• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Study of the Influence of Flow Passage Subtle Variation on Mixed-flow Pump Performance

    2014-03-01 01:48:34BINGHaoandCAOShuliang

    BING Hao and CAO Shuliang

    State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

    1 Introduction

    Mixed-flow pumps have the advantages of a wide application and a wide range of high efficiency operation,and are extensively used in industrial and agricultural production. In recent years, both international and domestic scholars have conducted a large quantity of researches on three-dimensional design method, performance prediction,model test and numerical simulation, impeller optimization design, and key parameters analysis.

    GOTO, et al[1], established a computer-aided design system for pump impellers on the basis of 3D inverse design method, CAD modeling, automatic grid generation and computational fluid dynamic analysis. BING, et al[2],developed the direct and inverse iterative design method and accomplished 3D design of the mixed-flow pump impeller with programming. Yoon, et al[3], built the loss prediction model for the mixed-flow pump with consideration of separation loss and recirculation loss,based on the centrifugal compressor loss model. BING, et al[4], modeled the whole flow passage hydraulic loss and the volumetric loss for the mixed-flow pump, and utilized this model to analyse the generation and change mechanism of various internal losses inside the impeller of the mixed-flow pump.

    ESCH, et al[5], analysed the effects of nonuniform suction velocity profiles on the mixed-flow pump performance by measuring the velocity distribution, the impeller torque and the force vector by experiments. OH, et al[6], employed CFD to predict the hydraulic performance and the cavitation performance and analysed the pump characteristics by considering the performance parameters such as the cavitation allowance. ESCH, et al[7], carried out the unsteady flow computation through the whole flow passage of the mixed-flow pump. Within the range from 70% to 130% of the best efficiency point flow rate, the computed values of the head agreed well with the experimental results. MUGGLI, et al[8], used CFD to proceed unsteady flow computation to the mixed-flow pump, and measured the pressure variation by allocating pressure sensors inside the pump casing to verify the numerical simulation results.

    OH, et al[9], employed the mean streamline analysis to optimize the mixed-flow pump with the goal of minimizing the hydraulic loss, and analysed pump characteristics and flow details on the basis of comparison between the experimental and simulation results[10]. Taking the improvements of the head and the efficiency under the design flow rate as the goal, KIM, et al[11], selected the blade angle as the optimum parameter under the premise of fixing the shape of the meridional flow passage to optimize shapes of the impeller and the diffuser. The optimization eliminated the recirculation between the impeller and the diffuser and significantly improved the hydraulic performance. OH, et al[12], investigated the influence of blade stacking patterns on the impeller suction performance by simulating the cavitation flow in the mixed-flow pump.

    Currently, researches on the influence of mixed-flow pump flow passage variation on pump performance mainly adopt the numerical simulation method. BONAIUTI, et al[13], analysed the influence of hub radius and other flow passage parameters on the mixed-flow pump hydraulic performance and cavitation performance by inverse design and numerical simulation. KIM, et al[14], predicted the mixed-flow pump hydraulic performance by numerical simulation, and discussed the influence of straight vane length ratio in the diffuser and the diffusion area ratio on hydraulic efficiency. BING, et al[15], selected the hub and shroud radius ratio of impeller and the outlet diffusion angle of outlet zone as the meridional flow passage parameters and analyzed the influences of various meridional flow passage parameters on the mixed-flow pump performance by numerical simulation.

    In this paper, the inlet contraction flow passage of the mixed-flow pump was processed, and the influence of flow passage subtle variation on the mixed-flow pump hydraulic performance, pressure fluctuation and noise was analyzed with a series of important conclusions for mixed-flow pump flow passage optimization.

    2 Test Device

    Major parameters of the mixed-flow pump adopted in the model test are shown in Table 1. The structure of the test device is shown in Fig. 1. The hydraulic machinery test rig from Beifang Investigation, Design & Research Co. Ltd.was used to carry out the performance test. Fig. 2 shows the mixed-flow pump test rig, and key components such as the impeller, the diffuser, the inlet and outlet piezometric tubes,the motor, and the inlet tank.

    Table 1. Major parameters of the mixed-flow pump

    Fig. 1. Mixed-flow pump model test device structure

    Fig. 2. Mixed-flow pump model test device structure

    The measuring instruments and measuring error analysis of the mixed-flow pump hydraulic performance test can be found in Ref. [16]. To collect the pressure fluctuation data,high-accuracy pressure fluctuation sensors (Model:CGYL-201) were allocated on the mixed-flow pump impeller inlet in horizontal direction, on the diffuser outlet in horizontal direction and on the diffuser outlet in vertical direction, respectively (Fig. 3). This sensor had a measuring range of -10 m to 20 m water column, a dynamic response range of 0 to 1500 Hz. The pressure fluctuation test was conducted according to GB/T 17189-1997 Code for Field Measurement of Vibrations and Pulsation in Hydraulic Machines. The GO1 multifunctional USB advanced data collection and analysis system from Institute of Engineering Mechanics, China Earthquake Administration was used. The sampling frequency was 1024 Hz and the data collection lasted 20 s during the measuring process.

