• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of Heat Shield Structure in the Growth Process of Czochralski Silicon Derived from Numerical Simulation

    2014-03-01 01:48:12ZHANGJingLIUDingZHAOYueandJIAOShangbin

    ZHANG Jing, LIU Ding, ZHAO Yue, and JIAO Shangbin

    School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

    1 Introduction

    Currently, the Czochralski is the most widely used technology in production of mono-crystalline silicon for the photovoltaic panels[1–3]. φ 300 mm wafers are widely used in the photovoltaic industry due to its cost advantage.While the wafer diameter increases from 200 mm to 300 mm, the feeding capacity is increased from 60 kg to 150 kg for each production run. The large volume of silicon melt and strong convection increases the oxygen concentration in the ingot[4–8]. Magnetic Czochralski (MCZ) method is often adopted to suppress the melt’s thermal convection and the impurity distribution in order to lower the oxygen concentration in the crystal[9–11]. But the cost is too high for photovoltaic wafers because its power consumption. During the Cz-Si growth process, some of the dissolved oxygen impurities in the melt become incorporated into the ingot,while the rest of the dissolved oxygen reacts chemically with the silicon oxide(SiO) gas and vaporizes from the free surface and is then carried away by argon gas above the free surface. Flowing argon obviously increases the evacuation of SiO. Therefore gas flow and heat shield optimization can be a way to lower the oxygen concentration in the silicon melt.

    TENG, et al[12], found that in the directional solidification system(DSS), adjusting the chamber pressure changes the oxygen concentration in the melt-crystal interface. On the one hand, the oxygen concentration reduced due to the reduction in the amount of crucible surface immersed in the silicon melt. At a higher chamber pressure, the evaporation of SiO at the free surface was lower. On the other hand, the higher pressure increased the argon flow speed over the melt surface. The evaporation speed of SiO was increased.However, it is not suitable for the Cz mono-crystalline silicon furnace because adjusting the whole chamber pressure is inefficient to improve ingot quality in a large furnace. SU, et al[13–14], discussed the oxygen concentration lowered in the melt by the optimization of a heat shield and a side insulator. The heat shield reduced the heat radiation from the heater to the ingot which increased the crystallization rate. The optimized side insulator stopped the heat loss from the heater which improved the shape of the melt-crystal interface. However, the side insulator blocked the observation window and made it difficult to observe growth of crystal.

    Heat shield optimization is an effective way to lower oxygen concentration at the melt-crystal interface. The fact is that the argon flow speed near melt surface is affected by the heat shield structure, and then has an effect on the evacuation of SiO. TENG, et al[15], showed that the argon flow near the crucible wall is increased by enlarging the lateral length of the heat shield bottom. The above literatures are all focused on the optimization of one heat shield design. However different heat shield structures have different impacts on the crystal growth process.

    In this paper, theoretical analysis combined with numerical simulation is adopted to acknowledge the effect of different heat shields on the growth process of melt-crystal interface shape, the argon flow field, and the oxygen concentration at the melt-crystal interface, such as right-angle, inclined and composted heat shields. Based on numerical simulation, pros and cons of the above heat shield designs will be compared. The temperature gradient distribution of a large thermal field with a composite heat shield will be provided as a further reference in the thermal field design of a large diameter Cz-Si furnace. To verify the conformity, the simulation results will be compared with the real melt-crystal interface, which is obtained by the Quick Pull Separation method.

    2 Mathematical Model

    The configuration of a typical Czochralski furnace for producing mono-crystalline silicon is shown in Fig. 1. The geometry of the furnace configuration is axsymmetric. In order to establish a discrete system for numerical simulation, the entire furnace is subdivided into a number of block regions, as shown in the left part of Fig. 1, in which subdivision resulted in a total of 12 block regions.Each of these block regions is then discredited by a structured grid. The computational grid of all block regions in a cross-plan is shown in the right part of Fig. 1.

    With the assumptions of a quasi-steady system and incompressible laminar flow of the melt, the momentum,mass conservation and energy equations for the melt flow in a crucible can be written as follows:

    where v is velocity vector, g is gravity vector. ρ, μ, P, T, β,C and k are density, coefficient of viscosity, pressure,temperature, the volumetric expansion coefficient, the heat capacity and thermal conductivity, respectively. The subscript l, s, qz and gr are the relevant variables of melt,crystal, quartz crucible and graphite crucible, respectively.Eq. (1) is the Navier-Stokes equation which is the differential form of momentum conservation. The inertial force of unit volume of fluid is on the left of the equation.While on the right side, the first part is the viscous force of unit volume of fluid, the third part is the buoyancy force caused by temperature unevenness. Eq. (2) is the continuity equation and Eq. (3) represents the heat conduction of the melt. The crystal, the quartz crucible and the graphite crucible are all solid; therefore the heat-transfer equation also follows Eq. (3).

    Fig. 1. Solidification furnace configuration: domain partition(left-half part) and computation grid (right-half part)

    The temperature at the melt-crystal interface is equal to the melting temperature of silicon, and the energy should satisfy the Stefan condition[16–18]:

    Where V is the local pulling rate, is normal to the melt-crystal interface, n is the normal direction of the melt-crystal interface, Tmis the silicon melting point and ΔH is the latent heat.

