• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the Flow Rate Characteristics of Valveless Piezoelectric Pump with Fractal-like Y-shape Branching Tubes

    2014-03-01 01:48:34HUANGJunZHANGJianHuiWANGShouYinandLIUWeiDong

    HUANG Jun, ZHANG JianHui, , WANG ShouYin, and LIU WeiDong

    1 State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

    2 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

    1 Introduction

    In recent years, with advancement of manufacturing and processing technology, especially in micro electronic mechanical system (MEMS), information technology (IT)industry has been developing rapidly and integration of various types of chips has also been greatly improved.However, highly integrated chips inevitably bring with problem of heat accumulation, which has seriously affected the efficiency of the chip. At the same time, the conventional solution of forced-air convection heat transfer is trending to its limit. To improve the efficiency of the chips, new heat dissipation methods have become a research focus for those highly integrated chips[1–5].

    Microchannel heat sink with high heat transfer coefficients and simple manufacturing has been extensively investigated due to its wide application prospective in electronic cooling. TUCKERMAN, et al[6], carried out pioneering work for the first proposed microchannel cooling technology in 1981. PENG, et al[7], performed experimental investigations on the convective heat transfer and flow characteristics of water in microchannel structures with small rectangular channels in 1996. Based on constructal theory, BEJAN, et al[8], firstly proposed the tree network to be used for electronic cooling in 1997. PENCE[9]proposed a fractal-like branching flow network to improve the thermal efficiency and temperature uniformity of the heat sink in 2000. CHEN, et al[10], studied fractal tree like microchannel networks in 2002. They found that the fractal tree like microchannel network can improve convective heat transfer and hydrodynamic performance of the heat sink compared with the conventional parallel microchannel network. XU, et al[11], analyzed the heat conduction through symmetric fractal tree-like branching networks and obtained the expression of thermal conductivity in the networks in 2006. Meanwhile, they analyzed the relationship between the effective thermal conductivity and the geometric structures of the networks. However, so as for the cooling system, the microchannel still need a separate micropump as an external power source, which makes the system difficult to miniaturization, and also affects its reliability.

    One new type microchannel cooling system with the characteristic of simple structure and high reliability,combinating power source and microchannel effectively,needs to be designed to overcome above shortcomings.According to the preliminary studies and valve-less piezoelectric pump with Y-shape tubes invented by ZHANG, et al[12–13], the valve-less piezoelectric pump with fractal-like Y-shape branching tubes (VPPFYT) will be proposed. Fractal-like Y-shape branching tube (FYBT) is a no-moving-part (NMP) valve among the valve-less piezoelectric pump, meanwhile pump body and power source can be integrated on the chip.

    Size of fractal dimension reveals complexity of geometry.Hence, fractal theory will be used to discuss flow resistance characteristics of FYBTs with different hydraulic diameter ratios, and analyze relationships between flow rate of VPPFYT and fractal dimensions of diameter distribution of the tubes in this study.

    This paper will firstly propose valveless piezoelectric pump with fractal-like Y-shape branching tubes. It is designed based on actuating mechanism, considering the integration of fractal-like branching tube in microchannel heat sinks, and pump body also. Then, expressions of flow resistance of the tube along merging and dividing flows are established respectively, by which the relationships between flow resistance of FYBT and pump flow rate are analyzed. Meanwhile, finite element method is employed to analyze the FYBTs with different fractal dimensions of diameter distribution. The relationships between pressure drop and flow rate along merging and dividing flows are obtained. Finally, experimental study is done, the feasibility of the VPPFYT is validated, and variations of pump flow rate influenced by fractal dimension of diameter distribution and electrical parameter are obtained.