    Fig. 3. Pressure fluctuation measuring point position

    The blade angle under the design condition was defined as 0°. When the blade rotated from 0° to one side, if the impeller flow capacity increased, the blade angle was considered to be positive; if the opposite, the blade angle was negative. Fig. 4 shows the performance curves obtained by the mixed-flow pump model test with the blade angle as -6°.

    Fig. 4. Performance curves of the mixed-flow pump with the blade angle as -6°

    3 Inlet Flow Passage Variation

    To analyze the influence of the flow passage variation on the mixed-flow pump performance, the end part of the inlet contraction flow passage of the mixed-flow pump (shown in Fig. 1, red box) was machined (shown in Fig. 5) with the maximum cutting depth of 5 mm. After this processing, the end part of the inlet contraction flow passage was cut from frustum cone surface to cylindrical surface with an increased minimum diameter of the inlet contraction flow passage.

    Fig. 5. End part of the inlet contraction flow passage of the mixed-flow pump before (left) and after (right) processing

    3.1 Influence on hydraulic performance

    Fig. 6 shows the mixed-flow pump performance curves with different inlet flow passages with blade angle as -6°,where Qrdenotes the relative flow rate (defined as the ratio of actual flow rate Q to the best efficiency point flow rate QBEP).

    Fig. 6. Mixed-flow pump performance curves with different inlet flow passage

    After the processing of inlet flow passage, the mixed-flow pump efficiency η had an obvious decrease(shown in Fig. 6(a)), especially the best efficiency which decreased by approximately 1.5%. But the flow rate at the best efficiency point did not vary significantly. With flow rate increasing, the decrement of η gradually increased.When Qrwas larger than 1.25, the decrement of η was more than 4%. Under the small flow rate condition,the variation of η before and after flow passage processing was relatively small compared to the variation at the best efficiency point.When Qrwas smaller than 0.75, the variation of η was less than 0.5%.

    After inlet flow passage processing, the mixed-flow pump head H decreased (shown in Fig. 6(b)), suggesting a smaller working capacity of the mixed-flow pump impeller.The shaft power P increased mildly under the large flow rate condition, while decreased mildly under the small flow rate condition (shown in Fig. 6 (c)), and the variations were not significant.

    Further analysis showed that a proper enlargement of the end part of the inlet contraction flow passage could lead to a smaller meridional velocity on the blade leading edge,thus changing the velocity triangle on the leading edge.When the blade shape and the blade angle remained fixed,the difference between the inlet flow angle and the blade angle on the leading edge would significantly increase,leading to a significant increase of incidence loss on the blade leading edge. The bigger the flow rate, the larger the incidence loss was. The rapid increase of the loss directly reduced the head and the efficiency of the mixed-flow pump.

    By integrating the above analysis, it could be concluded that after processing the original flow passage, the variation of fluid velocity distribution led to an increase of internal flow loss of impeller, which significantly influenced the mixed-flow pump hydraulic performance.

    3.2 Influence on pressure fluctuation

    Fig. 7 and Fig. 8 show the time domain graphs of pressure fluctuations on the impeller inlet in horizontal direction or the diffuser outlet in horizontal direction before and after processing the mixed-flow pump inlet flow passage when blade angle is -6°, where relative head Hris the ratio of pressure head instantaneous value on the impeller inlet or the diffuser outlet to mixed-flow pump head under the same flow rate condition.

    At the best efficiency point, pressure fluctuation amplitude was relatively small. Pressure fluctuation amplitude increased when deviating from the best efficiency point. The increase was especially significant with large flow rate condition. When Qr=1.23, pressure fluctuation amplitude was twice as much as the one at the best efficiency point.

    After processing the inlet flow passage, at the same pressure fluctuation measuring point and with the same flow rate, the pressure fluctuation amplitude significantly increased. This suggested that changing the end part shape of the inlet flow passage would obviously reduce the stability of the mixed-flow pump internal flow. The processing depth of the inlet flow passage was subtle, but it had a significant influence on the flow stability.