    The heat shield is located very close to the crystal. Its position has great influence on the temperature distribution of the crystal ingot and the melt free surface. The temperature distribution is affected by thermal radiation effect as well as argon flow. With the installed heat shield,heat radiation and argon flow are changed, it is not reasonable to use the first boundary condition for temperature constraint. To solve this problem, heat flux equations are established to describe the crystal surface and melt free surface heat loss due to argon blowing and heat radiation.

    On the crystal surface:

    On the melt free surface:

    Eq. (5) and Eq. (7) are boundary conditions of heat flux.The first item on the right part of the equation is the description of heat loss by argon gas flow.are radial and axial temperature gradients. q′is the heat loss by radiation. rais the diameter of crystal. L is the depth of melt volume. Eq. (6) and Eq. (8) are the radiation heat flux, the reflective heat flux and the incident heat flux,which are relevant to radiation models. δ is the heat dissipation coefficient of the convection, σ is the Stefan-Boltzmann constant, ε is radiation coefficient and Fkjis the angle between k and j surfaces, respectively.

    The boundary conditions of the inner surface of the quartz crucible, the top surface of the quartz crucible and the graphite crucible are all the same with the crystal, and are derived from heat flux. In addition, using Boussinesq assumption for density calculation, density change in the control equation is only considered with gravity. While for the others, the density is considered as a constant which is the average value. As approximated shown in Eq. (9):

    where ρ0is the average value of density, and the melt free surface used the free-slip boundary condition.

    Eqs. (1)–(4) are discretized by using the Finite Element Method(FEM), with 7534 elements and 16 278 nodes. For the numerical simulation of thermal field and coupled conditions of the melt-crystal interface refer to our previous studies[19–20]. SIMPLEC is introduced for pressure correction. Regular domains are discretized by structured grids, complex irregular domains such as argon flow are discretized using a triangular unstructured grid, the minimum is 0.837, and the maximum is 0.994.

    3 Results and Discussion

    3.1 Heat shield’s effect on the oxygen concentration of the melt- crystal interface

    In this study, the simulation model follows the TDR-120 furnace from Xi’an University of Technology. The crystal diameter is 300 mm; the amount of silicon in the crucible is 120 kg, which is massive enough to grow a 400 mm crystal ingot. The crucible is 616.6 mm in diameter and 381 mm in height. The furnace pressure is kept at 2.67 kPa with an argon gas flow rate of 100 L/min. With the crystal rotation of 6 r/min and the crucible rotation of 9 r/min, the pulling rate at this stage is 0.6 mm/min. The material properties were taken from Table 1 and Table 2.

    Table 1. Silicon’s physical properties

    Table 2. Other material’s physical properties

    Fig. 2 shows the argon gas flow path above the melt free surface and the oxygen concentration at the melt-crystal interface. Simulation result shows that a furnace with no heat shield has a higher oxygen concentration than that with a heat shield. The heat shield formed an efficient flow path for the argon. The flow speed is also increased. The flow speed in a classic argon streaming field is low, as shown in Fig. 2(a), and formed a relative stable argon atmosphere above the melt. With this design the evacuation speed of SiO is dramatically lowered and the oxygen concentration is accordingly increased.

    Fig. 2. Distribution of argon flow and oxygen by different heat shields in Cz system

    The right-angle heat shield can increase the flow speed of argon, and the melt surface is ventilated by the argon which will quickly move the evacuated SiO away. The SiO density is lowered in the argon atmosphere, so the evacuation speed of SiO is increased; the oxygen concentration is lowered accordingly, as shown in Fig. 2(b).To sum up, adding a heat shield in the thermal field is beneficial in lowering the oxygen concentration in the silicon crystal.

    3.2 Comparison of three heat shield structures’ effect on melt’s thermal distribution and oxygen concentration at the melt-crystal interface

    The above research shows that heat shields have significant benefit in lowering the oxygen concentration in the silicon crystal and different heat shield structures produce different effects. The following research is about the differences between the structures of a right-angle heat shield, an inclined heat shield and a composite heat shield.The right-angle heat shield has a different axial angle from the inclined heat shield; the impact on the ingot heat radiation is also different. A composite heat shield utilizing multiple materials has a different effect on crystallization rate and melt-crystal interface shape compared with an inclined heat shield utilizing a single material.

    Fig. 3 shows the gas flow direction; melt temperature distribution and flow-function distribution. It indicates that with the right-angle heat shield, the melt free surface near the melt-crystal interface appears to be too cold and the temperature gradient of that area is increased while the Marangoni effect is strong. All these factors are not conducive to stabilize the melt-crystal interface.

    Fig. 3. Distribution of the temperature, stream traces and gas path with right-angle heat shield

    The melt temperature and flow distribution of an inclined heat shield is shown in Fig. 4. Compared with right-angle heat shield, the lowest temperature on the melt free surface is 1686.68 K. The cold-zone around melt-crystal interface is eliminated. The average temperature between the outer reflector and the top shield insulator is lowered from the 1524 K to 1392 K which indicated the inclination of a heat shield is effective on the reduction of heat loss.

    Fig. 5 shows the simulation of composite heat shield design. The gas flow path is a cone-shape between the outer side of heat shield and the inner side of the crucible. So the gas path is gradually narrowed. The average gas speed increased from 3 m/s to 6 m/s. This will speed up the transport of SiO evacuated from the melt surface and reduce the deposition of SiO on the crucible wall and on the outer side of the heat shield. Even if some SiO deposits around the corner of the melt flow, due to the narrow gap,the probability of SiO falling back into the melt is also lowered.

