1/2):27-39.
[12] Zhai Guangqun,Toh S C,Tan W L,et al.Poly(vinylidene fluoride)with grafted zwitterionic polymer side chains for electrolyte-responsivemicrofiltration membranes[J].Langmuir,2003,19(17):7030-7037.
[13] Chung Dong-June,Ito Yoshihiro,Imanishi Yukio.Preparation of porous membranes grafted with poly(spiropyran-containing methacrylate)and photocontrol of permeability[J].Journal of Applied Polymer Science 1994,51(12):2027-2033.
[14] Chen Hong,Palmese Giuseppe R,Elabd Yossef A.Electrosensitive permeability of membranes with oriented polyelectrolyte nanodomains[J].Macromolecules,2007,40(4):781-782.
[15] Himstedt Heath H,Yang Qian,Qian Xianghong,et al.Toward remote-controlled valve functions via magnetically responsive capillary pore membranes[J].Journal of Membrane Science,2012,423/424:257-266.
[16] Li Peng-Fei,Xie Rui,F(xiàn)an Heng,et al.Regulation of critical ethanol response concentrations of ethanol-responsive smart gating membranes[J].Industrial&Engineering Chemistry Research,2012,51(28):9554-9563.
[17] Liu Zhuang,Luo Feng,Ju Xiao-Jie,et al.Positively K+-responsive membranes with functional gates driven by host-guest molecular recognition[J].Advanced Functional Materials,2012,22(22):4742-4750.
[18] Chen Yong-Chao,Xie Rui,Chu Liang-Yin.Stimuli-responsive gating membranes responding to temperature,pH,salt concentration and anion species[J].Journal of Membrane Science,2013,442:206-215.
[19] Huang R Y M,Xu Y F.Pervaporation separation of acetic acidwater mixtures using modified membranes.PartⅡ.Gammaray induced grafted polyacrylic acid(PAA)-Nylon 6 membranes[J]. Journal of Membrane Science,1989,43(2/3):143-148.
[20] Ito Yoshihiro,Ochiai Yasushi,Park Yong Soon,et al.pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane[J].Journal of American Chemical Society,1997,119(7):1619-1623.
[21] Iwata Hiroo,Oodate Masaya,Uyama Yoshikimi,et al.Preparation of temperature-sensitive membranes by graft polymerization onto a porous membrane[J].Journal of Membrane Science,1991,55(1/2):119-130.
[22] Xie Rui,Chu Liang-Yin,Chen Wen-Mei,et al.Characterization of microstructure of poly(N-isopropylacrylamide)-grafted polycarbonate track-etched membranes prepared by plasmagraft pore-filling polymerization[J].Journal of Membrane Science,2005,258(1/2):157-166.
[23] Hesampour Mehrdad,Huuhilo Tiina,Makinen Katri,et al. Grafting of temperature sensitive PNIPAAm on hydrophilised polysulfone UF membranes[J].Journal of Membrane Science,2008,310(1/2):85-92.
[24] Ulbricht Mathias.Advanced functional polymer membranes[J]. Polymer,2006,47(7):2217-2262.
[25] Mika A M,Childs R F,Dickson J M,et al.A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity[J].Journal of Membrane Science,1995,108(1/2):37-56.
[26] Lee Young Moo,Ihm Sung Yoon,Shim Jin Kie,et al.Preparation of surface-modified stimuli-responsive polymeric membranes by plasma and ultraviolet grafting methods and their riboflavin permeation[J].Polymer,1995,36(1):81-85.
[27] Wang Meng,An Quan-Fu,Wu Li-Guang,et al.Preparation of pH-responsive phenolphthalein poly(ether sulfone)membrane by redox-graft pore-filling polymerization technique[J].Journal of Membrane Science,2007,287(2):257-263.
[28] Zhang Z B,Zhu X L,Xu F J,et al.Temperature-and pH-sensitive nylon membranes prepared via consecutive surface-initiated atom transfer radical graft polymerizations[J].Journal of Membrane Science,2009,342(1/2):300-306.
[29] Friebe Alexander,Ulbricht Mathias.Cylindrical pores responding to two different stimuli via surface-initiated atom transfer radical polymerization for synthesis of grafted diblock copolymers[J].Macromolecules,2009,42(6):1838-1848.
[30] Oak Mangala S,Kobayashi Takaomi,Wang Hong Ying,et al. pH effect on molecular size exclusion of polyacrylonitrile ultrafiltration membranes having carboxylic acid groups[J].Journal of Membrane Science,1997,123(2):185-195.
[31] Deng Bo,Yang Xuanxuan,Xie Leidong,et al.Microfiltration membranes with pH dependent property prepared from poly (methacrylic acid)grafted polyethersulfone powder[J].Journal of Membrane Science,2009,330(1/2):363-368.
[32] Yang Xuanxuan,Deng Bo,Liu Zhongying,et al.Microfiltration membranes prepared from acryl amide grafted poly(vinylidene fluoride)powder and their pH sensitive behaviour[J].Journal of Membrane Science,2010,362(1/2):298-305.
[33] Shi Qing,Su Yanlei,Ning Xue,et al.Graft polymerization of methacrylic acid onto polyethersulfone for potential pH-responsive membrane materials[J].Journal of Membrane Science, 2010,347(1/2):62-68.