    Based on the above analysis of the time domain graphs,the relative value of the mixing amplitude was adopted to further analyse the characteristics of pressure fluctuation amplitude variation. Meanwhile, to avoid the influence of interfering signal on test accuracy during the test, the mixing amplitude was calculated by peak-to-peak value method with the confidence as 97%. The relative value A of the mixing amplitude was defined as the ratio of peak-to-peak value ΔH when confidence is 97% to the mixed-flow pump head H with the same flow rate condition:

    Fig. 7. Time domain graphs of pressure fluctuations on the mixed-flow pump impeller inlet in horizontal direction

    Fig. 8. Time domain graphs of pressure fluctuations on the mixed-flow pump diffuser outlet in horizontal direction

    Fig. 9 shows the curves of the relative value A of mixing amplitude varying with flow rate. With the same flow passage, A gradually increased with flow rate increasing.Near the small flow rate condition and the design flow rate condition, the increases were gentle. However, near the large flow rate condition, A increased rapidly when the flow rate rised. This suggested that under the large flow rate condition, pressure fluctuation amplitude changed more rapidly with the flow rate changing. By comparing the values of A in different positions, it was noticed that the value of A on the diffuser outlet was nearly twice as much as the value of A on the impeller inlet. This was probably because of the interaction between the impeller and the diffuser. Meanwhile, the pressure fluctuation measuring point on the diffuser outlet was located on the turning of the flow passage and the change of flow direction also caused the increase of the pressure fluctuation. This demonstrated the influence of the sudden change of the mixed-flow pump flow passage shape in flow direction on the pressure fluctuation.

    Fig. 9. Curves of pressure fluctuation relative amplitude varying with flow rate

    After processing the inlet flow passage, the relative value A of the mixing amplitude significantly increased on both the impeller inlet and the diffuser outlet. This suggested that the increase of the inner diameter of the end part of the inlet contraction flow passage caused a more drastic pressure fluctuation with weaker operation stability of the mixed-flow pump. The increase of the pressure fluctuation amplitude was especially significant under the large flow rate condition.

    3.3 Influence on noise

    According to Methods of Measuring and Evaluating Noise of Pumps, the noise data of the mixed-flow pump under different flow rates before and after processing the flow passage were collected. Fig. 10 shows the curves of the average sound pressure level varying with the flow rate.The sound pressure level is defined as

    where p denotes the sound pressure, p0is the standard sound pressure, which is 2′10–5Pa.

    Fig. 10. Curves of average sound pressure level varying with flow rate

    The two curves in Fig. 10 were cubic polynomial fitting curves which to some extent showed the trend of the average sound pressure level varying with the flow rate.After processing the flow passage, the noise significantly increased. This suggested that the mixed-flow pump internal flow was more disordered, and more energy was lost with noise.

    4 Conclusions

    By processing the mixed-flow pump inlet flow passage,the frustum cone surface of the end part of the contraction flow passage was made into cylindrical surface with a maximum processing depth of 5 mm. By testing the mixed-flow pump model under the same blade angle of-6° and different flow passages, the influence of the subtle variation of the flow passage on mixed-flow pump performance was analyzed to obtain the following conclusions.

    (1) After processing the flow passage, the best efficiency of the mixed-flow pump decreased by approximately 1.5%.The decrease was significant under the large flow rate condition and relatively small under the small flow rate condition. Meanwhile, the mixed-flow pump head had an evident decrease, and the shaft power slightly increased under the large flow rate condition and slightly decreased under the small flow rate condition.

    (2) After processing the flow passage, the pressure fluctuation amplitudes on the impeller inlet and the diffuser outlet both increased significantly. Pressure fluctuation was more violent, and the internal flow stability of the mixed-flow pump decreased. Meanwhile, the noise also significantly increased.

    (3) The subtle variation (processing depth within 5 mm)led to a significant variation of the mixed-flow pump performance. Therefore, during the design process of the mixed-flow pump, a special attention should be paid to the flow passage optimization, as well as its coordinating relationship with the impeller and the diffuser of the mixed-flow pump.

    [1] GOTO A, NOHMI M, SAKURAI T, et al. Hydrodynamic design system for pumps based on 3-D CAD, CFD, and inverse design method[J]. Journal of Fluids Engineering, Trans. of the ASME,2002, 124(2): 329?335.

    [2] BING Hao, CAO Shuliang, TAN Lei. Iteration method of direct inverse problem of mixed-flow pump impeller design[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(4):277?281. (in Chinese)

    [3] YOON E S, OH H W, CHUNG M K, et al. Performance prediction of mixed-flow pumps[J]. Proc. Instn. Mech. Engrs., Part A: Journal of Power and Energy, 1998, 212(A2): 109?115.

    [4] BING Hao, TAN Lei, CAO Shuliang, et al. Prediction method of impeller performance and analysis of loss mechanism for mixed-flow pump[J]. Science China Technological Sciences, 2012,55(7): 1988?1998.

    [5] ESCH B P M V. Performance and radial loading of a mixed-flow pump under non-uniform suction flow[J]. Journal of Fluids Engineering, Trans. of the ASME, 2009, 131(5):051101-1?051101-7.