    2 Structure of the Fractal-like Y-shape Branching Tube and Pump

    Fig. 1 shows the structure of the fractal-like Y-shape branching tube. According to structure of fractal-like branching and based on the Y-shape tube, the fractal-like Y-shape branching tube is designed. To generate this tube,0th level mother duct is divided into 2 daughter branches at 1th level. The branches at the ends of the newly formed ducts may be continued until the required FYBT at the specified branching level is obtained. The width of the 0th level mother duct is w0, the length is l0, then wkis the width at the kth branching level, and lkis the length at the kth branching level. Each bifurcation angle is 2α, and the depth of the whole tube is h.

    When the flow happens in the FYBT, the flow resistance of merging flow is unequal to that of dividing flow.Therefore, a pair of fractal-like Y-shape branching tubes as NMP valve is installed on each side of pump chamber,which constructs the valveless piezoelectric pump with fractal-like Y-shape branching tubes, as shown in Fig. 2.This pump is mainly composed of a piezoelectric vibrator,a pump chamber and a pair of fractal-like Y-shape branching tubes headed in the same direction.

    Fig. 1. Fractal-like Y-shape branching tube

    Fig. 2. Valveless piezoelectric pump with fractal-like Y-shape branching tubes

    Fig. 3 is a schematic diagram of VPPFYT achieving heat dissipation. The substrate with the fractal-like Y-shape branching microchannels is bonded to the chip, on which cover plate is packaged. Piezoelectric thin film and electrode are formed by method of sputter deposition on the surface of cover plate, which assemble a piezoelectric vibrator. The piezoelectric vibrator loaded by an alternating voltage will vibrate upwards and downwards causing the coolant movement. As the result of the difference flow resistances between the merging and dividing flows, the coolant flows from inlet of pump towards the outlet in macro continuously. Meanwhile, fractal-like Y-shape branching tubes have the characteristics of high heat transfer efficiency and better temperature uniformity, which can transfer the heat of chip with the coolant movement.Therefore, by integrating the cooling microchannel and power source, this pump greatly reduces the volume of the whole cooling system.

    Fig. 3. Valveless piezoelectric pump with fractal-like Y-shape branching tubes on chip

    3 Theoretical Analysis for the Flow Resistance and Pump Rate

    3.1 Flow resistance of fractal-like Y-shape branching tube

    Fig. 1 shows that, wkand lkrepresent the width and length of the kth level duct, respectively. And kth level mother duct is divided into 2kdaughter branches at (k+1)th level. Two scale factors are defined to describe the geometric structure of branching network.

    where l0and d0are the length and hydraulic diameter of the initial (0th level) mother duct, respectively. lmand dmare the length and hydraulic diameter of the terminal (mth level)daughter duct, respectively. According to the fractal characteristics of the structure[14],

    where Dland Ddis the fractal dimensions of length and diameter distribution of the fractal-like Y-shape branching network, respectively. For the structure of two bifurcations,n=2. Eq. (5) can be presented as follows:

    Due to characteristics of difference resistances between merging and dividing flows, fractal-like Y-shape branching tube is exploited as a NMP of valveless piezoelectric pump.

    When fluid dividing through tube, the pressure drop along the duct at the kth branching level is given by

    where vkis the velocity in the kth branching level duct,and c is a constant, which depends on fluid properties and cross sectional shape of the duct.

    The local pressure loss, caused by fluid dividing through tube from (k?1)th level to kth level , can be indicated as:

    where ξ is the local resistance coefficient when fluid dividing through tube. The bifurcation angles of Y-shape tubes in every level are 2α, thus the local resistance coefficient of every bifurcation is equal.

    From the law of mass conservation,

    Thus, when the fluid flows along dividing direction, the total pressure drop of the whole tube can be expressed as:

    From Eqs. (6) and (10),

    The total flow resistance of the fractal-like Y-shape branching tube, when fluid dividing through the tube, is

    Similarly, when the fluid flows along merging direction,the pressure drop along the duct at the kth branching level is given by

    The local pressure loss, caused by fluid merging through tube from kth level to (k?1)th level, is expressed as:

    where ξ¢ is the local resistance coefficient when fluid merging through the tube.