    Fig. 4. Distribution of the temperature, stream traces and gas path with inclined heat shield

    Fig. 5. Distribution of the temperature, stream traces and gas path with composite heat shield

    Compared to the inclined heat shield, the composite heat shield is more flexible on the selection of raw materials.Select graphite types with different reflection rates on the inner and outer reflector can affect the temperature distribution and the shape of melt-crystal interface. Based on many experiments and simulation, using high reflection rate graphite on the inner reflector and low reflection graphite on the outer reflector to form the composite reflector would be a good choice. That’s because the low reflection rate graphite on the outer reflector will restrict the heat input while the high reflection rate graphite will absorb the excessive heat radiation from the crystal surface and reduce the heat reflection to the crystal. The heat inside the crystal can dismiss more quickly.

    In a Cz-Si system, the growth process is in control of the melt-crystal interface. Therefore the stability of melt-crystal interface is of great importance to the growth process.Generally, it is easier to obtain good crystal quality with a flat interface shape[21–22]. Fig. 6 shows the interface shape deformation of 3 different heat shields. As shown in the figure, the most curved interface shape is formed on the right-angle heat shield. It will cause irregular segregation of solute and increase stress inside the crystal. Under some circumstances it causes dislocation even multi-crystalline silicon. The interface shape with the inclined heat shield is the flattest compared to the other two. But the average deformation already exceeds 25 mm more than the reference level. Simulation result shows the increased pulling speed can form a cold-zone around the melt free surface. In this system the maximum pulling rate with inclined heat shield is 0.6 mm/min while with the composite heat shield the maximum rate can be 1.0 mm/min.

    Fig. 6. Comparison of crystal-melt interface deflection with inclined and composite heat shield, respectively

    The reason is that the crystallization rate depends on the inflow and outflow of heat at the melt-crystal interface, as shown in Eq. (10):

    where Vsis the crystallization velocity,are the temperature gradients of the crystal front and the melt. To increase crystallization rate, the gradient of axial temperature along the crystallization front of the crystal should be increased or along the crystallization front of the melt decreased. That is, to increaseor decrease

    Fig. 7 and Fig. 8 are the axial temperature distribution of crystal and melt with inclined composite heat shield design.From Fig. 7, the composite heat shield’s temperature gradient at the interfaceis larger than the gradient of the inclined type. Fig. 8 shows the composite type’s temperature gradient at the interface is close to that of the inclined type.According to Eq. (10) the composite heat shield’s crystallization rate is faster. So adopting a composite heat shield design will get a faster crystallization rate.

    Fig. 7. Axial temperature distribution on the crystal with inclined type and composite type heat shield, respectively

    Table 3 compares the heating power difference between different heat shield types. The types are no heat shield,right-angle heat shield, inclined heat shield and composite heat shield, while growing a Cz-Si ingot of φ300 mm up to 400 mm length. Conclusions from the table are, the most power consumption design is the inclined type and the least power consuming type is the composite. Adopting the composite heat shield structure can lower the monocrystalline production cost. Simulation shows that the oxygen concentration at the interface is very high while adopting the no heat shield design. That’s because with that structure the gas blow strength above the melt free surface was too small to evacuate the SiO and caused the oxygen concentration at the interface. As shown in Fig. 9, the oxygen concentration of the composite heat shield structure is the lowest among all the designs. Fig. 10 is a 3D sketch of the composite heat shield.

    Fig. 8. Axial temperature distribution of the melt with inclined type and composite type heat shield, respectively

    Table 3. Comparison of heating power under no heat shield,right-angle type, inclined type and composite type

    Fig. 9. Oxygen concentration at crystal-melt interface with no heat shield, right-angle, inclined and composite heat shield

    Fig. 10. Composite heat shield’s 3D illustration structure

    Composite heat shield design can increase pulling rate and be more efficient. During experiment, actual melt-crystal interface shape acquired by Quick Pull Separation Method is shown in Fig. 11. Pulling parameters is set in accordance with those in the simulation. In the separation process, the pulling rate was separately set to 0.6 mm/min and 1.0 mm/min. The interface after the separation is believed to be the same with real phase change interface. The dots on the interface are formed by local viscosity of melt and crystal.

    Fig. 11. Melt-crystal real interface shape in the composite heat shield system at different pulling rate of 0.6 mm/min (left) and 1.0 mm/min (right)

    By the analysis of the interface shape, the simulation results show the conformity with that acquired in the experiment, as shown in Fig. 12.

    Fig. 12. Comparison of real melt-crystal interface and simulated interface under action of the composite heat shield

    4 Conclusions

    In a large Cz-Si thermal system, heat shield structure affects the temperature distribution of the melt and the evacuation of SiO and the oxygen concentration in the crystal. The numerical simulation result indicates the following.

    (1) Compared with no heat shield design, the power consumption is improved by the right-angle heat shield structure. However, it has disadvantages on the evacuation of SiO and lower crystallization rate.

    (2) The heat can be conserved by the inclined heat shield at the melt free surface. The temperature near the melt-crystal interface is stabilized. It is helpful to make the interface flat and growth process stability; but the design also lowers the heat-removal rate on the crystal ingot which works against a higher pulling rate.