    [6] OH H W, YOON E S. Hydrodynamically detailed performance analysis of a mixed-flow waterjet pump using computational fluid dynamics[J]. Proc. Instn Mech Engrs, Part C: Journal of Mechanical Engineering Science, 2008, 222(C9): 1861?1867.

    [7] ESCH B P M V, KRUYT N P. Hydraulic performance of a mixed-flow pump: unsteady inviscid computations and loss models[J]. Journal of Fluids Engineering, Trans. of the ASME,2001, 123(2): 256?264.

    [8] MUGGLI F A, HOLBEIN P, DUPONT P. CFD calculation of a mixed-flow pump characteristic from shutoff to maximum flow[J].Journal of Fluids Engineering, Trans. of the ASME, 2002, 124(3):798?802.

    [9] OH H W, KIM K Y. Conceptual design optimization of mixed-flow pump impellers using mean streamline analysis[J]. Proc. Instn.Mech. Engrs., Part A: Journal of Power and Energy, 2001, 215(A1):133?138.

    [10] OH H W, YOON E S, KIM K S, et al. A practical approach to the hydraulic design and performance analysis of a mixed-flow pump for marine waterjet propulsion[J]. Proc. Instn. Mech. Engrs., Part A:Journal of Power and Energy, 2003, 217(A6): 659–664.

    [11] KIM S, CHOI Y S, LEE K Y. Design optimization of mixed-flow pump impellers and diffusers in a fixed meridional shape[C]//Proceedings of the 10th Asian International Conference on Fluid Machinery. Univ Teknologi Malaysia, Kuala Lumpur,Malaysia, 2009: 287?296.

    [12] OH H W. Design parameter to improve the suction performance of mixed-flow pump impeller[J]. Proc. Instn. Mech. Engrs., Part A:Journal of Power and Energy, 2010, 224(A6): 881?887.

    [13] BONAIUTI D, ZANGENEH M, AARTOJARVI R, et al.Parametric design of a waterjet pump by means of inverse design,CFD calculations and experimental analyses[J]. Journal of Fluids Engineering, Trans. of the ASME, 2010, 132(3): 031104-1?031104-15.

    [14] KIM J H, AHN H J, KIM K Y. High-efficiency design of a mixed-flow pump[J]. Science China Technological Sciences, 2010,53(1): 24?27.

    [15] BING Hao, CAO Shuliang, TAN Lei, et al. Effects of meridional flow passage shape on hydraulic performance of mixed-flow pump impellers. Chinese Journal of Mechanical Engineering, 2013, 26(3):469?475.

    [16] BING Hao, CAO Shuliang, HE Chenglian, et al. Experimental study of the effect of blade tip clearance and blade angle error on the performance of mixed-flow pump[J]. Science China Technological Sciences, 2013, 56(2): 293?298.