    Thus, when the fluid flows along merging direction, the total pressure drop of the whole tube is obtained:

    The total flow resistance of the fractal-like Y-shape branching tube, when fluid merges through the tube, is

    3.2 Flow rate analysis

    Micropump efficiency is evaluated for two limit loading conditions: maximum pressure head at zero flow rate and maximum flow rate at zero pressure head. When piezoelectric pump exports maximum flow rate, pressure drops in two NMP valves are equal[15], as shown in Fig. 4.

    The algebraic sum of flow rates, either flow into or out off the pump chamber through FYBT, is equal to the amount of fluid in pump chamber. So,

    Fig. 4. Flowing scheme of the valveless piezoelectric micropump with fractal-like Y-shape branching tube

    The maximum flow rate of the piezoelectric pump can be expressed as

    From Eqs. (12) and (16),

    When piezoelectric vibrator is driven under a certain frequency, the maximum flow rate of the pump depends on branching levels, fractal dimensions of length and diameter distribution and the local resistance coefficient of the tube.So,

    This nonlinear flow resistance in Eqs. (12) and (16),caused by local pressure loss, does not only depend on the local resistance coefficient and the fractal dimensions of diameter distribution of the tube, but also relate to the flow rate. Therefore, the study utilized the finite element method to analyze the relationship between the flow rate and the pressure drop in the FYBT with different fractal dimensions of diameter distribution is conducted, so that critical standard of effectiveness can be judged.

    4 Simulation Analysis

    In this research, the software CFX is employed to perform the finite element analysis. The model of fractal-like Y-shape branching tube is established, and the duct width of each level is obtained, as shown in Table 1.

    Table 1. Duct widths of each level with different fractal dimensions of diameter distribution

    The model of fractal-like Y-shape branching tube is imported into finite element software, and its flow field is simulated with water as the working fluid. Due to the micro amplitude of vibration of piezoelectric vibrator, the flow is assumed to be laminar in this research. No-slip boundary conditions are applied at the FYBT surfaces. The overall pressure drop across the tube is defined as D p = pin- pout,where pinand poutare the inlet and outlet pressures,respectively. The reference pressure (atmosphere pressure)as the outlet pressure is loaded the outlet planes[16].

    The relationship between pressure drop and flow rate in the tube when flow is merging and dividing can be obtained respectively. Fig. 5 is velocity and pressure contour pattern of the tube along merging and dividing flows, when Dd=2,D p=20 Pa.

    Fig. 5. Velocity and pressure contour patterns of the fractal-like Y-shape branching tube, when

    Fig. 6 and Fig. 7 show the relationship curves between pressure drop and flow rate of the FYBT along merging and dividing flows respectively.

    Fig. 6. Curves between pressure drop and mass flow of the tube along dividing flow

    Fig. 7. Curves between pressure drop and mass flow of the tube along merging flow

    Simulation results show that, with pressure drop increase,export flow rate of tubes with different fractal dimensions of diameter distribution increases gradually. When pressure drop is fixed, with fractal dimensions of diameter distribution increase, export flow rate of tubes increase as well. Meanwhile, export flow rate of each tube is unequal for merging and dividing flows. According to Eq. 20, when difference of flow rate along merging and dividing flows becomes larger, the flow rate of the VPPFYT increases.

    5 Experimental Study

    Four VPPFYTs with different fractal dimensions of diameter distribution are fabricated, as shown in Fig. 8. The geometrical parameters of each tube are the same with Table 1.

    Fig. 9 represents a picture of flow measurement for the valveless piezoelectric pump with fractal-like Y-shape branching tubes. The piezoelectric pump is driven by an alternating sine-wave input. The input signal within 100 V peak to peak (VP-P) is controlled by a function generator[17].The liquid in the piezoelectric pump is deionized water.Through measuring the mass flow rate of VPPFYT in unit time by changing driving frequency of the piezoelectric vibrator, we can obtain the experimental results of volume flow rate with changing frequency under 100 VP-P. The results about the flow rate versus driving frequency are shown in Fig. 10.