    (3) By the composite heat shield, the lateral length of the heat shield bottom side and the gas flow speed over the melt free surface are increased. It is beneficial for the evacuation of SiO, and then lowers the oxygen concentration at the melt-crystal interface and improves the crystal quality. The power consumption is lowered and the system pulling rate is increased. Actual melt-crystal interface shape acquired by Quick Pull Separation Method is compared with the simulation result. It shows the conformity which will provide a reference for the systematic production parameter design.

    To sum up, it is ideal to adopt a composite heat shield for a large diameter mono-crystalline furnace. The drawback is that the coating on the inner and outer reflector of the composite heat shield is expensive. After taking the other advantages into consideration such as high pulling rate and low power consumption, it is still an optimal choice.

    [1] CHENG Y K, CHIE G, BAU T D. Photovoltaic characteristics of silicon nanowire arrays synthesized by vapor–liquid–solid process[J]. Solar Energy Materials and Solar Cells, 2012, 25(1):154–157.

    [2] LI Zaoyang, LIU Lijun, MA Wencheng, et al. Effects of argon flow on heat transfer in a directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells[J].Journal of Crystal Growth, 2012, 18(3): 298–303.

    [3] MA Wencheng, ZHONG Genxiang, SUN Lei, et al. Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells[J].Solar Energy Materials and Solar Cells, 2012, 76(2): 231–238.

    [4] CHEN J C, TENG Y Y, WUN W T, et al. Numerical simulation of oxygen transport during the Cz silicon crystal growth process[J].Journal of Crystal Growth, 2011, 318(1): 318–323.

    [5] TIAN Daxi, YANG Deren, MA Xiangyang, et al. Crystal growth and oxygen precipitation behavior of 300mm nitrogen-doped Czochralski silicon[J]. Journal of Crystal Growth, 2006, 292(2):257–259.

    [6] ZHANG Yuliang, LI Yi, CUI Baoling, et al. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump[J].Chinese Journal of Mechanical Engineering, 2013, 26(1): 53–58.

    [7] YU B, LIU C, HOU P X, et al. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition[J]. Journal of the American Chemical Society, 2011, 25(14): 5232–5235.

    [8] GOLDSTEIN R V, MEZHENNYI M V, MIL’VIDSKII M G, et al.Experimental and theoretical investigation of formation of the oxygen-containing precipitate-dislocation loop system in silicon[J].Physics of the Solid State, 2011, 11(3): 527–538.

    [9] FREDERIC M, SHIN-ICHI N. Solution growth of SiC from silicon melts: Influence of the alternative magnetic field on fluid dynamics[J]. Journal of Crystal Growth, 2011, 318(1): 385–388.

    [10] LIU Lijun, KOICHI K. Effects of crystal rotation rate on the melt-crystal interface of a Cz-Si crystal growth in a transverse magnetic field[J]. Journal of Crystal Growth, 2008, 310(2):306–312.

    [11] ZHUANG Weimin, WANG Shiwen, BALINT D, et al. Crystal plasticity finite element process modeling for hydro-formin mircro-tubular components[J]. Chinese Journal of Mechanical Engineering, 2011, 24(2): 1–6.

    [12] TENG Y Y, CHEN J C, LU C W, et al. Effects of the furnace pressure on oxygen and silicon oxide distributions during the growth of multicrystalline silicon ingots by the directional solidification process[J]. Journal of Crystal Growth, 2011, 318(1): 224–229.

    [13] SU Wenjia, ZUO Ran, KIRILL M, et al. Optimization of crystal growth by changes of flow guide, radiation shield and sidewall insulation in Cz Si furnace[J]. Journal of Crystal Growth, 2010,312(4): 495.

    [14] REN Binyan, ZHAO Long, FU Hongbo, et al. Effects of a heat shield on pull speed and oxygen concentration in a φ 200mm Cz Si[J]. Chinese Journal of Semiconductors, 2005, 26(9): 21–24.

    [15] TENG Y Y, CHEN J C, HUANG C C, et al. Numerical investigation of the effect of heat shield shape on the oxygen impurity distribution at the crystal–melt interface during the process of Czochralski silicon crystal growth[J]. Journal of Crystal Growth,2012, 352(1): 167–172.

    [16] MIN Naiben. Physical fundamentals of crystal growth[M]. Shanghai:Shanghai Science Technology, 1982. (in Chinese)

    [17] MULLER G. Review: the czochralski method—where we are 90 years after Jan Czochralski’s invention[J]. Crystal Research and Technology, 2007, 42(12): 1150–1161.

    [18] TAKAO T, MASAKI K, CHEN J J. A global analysis of heat transfer in the CZ crystal growth of oxide: recent developments in the model[J]. Journal of Crystal Growth, 2007, 57(2): 150–155.

    [19] ZHANG Jing, LIU Ding, ZHAO Yue, et al. Study on crowning growth in Czochralski silicon monocrystal based on the numerical simulation of finite element and parameters control[J]. Journal of Synthetic Crystals, 2013, 42(1): 58–64. (in Chinese)

    [20] JIANG Lei, LIU Ding, ZHAO Yue, et al. Study on solid-liquid interface morphology simulation method and control parameters of Cz-Si under multi—stream coupled environment[J]. Journal of Synthetic Crystals, 2012, 41(6): 34–39.