    大香蕉久久网| 欧美变态另类bdsm刘玥| 美女福利国产在线| 在线观看三级黄色| 中国国产av一级| videossex国产| 欧美日韩av久久| 中文字幕精品免费在线观看视频 | 久久婷婷青草| 亚洲国产毛片av蜜桃av| 亚洲国产看品久久| 一个人免费看片子| 亚洲av综合色区一区| 又黄又粗又硬又大视频| 晚上一个人看的免费电影| 99久国产av精品国产电影| xxx大片免费视频| 亚洲精品,欧美精品| 亚洲av电影在线进入| 久久毛片免费看一区二区三区| 国产69精品久久久久777片| 久久久久久久国产电影| 亚洲成国产人片在线观看| 日产精品乱码卡一卡2卡三| 成人亚洲欧美一区二区av| 国产黄色免费在线视频| 日韩一本色道免费dvd| 精品人妻熟女毛片av久久网站| 国产一区二区三区综合在线观看 | 亚洲精品视频女| 在线看a的网站| 一区二区三区精品91| 看非洲黑人一级黄片| 视频在线观看一区二区三区| 国产成人精品无人区| 深夜精品福利| 国产无遮挡羞羞视频在线观看| 人妻少妇偷人精品九色| 午夜激情久久久久久久| 99国产精品免费福利视频| 国产精品一区二区在线观看99| 一级毛片黄色毛片免费观看视频| 99国产综合亚洲精品| 男女无遮挡免费网站观看| 久久久久精品性色| 亚洲av电影在线观看一区二区三区| 男女高潮啪啪啪动态图| 免费观看a级毛片全部| 国产麻豆69| 青青草视频在线视频观看| 国产免费一区二区三区四区乱码| 99热全是精品| 熟妇人妻不卡中文字幕| 精品亚洲成国产av| 黄色视频在线播放观看不卡| av国产精品久久久久影院| 大香蕉久久成人网| 69精品国产乱码久久久| 最黄视频免费看| 午夜激情久久久久久久| 国产免费视频播放在线视频| 97人妻天天添夜夜摸| 久久久久网色| 久久国产亚洲av麻豆专区| 国产高清国产精品国产三级| av国产久精品久网站免费入址| www日本在线高清视频| 成人18禁高潮啪啪吃奶动态图| 亚洲欧洲国产日韩| 全区人妻精品视频| 国产精品不卡视频一区二区| 国产高清国产精品国产三级| 国产成人精品在线电影| 亚洲人成网站在线观看播放| 一级黄片播放器| 成人18禁高潮啪啪吃奶动态图| 街头女战士在线观看网站| 国产精品成人在线| 一级,二级,三级黄色视频| 国产亚洲av片在线观看秒播厂| 日韩欧美精品免费久久| 考比视频在线观看| 在线免费观看不下载黄p国产| 中文乱码字字幕精品一区二区三区| 久久影院123| 成人18禁高潮啪啪吃奶动态图| 观看av在线不卡| 成年美女黄网站色视频大全免费| 亚洲av中文av极速乱| 精品亚洲成a人片在线观看| 激情视频va一区二区三区| 校园人妻丝袜中文字幕| 少妇人妻久久综合中文| 看十八女毛片水多多多| 日韩精品免费视频一区二区三区 | 1024视频免费在线观看| 波多野结衣一区麻豆| 亚洲欧美成人综合另类久久久| 亚洲精品国产色婷婷电影| 亚洲婷婷狠狠爱综合网| 久热久热在线精品观看| 国产午夜精品一二区理论片| 成人亚洲欧美一区二区av| 国产黄色免费在线视频| 亚洲国产av新网站| 成人免费观看视频高清| 成年人免费黄色播放视频| 午夜影院在线不卡| 热re99久久国产66热| 中文字幕av电影在线播放| 日韩大片免费观看网站| 五月伊人婷婷丁香| 极品人妻少妇av视频| 毛片一级片免费看久久久久| 国产精品久久久久久av不卡| 欧美日韩亚洲高清精品| 国产伦理片在线播放av一区| 日韩人妻精品一区2区三区| 九色成人免费人妻av| 午夜91福利影院| 国产欧美日韩一区二区三区在线| 看免费av毛片| 欧美国产精品va在线观看不卡| 九九爱精品视频在线观看| 久久亚洲国产成人精品v| 黄色一级大片看看| 中文欧美无线码| 亚洲精品乱久久久久久| 久久热在线av| 亚洲国产色片| 女人被躁到高潮嗷嗷叫费观| 国产精品不卡视频一区二区| 亚洲欧美一区二区三区黑人 | 国产精品成人在线| 国产高清国产精品国产三级| 美女内射精品一级片tv| 啦啦啦啦在线视频资源| 日韩成人伦理影院| 欧美精品一区二区大全| 在线观看三级黄色| 亚洲精品久久午夜乱码| 午夜免费男女啪啪视频观看| 免费大片黄手机在线观看| 亚洲色图 男人天堂 中文字幕 | 国产乱来视频区| 在线精品无人区一区二区三| 22中文网久久字幕| 国产极品粉嫩免费观看在线| 狂野欧美激情性xxxx在线观看| 九色亚洲精品在线播放| 久久精品aⅴ一区二区三区四区 | 日韩视频在线欧美| 