    Fig. 8. Tubes with different fractal dimensions of diameter distribution

    Fig. 9. Schematic diagram of flow rate experiment

    The results show that the experimental result is in keeping with the result of simulation. With fractal dimensions of diameter distribution increases, the difference of flow resistance of FYBT along merging and dividing direction increase, which brings a larger flow rate of the pump. When Dd=3, the maximum flow rate of the valveless pump is 29.16 mL/min under 13 Hz.

    When the driving frequency is 13 Hz, we can obtain the curves of flow rate versus voltage of the pump with changing driving voltage of the piezoelectric vibrator as shown in Fig. 11. This figure demonstrates that flow rate of pump increase as driving voltage enhances. When Dd=3,the maximum flow rate of the valveless pump is 55.92 mL/min under 200 VP-P(13 Hz).

    Fig. 11. Curves between the flow rate and the driving voltage

    The experiments show the effectiveness of valveless piezoelectric pump with fractal-like Y-shape branching tubes, which prove that fractal-like Y-shape branching tube has different flow resistances in merging and dividing directions.

    6 Conclusions

    (1) The relationship between structure and flow resistance of fractal-like Y-shape branching tube is analyzed based on the fractal theory. Meanwhile, the flow rate characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes are analyzed. When piezoelectric vibrator is driven under a certain frequency,the maximum flow rate of the pump depends on branching levels, fractal dimensions of length and diameter distribution and the local resistance coefficient of the tube.

    (2) The finite element software is employed to simulate the flow filed of fractal-like Y-shape branching tube. And the relationships between pressure drop and flow rate of FYBT with different fractal dimensions of diameter distribution are obtained.

    (3) The valveless piezoelectric pumps with different fractal dimensions of diameter distribution are designed and fabricated. The relationships between the driving frequency and the flow rates, as well as the relationships between the driving voltage and the flow rates are experimentally investigated. The experimental results show that, with fractal dimension of diameter distribution increases, the flow rate of the pump increases. When Dd=3,the maximum flow rate of the valveless pump is 29.16 mL/min under 100 VP-P(13 Hz) power supply.

    [1] SINGHAL V, GARIMELLA S V, RAMAN A. Microscale pumping technologies for microchannel cooling systems[J]. Applied Mechanics Reviews, 2004, 57(3): 191–221.

    [2] MA H K, CHEN B R, GAO J J, et al. Development of an OAPCP-Micropump Liquid Cooling System in a Laptop[J].International Communications in Heat and Mass Transfer, 2009,36(3): 225–232.

    [3] XIAO Qinghua, CHEN Lingen, SUN Fengrui. Constructal entransy dissipation rate and flow-resistance minimizations for cooling channels[J]. Sci. China Tech. Sci., 2010, 53(9): 2458–2468.

    [4] CHI Yong, TANG Yong, CHEN Jinchang, et al. Miniaturized capillary pumped loop heat controlling system and it’s manufacturing technique[J]. Chinese Journal of Mechanical Engineering, 2007, 43(12): 166–170. (in Chinese)

    [5] LI Yong, HE Ting, ZENG Zhixin. Analysis of collapse in flattening a micro-grooved heat pipe by lateral compression[J]. Chinese Journal of Mechanical Engineering, 2012, 25(6): 1210–1217.

    [6] TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126–129.

    [7] PENG Xiaofeng, PETERSON G P. Convective heat transfer and flow friction for water flow in microchannel structures[J]. Int. J.Heat Mass Transfer, 1996, 39(12): 2599–2608.

    [8] BEJAN A, ERRERA M R. Deterministic tree networks for fluid flow: geometry for minimal flow resistance between a volume and one point[J]. Fractals, 1997, 5(4): 685–695.

    [9] PENCE D V. Improved thermal efficiency and temperature uniformity using fractal-like branching channel networks[C]//Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Micro Scale. Banff, Canada,2000: 142–148.