    [21] SU M F, OLSSON, REINKE H, et al. Realization of optimal bandgaps in solid-solid, solid-air, and hybrid solid-air-solid phononic crystal slabs[J]. Applied Physics Letters, 2011, 98(6):061912.

    [22] LIU Xin, LIU Lijun, LI Zaoyang. Prediction of melt-crystal interface shape and melt convection in a large-scale[J]. ECS Transactions, 2009, 18(1): 983–988.

    亚洲 欧美一区二区三区| 亚洲欧美一区二区三区国产| av在线app专区| 精品亚洲成国产av| 国产在线视频一区二区| 久久九九热精品免费| 国产男女内射视频| 男男h啪啪无遮挡| 国产老妇伦熟女老妇高清| 老熟女久久久| 精品人妻熟女毛片av久久网站| 日韩av在线免费看完整版不卡| 欧美黄色淫秽网站| 精品国产国语对白av| 天堂俺去俺来也www色官网| 亚洲精品久久成人aⅴ小说| 国产精品av久久久久免费| 久9热在线精品视频| 亚洲国产精品一区三区| 亚洲av综合色区一区| av视频免费观看在线观看| 亚洲av日韩在线播放| 一级毛片 在线播放| 日日摸夜夜添夜夜爱| 亚洲精品成人av观看孕妇| 国产淫语在线视频| 亚洲一区二区三区欧美精品| 国产精品三级大全| 麻豆乱淫一区二区| 午夜免费男女啪啪视频观看| 在线观看免费日韩欧美大片| 免费在线观看日本一区| 欧美+亚洲+日韩+国产| 美女高潮到喷水免费观看| 亚洲天堂av无毛| 黄片播放在线免费| 少妇粗大呻吟视频| 久久久国产精品麻豆| 中文字幕人妻熟女乱码| 丝袜美足系列| 韩国精品一区二区三区| 免费高清在线观看日韩| 一本色道久久久久久精品综合| 久久精品国产综合久久久| 日韩制服丝袜自拍偷拍| 女人久久www免费人成看片| 午夜av观看不卡| 亚洲av电影在线观看一区二区三区| 水蜜桃什么品种好| 午夜福利,免费看| 久久99精品国语久久久| 脱女人内裤的视频| 18禁观看日本| 九草在线视频观看| 一区二区av电影网| av在线播放精品| 午夜视频精品福利| 久久久国产精品麻豆| 国产成人一区二区三区免费视频网站 | 99精国产麻豆久久婷婷| 精品久久久久久电影网| 超碰成人久久| av欧美777| 天天操日日干夜夜撸| 又粗又硬又长又爽又黄的视频| 国产精品久久久久成人av| 在线观看人妻少妇| 亚洲国产精品一区二区三区在线| 欧美少妇被猛烈插入视频| 午夜激情av网站| 午夜福利一区二区在线看| 伊人亚洲综合成人网| 大码成人一级视频| 亚洲欧美日韩另类电影网站| 久久久欧美国产精品| 亚洲精品日韩在线中文字幕| 高潮久久久久久久久久久不卡| 热re99久久精品国产66热6| 免费在线观看完整版高清| 大香蕉久久成人网| 少妇猛男粗大的猛烈进出视频| 91字幕亚洲| 午夜福利免费观看在线| 一级毛片 在线播放| 超碰成人久久| kizo精华| 欧美日韩福利视频一区二区| 午夜福利视频精品| 日本欧美视频一区| 十八禁人妻一区二区| 亚洲av电影在线观看一区二区三区| 精品国产超薄肉色丝袜足j| 国产精品二区激情视频| 欧美人与性动交α欧美精品济南到| 亚洲色图综合在线观看| 日本91视频免费播放| 黄频高清免费视频| 欧美大码av| 亚洲精品在线美女| 午夜福利在线免费观看网站| 在线av久久热| 一级黄色大片毛片| 国产免费现黄频在线看| 精品久久蜜臀av无| 亚洲三区欧美一区| 90打野战视频偷拍视频| 又粗又硬又长又爽又黄的视频| 777久久人妻少妇嫩草av网站| 另类亚洲欧美激情| av福利片在线| 免费在线观看视频国产中文字幕亚洲 | 免费少妇av软件| 欧美在线一区亚洲| 亚洲欧美日韩高清在线视频 | 久久国产精品影院| 黄色一级大片看看| 狂野欧美激情性xxxx| a级毛片黄视频| 亚洲国产精品999| 中国美女看黄片| 久久综合国产亚洲精品| 午夜免费成人在线视频| 在线观看免费高清a一片| 女人高潮潮喷娇喘18禁视频| 欧美xxⅹ黑人| 激情五月婷婷亚洲| 亚洲 国产 在线| 亚洲九九香蕉| 国产成人啪精品午夜网站| 久久人人爽人人片av| 高清视频免费观看一区二区| 桃花免费在线播放| 欧美精品亚洲一区二区| 欧美黑人欧美精品刺激| 亚洲免费av在线视频| 久久久久网色| kizo精华| 桃花免费在线播放| 日韩一区二区三区影片| 