国产一区二区三区综合在线观看 | 久久久久国产精品人妻一区二区| 国产亚洲av片在线观看秒播厂| 黑丝袜美女国产一区| 国产精品一国产av| 欧美日韩视频高清一区二区三区二| 久久影院123| 精品卡一卡二卡四卡免费| www日本在线高清视频| 另类精品久久| 女的被弄到高潮叫床怎么办| 久久鲁丝午夜福利片| 国产熟女午夜一区二区三区| 日韩不卡一区二区三区视频在线| 九色成人免费人妻av| 亚洲欧美清纯卡通| 国产在线一区二区三区精| 国产不卡av网站在线观看| 欧美xxⅹ黑人| 国产男女内射视频| 国产精品一区www在线观看| 夜夜骑夜夜射夜夜干| 午夜福利视频在线观看免费| 国产精品人妻久久久久久| 天天躁夜夜躁狠狠久久av| 九色成人免费人妻av| 在线免费观看不下载黄p国产| 成人午夜精彩视频在线观看| 丝袜人妻中文字幕| 精品国产乱码久久久久久小说| 精品少妇久久久久久888优播| 欧美日韩av久久| 97超碰精品成人国产| 欧美日韩成人在线一区二区| 日韩中文字幕视频在线看片| 中文字幕精品免费在线观看视频 | 国产黄频视频在线观看| av天堂久久9| 性色avwww在线观看| 国产精品国产三级国产专区5o| 亚洲国产精品999| 大话2 男鬼变身卡| 亚洲av男天堂| 如日韩欧美国产精品一区二区三区| 各种免费的搞黄视频| 老司机影院毛片| 99热国产这里只有精品6| 午夜激情久久久久久久| av电影中文网址| 又黄又爽又刺激的免费视频.| 高清黄色对白视频在线免费看| www.色视频.com| 777米奇影视久久| 国产精品一区www在线观看| 精品国产一区二区三区四区第35| 成年动漫av网址| 亚洲av欧美aⅴ国产| 免费不卡的大黄色大毛片视频在线观看| 国产精品欧美亚洲77777| 久久久久精品性色| 久久亚洲国产成人精品v| 国产精品 国内视频| 夫妻午夜视频| 午夜老司机福利剧场| 日韩制服丝袜自拍偷拍| 蜜桃在线观看..| 全区人妻精品视频| 午夜久久久在线观看| 午夜激情av网站| 国产淫语在线视频| 国产免费福利视频在线观看| 亚洲av男天堂| 色婷婷久久久亚洲欧美| 成人综合一区亚洲| 亚洲成人av在线免费| 久久久久视频综合| 免费日韩欧美在线观看| 国产乱人偷精品视频| 看免费成人av毛片| 伊人亚洲综合成人网| 亚洲av福利一区| 一区二区三区四区激情视频| www日本在线高清视频| 一级爰片在线观看| 美女脱内裤让男人舔精品视频| 我的女老师完整版在线观看| xxx大片免费视频| 在线 av 中文字幕| 国产精品麻豆人妻色哟哟久久| 精品国产一区二区三区久久久樱花| 婷婷色综合大香蕉| 大片免费播放器 马上看| 在线观看www视频免费| 老熟女久久久| 国产免费现黄频在线看| 美女主播在线视频| 丰满迷人的少妇在线观看| 久久久久国产精品人妻一区二区| 日韩在线高清观看一区二区三区| 亚洲成人av在线免费| 少妇人妻久久综合中文| 国产日韩一区二区三区精品不卡| 精品人妻在线不人妻| 女性生殖器流出的白浆| 汤姆久久久久久久影院中文字幕| 观看美女的网站| av国产久精品久网站免费入址| 成人综合一区亚洲| 亚洲av欧美aⅴ国产| 日本猛色少妇xxxxx猛交久久| 久久国产亚洲av麻豆专区| 亚洲图色成人| 久久久久久久久久成人| 亚洲av国产av综合av卡| 欧美日韩视频精品一区| 国产欧美另类精品又又久久亚洲欧美| 久久 成人 亚洲| 晚上一个人看的免费电影| 免费看不卡的av| av播播在线观看一区| 色视频在线一区二区三区| 啦啦啦啦在线视频资源| 亚洲国产日韩一区二区| 免费播放大片免费观看视频在线观看| 一二三四中文在线观看免费高清| 欧美 日韩 精品 国产| 女人久久www免费人成看片| 69精品国产乱码久久久| 大码成人一级视频| 欧美人与性动交α欧美软件 | 赤兔流量卡办理| 午夜日本视频在线| 综合色丁香网| av线在线观看网站| 永久网站在线| 两个人看的免费小视频| 欧美成人精品欧美一级黄| 国产成人精品在线电影| 欧美国产精品一级二级三级| 纯流量卡能插随身wifi吗| 中文天堂在线官网| 高清不卡的av网站| 美女中出高潮动态图| av在线观看视频网站免费| 精品国产国语对白av| 18禁国产床啪视频网站| 日日撸夜夜添| 亚洲五月色婷婷综合| 亚洲成色77777| 亚洲综合色网址| 久久99热6这里只有精品| 精品国产一区二区三区久久久樱花| 免费av中文字幕在线| 啦啦啦啦在线视频资源| 