[34] Xue J,Chen L,Wang H L,et al.Stimuli-responsive multifunctional membranes of controllable morphology from poly(vinylidene fluoride)-graft-poly[2-(N,N-dimethylamino)ethyl methacrylate]prepared via atom transfer radical polymerization[J]. Langmuir,2008,24(24):14151-14158.
[35] Ying Lei,Kang E T,Neoh K G.Synthesis and characterization of poly(N-isopropylacrylamide)-graft-poly(vinylidene fluoride) copolymers and temperature-sensitive membranes[J].Langmuir,2002,18(16):6416-6423.
[36] Ying Lei,Wang Peng,Kang E T,et al.Synthesis and characterization of poly(acrylic acid)-graft-poly(vinylidene fluoride) copolymers and pH-sensitive membranes[J].Macromolecules,2002,35(3):673-679.
[37] Zhai Guangqun,Kang E T,Neoh K G.Poly(2-vinylpyridine)-and poly(4-vinylpyridine)-graft-poly(vinylidene fluoride)copolymers and their pH-sensitive microfiltration membranes[J]. Journal of Membrane Science,2003,217(1/2):243-259.
[38] Ying L,Yu W H,Kang E T,et al.Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid)prepared via RAFT-mediated graft copolymerization [J].Langmuir,2004,20(14):6032-6040.
[39] Hester J F,Olugebefola S C,Mayes A M.Preparation of pH-responsive polymer membranes by self-organization[J]. Journal of Membrane Science,2002,208(1/2):375-388.
[40] Wang Ji-Yun,Jin Yao,Xie Rui,et al.Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane [J].Journal of Colloid and Interface Science,2011,353(1):61-68.
[41] Wang G,Xie R,Ju X J,et al.Thermo-responsive polyethersulfone composite membranes blended with poly(N-isopropylacrylamide)nanogels[J].Chemical Engineering and Technology,2012,35(11):2015-2022.
[42] Song Xiao-Lu,Xie Rui,Luo Tao,et al.Ethanol-responsive characteristics of polyethersulfone composite membranes blended with poly(N-isopropylacrylamide)nanogels[J].Journal of Applied Polymer Science,2014,131(21).doi:10.1002/ app.41032.
[43] Ying Lei,Kang E T,Neoh K G.Characterization of membranes prepared from blends of poly(acrylic acid)-graft-poly(vinylidene fluoride)with poly(N-isopropylacrylamide)and their temperature-and pH-sensitive microfiltration[J].Journal of Membrane Science 2003,224(1/2):93-106.
[44] Yi Zhuan,Zhu Li-Ping,Xu You-Yi,et al.F127-based multiblock copolymer additives with poly(N,N-dimethylamino-2-ethyl methacrylate)end chains:The hydrophilicity and stimuli-responsive behavior investigation in polyethersulfone membranes modification[J].Journal of Membrane Science,2010,364(1/ 2):34-42.
[45] Luo Tao,Lin Shuo,Xie Rui,et al.pH-Responsive poly(ether sulfone)composite membranes blended with amphiphilic polystyrene-block-poly(acrylic acid)copolymers[J].Journal of Membrane Science,2014,450:162-173.
Advances in preparation methods of smart polymeric gating membranes
Xie Rui,Liu Zhuang,Ju Xiaojie,Wang Wei,Chu Liangyin
(School of Chemical Engineering,Sichuan University,Chengdu 610065,China)
Smart polymeric gating membranes are composed of smart polymers and nonstimuli-responsive substrate membrane.The smart membranes can automatically change the hydrophilicity/hydrophobicity on the surface as well as trans-membrane permeability and selectivity in response to the environmental stimuli,which is attributable to the stimuli-responsive variation of hydrophilicity/hydrophobicity and configuration of the smart polymers in the membrane. Smart polymeric gating membranes are used for anti-fouling filtration,affinity separation,“on/ off”control of enzyme reaction and controlled release,etc.The way to prepare such membranes affects the important parameters of smart polymeric gating membranes,such as the stimuli-responsive characteristics,stability and reproducibility.There are three kinds of preparation methods to fabricate the smart polymeric gating membranes according to when the smart polymers are added into the membrane materials.They are the methods introducing smart polymers by the modification of substrate membranes materials after membrane preparation,by the modification of substrate membrane materials before membrane preparation and by blending smart polymers during the membrane preparation.The definitions,subcategory,mechanisms and new advances of these preparation methods are introduced separately,and their advantages and disadvantages are addressed.The method that introduces smart polymers by the modification of substrate membranes materials after membrane preparation is the most widely employed to form the smart polymeric gating membranes.However,the method that blends smart polymers during the membrane preparation has great potentials to the mass production of smart polymeric gating membranes in the future.This paper will provide valuable guidance for the efficient preparation of smart polymeric gating membranes with stable and satisfactory stimuliresponsive characteristics.
smart polymeric membranes;smart cross-linked gel;smart linear polymer;preparative method;phase inversion
TQ028.8
A
1009-1742(2014)12-0094-08
2014-09-16
國家自然科學(xué)基金項(xiàng)目(21276162);教育部新世紀(jì)優(yōu)秀人才支持計劃項(xiàng)目(NCET-11-0352)
謝 銳,1979年出生,女,四川遂寧市人,副教授,研究方向?yàn)橹悄苣げ牧吓c技術(shù);E-mail:xierui@scu.edu.cn