国产成人精品在线电影| 欧美精品av麻豆av| 99久久人妻综合| 免费女性裸体啪啪无遮挡网站| 日本猛色少妇xxxxx猛交久久| 国产精品一二三区在线看| 啦啦啦 在线观看视频| 少妇人妻久久综合中文| 国产精品一二三区在线看| 大香蕉久久网| 国产精品免费大片| 亚洲熟女毛片儿| 黄色一级大片看看| 国产精品欧美亚洲77777| 在线观看www视频免费| 国产免费现黄频在线看| 亚洲精品国产色婷婷电影| 国产一级毛片在线| 免费观看人在逋| 国产亚洲午夜精品一区二区久久| 黄色 视频免费看| 五月开心婷婷网| 麻豆av在线久日| 久久久久精品国产欧美久久久 | 精品久久久精品久久久| 亚洲av美国av| 中文字幕色久视频| 国产成人欧美| 大型av网站在线播放| 亚洲国产精品一区三区| 国产精品麻豆人妻色哟哟久久| 天天躁夜夜躁狠狠久久av| 50天的宝宝边吃奶边哭怎么回事| 国产又爽黄色视频| 欧美日韩福利视频一区二区| 下体分泌物呈黄色| 精品人妻熟女毛片av久久网站| 国产一区二区在线观看av| 老司机在亚洲福利影院| 人人妻人人澡人人爽人人夜夜| 色综合欧美亚洲国产小说| 一级黄色大片毛片| 少妇裸体淫交视频免费看高清 | 国产99久久九九免费精品| 免费黄频网站在线观看国产| 国产熟女午夜一区二区三区| 欧美日韩av久久| 亚洲成av片中文字幕在线观看| av片东京热男人的天堂| 国产黄色视频一区二区在线观看| 捣出白浆h1v1| 亚洲国产中文字幕在线视频| 亚洲图色成人| 交换朋友夫妻互换小说| 热re99久久国产66热| 在线观看免费视频网站a站| 国产精品一国产av| www日本在线高清视频| 18禁国产床啪视频网站| 精品欧美一区二区三区在线| 国产爽快片一区二区三区| 天堂中文最新版在线下载| 制服人妻中文乱码| 97在线人人人人妻| 美女主播在线视频| 欧美日韩精品网址| 香蕉丝袜av| 亚洲情色 制服丝袜| 老熟女久久久| 波多野结衣一区麻豆| 又黄又粗又硬又大视频| 欧美黄色片欧美黄色片| 国产精品免费大片| videos熟女内射| 这个男人来自地球电影免费观看| 欧美人与性动交α欧美软件| 五月开心婷婷网| 欧美国产精品一级二级三级| 韩国精品一区二区三区| 亚洲熟女精品中文字幕| 一边摸一边抽搐一进一出视频| 国产一区二区三区综合在线观看| www.熟女人妻精品国产| 国产在线观看jvid| 国产成人一区二区三区免费视频网站 | 国产在线观看jvid| 亚洲国产av新网站| 欧美成人精品欧美一级黄| 肉色欧美久久久久久久蜜桃| 久久 成人 亚洲| 两个人免费观看高清视频| 又大又黄又爽视频免费| 啦啦啦啦在线视频资源| 色精品久久人妻99蜜桃| 99久久99久久久精品蜜桃| 久久久精品免费免费高清| 视频区图区小说| 狂野欧美激情性bbbbbb| 黄频高清免费视频| 男男h啪啪无遮挡| 亚洲人成网站在线观看播放| 在线av久久热| 好男人电影高清在线观看| 日韩人妻精品一区2区三区| 精品高清国产在线一区| 欧美老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 国产爽快片一区二区三区| 麻豆av在线久日| 久久精品国产综合久久久| 人人妻人人爽人人添夜夜欢视频| 国产精品免费大片| 日本欧美视频一区| 十分钟在线观看高清视频www| 婷婷色av中文字幕| 18在线观看网站| 丝袜美足系列| 国产在线视频一区二区| 欧美久久黑人一区二区| 两个人免费观看高清视频| 国产97色在线日韩免费| av线在线观看网站| 69精品国产乱码久久久| 国产亚洲一区二区精品| 国产黄色免费在线视频| 欧美精品亚洲一区二区| 国产女主播在线喷水免费视频网站| 91精品国产国语对白视频| 欧美变态另类bdsm刘玥| 一边亲一边摸免费视频| 无遮挡黄片免费观看| 日本色播在线视频| 一区二区av电影网| 国产欧美日韩一区二区三区在线| 日韩大码丰满熟妇| 日韩 亚洲 欧美在线| 人体艺术视频欧美日本| 99国产精品99久久久久| www.av在线官网国产| 亚洲欧洲精品一区二区精品久久久| 午夜福利视频在线观看免费| 菩萨蛮人人尽说江南好唐韦庄| 热re99久久精品国产66热6| 精品福利永久在线观看| 女性被躁到高潮视频| 国产免费现黄频在线看| 天堂8中文在线网| 国产精品香港三级国产av潘金莲 | 日韩电影二区| 国产精品人妻久久久影院| 欧美+亚洲+日韩+国产| 欧美精品一区二区免费开放| 国产亚洲一区二区精品| 欧美日韩成人在线一区二区| 侵犯人妻中文字幕一二三四区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美网| 