国产有黄有色有爽视频| 国产高清国产精品国产三级| 日韩制服丝袜自拍偷拍| 伊人亚洲综合成人网| 久久 成人 亚洲| h视频一区二区三区| 免费在线观看黄色视频的| 国产成人aa在线观看| 欧美最新免费一区二区三区| 黑人欧美特级aaaaaa片| 男女无遮挡免费网站观看| 人人妻人人澡人人看| 黄网站色视频无遮挡免费观看| 黄色配什么色好看| 亚洲一级一片aⅴ在线观看| 免费日韩欧美在线观看| 久久久欧美国产精品| 国产极品粉嫩免费观看在线| 丰满少妇做爰视频| 亚洲精品中文字幕在线视频| 97超碰精品成人国产| 国产成人精品久久久久久| 女人精品久久久久毛片| 亚洲高清免费不卡视频| 精品亚洲乱码少妇综合久久| 国产男女超爽视频在线观看| av天堂久久9| 国产精品久久久久久精品电影小说| 日本欧美视频一区| 日本-黄色视频高清免费观看| 七月丁香在线播放| 久久韩国三级中文字幕| 蜜桃国产av成人99| 精品国产一区二区三区久久久樱花| 国产男人的电影天堂91| 99热6这里只有精品| 五月开心婷婷网| 亚洲av.av天堂| 少妇人妻精品综合一区二区| 久久鲁丝午夜福利片| 免费不卡的大黄色大毛片视频在线观看| 下体分泌物呈黄色| 久久久久久久久久成人| 日韩制服骚丝袜av| 曰老女人黄片| 欧美激情国产日韩精品一区| 亚洲av.av天堂| 韩国av在线不卡| 色94色欧美一区二区| 高清av免费在线| 飞空精品影院首页| 在线看a的网站| 人人妻人人添人人爽欧美一区卜| 女的被弄到高潮叫床怎么办| 午夜福利在线观看免费完整高清在| 久久人人爽人人爽人人片va| 久久精品夜色国产| 欧美日韩一区二区视频在线观看视频在线| 亚洲,一卡二卡三卡| 80岁老熟妇乱子伦牲交| 国产成人91sexporn| 一二三四在线观看免费中文在 | 日本免费在线观看一区| 亚洲国产精品一区三区| 老熟女久久久| 亚洲人成77777在线视频| 免费不卡的大黄色大毛片视频在线观看| 97人妻天天添夜夜摸| 99re6热这里在线精品视频| 免费播放大片免费观看视频在线观看| 久久精品国产综合久久久 | 国产精品欧美亚洲77777| 51国产日韩欧美| 九九在线视频观看精品| 有码 亚洲区| 亚洲精品国产av蜜桃| 日本黄大片高清| 精品久久国产蜜桃| 国产日韩欧美视频二区| 久久精品人人爽人人爽视色| 九色成人免费人妻av| 婷婷色av中文字幕| 国产精品久久久久久久电影| 中国国产av一级| 巨乳人妻的诱惑在线观看| 看非洲黑人一级黄片| 在现免费观看毛片| 岛国毛片在线播放| 一级片'在线观看视频| 日本91视频免费播放| 国产精品人妻久久久影院| 国产精品久久久av美女十八| 日韩av免费高清视频| 成人午夜精彩视频在线观看| 国产精品免费大片| 亚洲av在线观看美女高潮| 2022亚洲国产成人精品| 国产成人免费无遮挡视频| 久久人人97超碰香蕉20202| 精品福利永久在线观看| 一二三四中文在线观看免费高清| 久久毛片免费看一区二区三区| 欧美人与性动交α欧美精品济南到 | 水蜜桃什么品种好| 99re6热这里在线精品视频| 国产精品国产三级国产av玫瑰| 国产乱来视频区| 狠狠婷婷综合久久久久久88av| 欧美精品av麻豆av| 99久久人妻综合| 日产精品乱码卡一卡2卡三| 咕卡用的链子| 人人妻人人爽人人添夜夜欢视频| 免费不卡的大黄色大毛片视频在线观看| 久久精品久久久久久久性| 久久女婷五月综合色啪小说| 亚洲欧洲日产国产| 天天躁夜夜躁狠狠躁躁| 欧美日韩成人在线一区二区| 国语对白做爰xxxⅹ性视频网站| 成年人免费黄色播放视频| 多毛熟女@视频| 在线观看一区二区三区激情| 日本wwww免费看| 女人被躁到高潮嗷嗷叫费观| 日韩一本色道免费dvd| 婷婷色综合www| 亚洲国产日韩一区二区| 亚洲精品色激情综合| 九九爱精品视频在线观看| 国产黄色免费在线视频| 丝袜美足系列| 日韩在线高清观看一区二区三区| 免费久久久久久久精品成人欧美视频 | 欧美3d第一页| 精品熟女少妇av免费看| 免费观看无遮挡的男女| 18禁国产床啪视频网站| 日本猛色少妇xxxxx猛交久久| 美女脱内裤让男人舔精品视频| 午夜福利,免费看| 国产一区亚洲一区在线观看| 欧美亚洲日本最大视频资源| 秋霞在线观看毛片| 大陆偷拍与自拍| 一区二区三区四区激情视频| 欧美激情国产日韩精品一区| 国产片内射在线| 老女人水多毛片| 少妇被粗大猛烈的视频| 午夜精品国产一区二区电影| 国产精品无大码| 色婷婷久久久亚洲欧美| 一级毛片黄色毛片免费观看视频| 精品国产国语对白av| 看十八女毛片水多多多| www.熟女人妻精品国产 | 18在线观看网站| 成年人午夜在线观看视频| 一级毛片黄色毛片免费观看视频| 久久人人爽av亚洲精品天堂| 男女无遮挡免费网站观看| 一本色道久久久久久精品综合| 麻豆乱淫一区二区| 黄色 视频免费看| 亚洲av欧美aⅴ国产| 热99国产精品久久久久久7| 欧美激情极品国产一区二区三区 | 日韩一区二区三区影片| 一级片免费观看大全| 欧美精品亚洲一区二区| 满18在线观看网站| 中文乱码字字幕精品一区二区三区| 国产成人精品无人区| a级毛片黄视频| 母亲3免费完整高清在线观看 | 国精品久久久久久国模美| 亚洲精品美女久久久久99蜜臀 | 97精品久久久久久久久久精品| 国产男女超爽视频在线观看| 一区二区三区乱码不卡18| 国产一区二区激情短视频 | 国产高清国产精品国产三级| 尾随美女入室| 人人澡人人妻人| 97超碰精品成人国产| av一本久久久久| 熟女av电影| 国产综合精华液| 国产在线视频一区二区| 国产亚洲午夜精品一区二区久久| 久久这里有精品视频免费| 有码 亚洲区| 久久毛片免费看一区二区三区| 国产综合精华液| 五月开心婷婷网| 精品国产国语对白av| 日韩,欧美,国产一区二区三区| 亚洲 欧美一区二区三区| 免费大片黄手机在线观看| 午夜福利视频精品| 90打野战视频偷拍视频| 美女福利国产在线| 色网站视频免费| 99久国产av精品国产电影| 亚洲欧美精品自产自拍| 国产老妇伦熟女老妇高清| 精品人妻偷拍中文字幕| 卡戴珊不雅视频在线播放| 最近中文字幕2019免费版| 丰满少妇做爰视频| 寂寞人妻少妇视频99o| 国产精品久久久久久精品电影小说| 美女大奶头黄色视频| 国产成人aa在线观看| 亚洲av中文av极速乱| a级毛色黄片| 中文字幕人妻熟女乱码| 亚洲av在线观看美女高潮| 亚洲精品色激情综合| 亚洲国产看品久久| 一级a做视频免费观看| 熟女av电影| 最近中文字幕高清免费大全6| 看十八女毛片水多多多| 我要看黄色一级片免费的| 国产熟女欧美一区二区| 老司机亚洲免费影院| 亚洲av欧美aⅴ国产| 三级国产精品片| 99香蕉大伊视频| 久久精品国产鲁丝片午夜精品| 成人国产av品久久久| 黄色一级大片看看| 日韩欧美精品免费久久| 99视频精品全部免费 在线| a 毛片基地| 中文欧美无线码| 99热全是精品| 大香蕉久久成人网| 纯流量卡能插随身wifi吗| 国产一区二区在线观看av| 国产成人精品一,二区| 亚洲精品国产色婷婷电影| 伦精品一区二区三区| 国产成人免费无遮挡视频| 一级毛片黄色毛片免费观看视频| 亚洲国产色片| 2022亚洲国产成人精品| 久久久久久久大尺度免费视频| 国产极品粉嫩免费观看在线| 国产欧美日韩一区二区三区在线| 久久这里只有精品19| 天天影视国产精品| 欧美精品av麻豆av| 99国产精品免费福利视频| 毛片一级片免费看久久久久| 亚洲av日韩在线播放| 51国产日韩欧美| 一区在线观看完整版| 日日啪夜夜爽| 九色成人免费人妻av| 宅男免费午夜| 卡戴珊不雅视频在线播放| 免费观看在线日韩| 九色亚洲精品在线播放| 街头女战士在线观看网站| 三上悠亚av全集在线观看| 日本vs欧美在线观看视频| av在线老鸭窝| 成人影院久久| 久久鲁丝午夜福利片| 婷婷色综合www| 男的添女的下面高潮视频| 国产黄色视频一区二区在线观看| 超色免费av| 亚洲av在线观看美女高潮| 午夜激情久久久久久久| 伦精品一区二区三区| 国产成人免费无遮挡视频| 精品熟女少妇av免费看| 最近的中文字幕免费完整| 精品国产乱码久久久久久小说| av在线老鸭窝| 久久久久人妻精品一区果冻| 精品酒店卫生间| 老司机影院成人| 国产精品成人在线| 亚洲av在线观看美女高潮| 少妇的逼好多水| 精品人妻熟女毛片av久久网站| 久久精品国产综合久久久 | 我要看黄色一级片免费的| 欧美亚洲 丝袜 人妻 在线| 午夜精品国产一区二区电影| 日韩中文字幕视频在线看片| a级片在线免费高清观看视频| 亚洲精品久久午夜乱码| 国产av精品麻豆| 久久久久国产精品人妻一区二区| 男人操女人黄网站| 国产日韩欧美亚洲二区| 一级毛片电影观看| 女性生殖器流出的白浆| 亚洲国产色片| 日本午夜av视频| 成人综合一区亚洲| 9色porny在线观看| 色94色欧美一区二区|