99re6热这里在线精品视频| 欧美中文综合在线视频| 日韩视频在线欧美| 少妇的丰满在线观看| 伊人久久大香线蕉亚洲五| 只有这里有精品99| 国产视频一区二区在线看| 亚洲国产精品一区二区三区在线| av不卡在线播放| 久久久国产精品麻豆| 午夜免费鲁丝| 中文字幕人妻丝袜一区二区| 国产高清国产精品国产三级| 午夜免费男女啪啪视频观看| 欧美少妇被猛烈插入视频| 国产又爽黄色视频| 亚洲国产欧美在线一区| 欧美精品高潮呻吟av久久| 亚洲欧美成人综合另类久久久| 亚洲精品在线美女| 香蕉国产在线看| 久久久久国产精品人妻一区二区| 电影成人av| av不卡在线播放| 人体艺术视频欧美日本| av电影中文网址| 久久女婷五月综合色啪小说| 丁香六月欧美| 岛国毛片在线播放| 国精品久久久久久国模美| 免费在线观看完整版高清| 国产精品 欧美亚洲| 巨乳人妻的诱惑在线观看| 亚洲av男天堂| videos熟女内射| 日本wwww免费看| 午夜精品国产一区二区电影| 亚洲美女黄色视频免费看| 亚洲欧美日韩另类电影网站| 亚洲人成电影观看| 亚洲三区欧美一区| 两性夫妻黄色片| 日韩中文字幕欧美一区二区 | 韩国精品一区二区三区| 日本wwww免费看| 91字幕亚洲| 观看av在线不卡| 999精品在线视频| 久久性视频一级片| 欧美日韩黄片免| 嫁个100分男人电影在线观看 | 午夜老司机福利片| 丝瓜视频免费看黄片| 精品熟女少妇八av免费久了| 女人被躁到高潮嗷嗷叫费观| 观看av在线不卡| 悠悠久久av| 久久九九热精品免费| 国产精品一二三区在线看| 18在线观看网站| 侵犯人妻中文字幕一二三四区| 日韩人妻精品一区2区三区| 老司机在亚洲福利影院| 视频在线观看一区二区三区| 丰满饥渴人妻一区二区三| 亚洲精品久久久久久婷婷小说| 亚洲精品一卡2卡三卡4卡5卡 | 日本午夜av视频| 婷婷成人精品国产| 亚洲人成电影免费在线| av线在线观看网站| 首页视频小说图片口味搜索 | 伦理电影免费视频| 亚洲第一青青草原| 精品少妇久久久久久888优播| 亚洲久久久国产精品| 国产一区二区 视频在线| 国产91精品成人一区二区三区 | 啦啦啦在线观看免费高清www| av在线老鸭窝| 成人三级做爰电影| 午夜福利一区二区在线看| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美一区视频在线观看| 国产人伦9x9x在线观看| 男女床上黄色一级片免费看| 丁香六月欧美| 色94色欧美一区二区| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲综合一区二区三区_| 咕卡用的链子| 国产亚洲精品久久久久5区| 免费在线观看视频国产中文字幕亚洲 | 男的添女的下面高潮视频| 亚洲午夜精品一区,二区,三区| 欧美在线一区亚洲| 国产亚洲av高清不卡| 亚洲av国产av综合av卡| 国产精品久久久久久精品古装| 后天国语完整版免费观看| 亚洲国产欧美日韩在线播放| 国产成人av教育| 精品人妻1区二区| 欧美黄色淫秽网站| 国产真人三级小视频在线观看| 成人三级做爰电影| 久久天堂一区二区三区四区| 我的亚洲天堂| 90打野战视频偷拍视频| 老司机深夜福利视频在线观看 | 久久久国产一区二区| 成年动漫av网址| 激情五月婷婷亚洲| 精品少妇黑人巨大在线播放| 丝袜美足系列| 免费观看av网站的网址| 欧美日韩精品网址| 两性夫妻黄色片| 久久久久久久大尺度免费视频| 中文字幕人妻熟女乱码| 精品亚洲成a人片在线观看| 首页视频小说图片口味搜索 | 亚洲欧美日韩高清在线视频 | 尾随美女入室| 日本av手机在线免费观看| 日本黄色日本黄色录像| 精品卡一卡二卡四卡免费| 叶爱在线成人免费视频播放| www日本在线高清视频| 母亲3免费完整高清在线观看| 精品少妇一区二区三区视频日本电影| 久久九九热精品免费| 午夜精品国产一区二区电影| 首页视频小说图片口味搜索 | 精品少妇久久久久久888优播| 美女高潮到喷水免费观看| 咕卡用的链子| 美女大奶头黄色视频| 亚洲三区欧美一区| 又大又黄又爽视频免费| 国产在线观看jvid| 搡老乐熟女国产| 老汉色av国产亚洲站长工具| 99久久99久久久精品蜜桃| 51午夜福利影视在线观看| 亚洲欧美中文字幕日韩二区| 国产精品成人在线| 丝瓜视频免费看黄片| 各种免费的搞黄视频| 国产主播在线观看一区二区 | 国产av精品麻豆| 欧美性长视频在线观看| 亚洲人成电影观看| 欧美+亚洲+日韩+国产| 爱豆传媒免费全集在线观看| 欧美变态另类bdsm刘玥| 啦啦啦中文免费视频观看日本| 久久国产精品大桥未久av| 色婷婷久久久亚洲欧美| 又大又爽又粗| 久久久久久久大尺度免费视频| 国产成人91sexporn| 日本欧美视频一区| 国产一区二区 视频在线| 美女高潮到喷水免费观看| 啦啦啦中文免费视频观看日本| 国产免费现黄频在线看| av在线app专区| 日本色播在线视频| 精品亚洲成国产av| 精品一区在线观看国产| 岛国毛片在线播放| 欧美国产精品va在线观看不卡| 国产精品 国内视频| 国产精品久久久久久精品古装| 国产一区二区在线观看av| 美女午夜性视频免费| 国产片内射在线| 亚洲,欧美,日韩| 少妇猛男粗大的猛烈进出视频| 黄频高清免费视频| 建设人人有责人人尽责人人享有的| 久久精品久久久久久噜噜老黄| 国产成人系列免费观看| av天堂久久9| 国产精品.久久久| 婷婷色综合www| 视频在线观看一区二区三区| 亚洲 国产 在线| 色综合欧美亚洲国产小说| 亚洲国产精品999| 亚洲av片天天在线观看| 电影成人av| 老司机靠b影院| 日本vs欧美在线观看视频| 国产精品麻豆人妻色哟哟久久| 精品久久蜜臀av无| 国产免费又黄又爽又色| av网站在线播放免费| 亚洲专区国产一区二区| 亚洲欧美一区二区三区国产| 岛国毛片在线播放| 免费在线观看日本一区| 国产成人一区二区在线| 可以免费在线观看a视频的电影网站| 精品国产一区二区三区四区第35| 国产一区亚洲一区在线观看| 亚洲国产精品国产精品| 69精品国产乱码久久久| 啦啦啦啦在线视频资源| 国产精品成人在线| a 毛片基地| 母亲3免费完整高清在线观看| 欧美日韩av久久| 黑丝袜美女国产一区| 亚洲中文日韩欧美视频| 天天操日日干夜夜撸| 精品人妻1区二区| 免费观看a级毛片全部| 亚洲三区欧美一区| 最新的欧美精品一区二区| 校园人妻丝袜中文字幕| 精品久久久精品久久久| 性高湖久久久久久久久免费观看| 精品欧美一区二区三区在线| avwww免费| 日本一区二区免费在线视频| 一边摸一边做爽爽视频免费| 国产成人精品无人区| 精品卡一卡二卡四卡免费| 免费在线观看完整版高清| 久久久久久久精品精品| 亚洲久久久国产精品| 精品一区在线观看国产| 成人午夜精彩视频在线观看| 日韩av免费高清视频| 久久天堂一区二区三区四区| 欧美大码av| 久久久久精品人妻al黑| 啦啦啦在线免费观看视频4| 亚洲中文av在线| 久久青草综合色| 欧美黑人欧美精品刺激| 国精品久久久久久国模美| 国产伦人伦偷精品视频| 亚洲精品成人av观看孕妇| 麻豆国产av国片精品| 十八禁高潮呻吟视频| 国产成人一区二区三区免费视频网站 | 免费在线观看黄色视频的| 18禁观看日本| 国产成人av教育| tube8黄色片| 大片电影免费在线观看免费| 人妻 亚洲 视频| 青青草视频在线视频观看| 女人久久www免费人成看片| 午夜福利影视在线免费观看| 成年美女黄网站色视频大全免费| 黄色视频在线播放观看不卡| 日韩一本色道免费dvd| 亚洲精品国产区一区二| 女警被强在线播放| 国产一区有黄有色的免费视频| 国产精品欧美亚洲77777| 成人午夜精彩视频在线观看| 亚洲免费av在线视频| 国产欧美日韩一区二区三区在线| 久久天躁狠狠躁夜夜2o2o | 两性夫妻黄色片| 国产精品久久久久久精品古装| 亚洲美女黄色视频免费看| 亚洲国产成人一精品久久久| 少妇的丰满在线观看| 免费看不卡的av| 我的亚洲天堂| 夫妻性生交免费视频一级片| 丰满少妇做爰视频| 黄频高清免费视频| 亚洲午夜精品一区,二区,三区| 男的添女的下面高潮视频| 一级a爱视频在线免费观看| 国产精品成人在线| 久久人人97超碰香蕉20202| 成人国语在线视频| 另类亚洲欧美激情| 久久99热这里只频精品6学生| 天天添夜夜摸| 国产精品99久久99久久久不卡| 如日韩欧美国产精品一区二区三区| 亚洲伊人色综图| 中文字幕色久视频| 精品视频人人做人人爽| 男女边吃奶边做爰视频| 精品少妇黑人巨大在线播放| 精品久久久精品久久久| 一级,二级,三级黄色视频| 欧美日韩黄片免| 色婷婷av一区二区三区视频| 男人添女人高潮全过程视频| 亚洲国产中文字幕在线视频| 热99久久久久精品小说推荐| 国产免费视频播放在线视频| 美女脱内裤让男人舔精品视频| 97人妻天天添夜夜摸| 成人黄色视频免费在线看| 久久人人97超碰香蕉20202| 国产成人91sexporn| 精品亚洲成国产av| svipshipincom国产片| 国产一区二区三区综合在线观看| 夜夜骑夜夜射夜夜干| 伊人亚洲综合成人网| 麻豆乱淫一区二区| 久久九九热精品免费| 97在线人人人人妻| 国产男女内射视频| 国产伦理片在线播放av一区| 9色porny在线观看|