    [10] CHEN Yongping, CHENG Ping. Heat transfer and pressure drop in fractal tree-like microchannel nets[J]. Int. J. Heat Mass Transfer,2002, 45(13): 2643–2648.

    [11] XU Peng, YU Boming, YUN Meijuan, et al. Heat conduction in fractal tree-like branched networks[J]. Int. J. Heat Mass Transf.,2006, 49(19–20): 3746–3751.

    [12] ZHANG Jianhui, LI Yili, XIA Qixiao. Analysis of the pump volume flow rate and tube property of the piezoelectric valveless pump with Y-shape tubes[J]. Chinese Journal of Mechanical Engineering, 2007,43(11): 136–141. (in Chinese)

    [13] ZHANG Jianhui, LU Jizhuang, XIA Qixiao, et al. Application of valve-less piezoelectric pump with Y-shape tubes for transporting cells and macromolecule[J]. Chinese Journal of Mechanical Engineering, 2008, 44(9): 92–99. (in Chinese)

    [14] MANDELBROT B B. The fractal geometry of nature[M]. New York,W. H. Freeman and Company, 1982.

    [15] IZZO I, ACCOTO D, MENCIASSI A, et al. Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves[J]. Sens. Actuators A, 2007, 133(1): 128–140.

    [16] XIA Qixiao, ZHANG Jianhui, LEI Hong, et al. Analysis on flow field of the valveless piezoelectric pump with two inlets and one outlet and a rotating unsymmetrical slopes element[J]. Chinese Journal of Mechanical Engineering, 2012, 25(3): 474–483.

    [17] WANG Baowei, CHU Xiangcheng, LI Enzhu, et al. Simulations and analysis of a piezoelectric micropump[J]. Ultrasonics, 2006, 44:643–646.

    色哟哟哟哟哟哟| 亚洲精华国产精华精| 中文字幕精品亚洲无线码一区| 亚洲国产精品久久男人天堂| 熟妇人妻久久中文字幕3abv| 国产男靠女视频免费网站| 十八禁网站免费在线| 国模一区二区三区四区视频| av黄色大香蕉| 夜夜看夜夜爽夜夜摸| 久久精品国产自在天天线| 亚洲av日韩精品久久久久久密| 禁无遮挡网站| 欧美一级a爱片免费观看看| 又紧又爽又黄一区二区| 国产91精品成人一区二区三区| 女人十人毛片免费观看3o分钟| xxxwww97欧美| 免费看光身美女| 日韩欧美国产一区二区入口| 色综合站精品国产| 99久久精品国产亚洲精品| 看片在线看免费视频| 亚洲一区二区三区色噜噜| 国产欧美日韩一区二区三| 99久久无色码亚洲精品果冻| 国产单亲对白刺激| 亚洲色图av天堂| 色在线成人网| 一夜夜www| 首页视频小说图片口味搜索| 亚洲国产日韩欧美精品在线观看 | 无人区码免费观看不卡| 国产亚洲精品综合一区在线观看| 午夜影院日韩av| a级毛片a级免费在线| 欧美日韩福利视频一区二区| 可以在线观看毛片的网站| 中文亚洲av片在线观看爽| 久久精品夜夜夜夜夜久久蜜豆| 制服丝袜大香蕉在线| 18禁黄网站禁片午夜丰满| 99久久成人亚洲精品观看| 国产真实乱freesex| 亚洲狠狠婷婷综合久久图片| 亚洲成人中文字幕在线播放| 国产免费av片在线观看野外av| 亚洲精品色激情综合| 国产伦人伦偷精品视频| 99久久无色码亚洲精品果冻| 三级毛片av免费| 国产久久久一区二区三区| 国产伦精品一区二区三区四那| 久久久久久久久中文| 午夜日韩欧美国产| 亚洲精品一卡2卡三卡4卡5卡| 91字幕亚洲| 国产蜜桃级精品一区二区三区| 中文字幕人妻丝袜一区二区| 观看美女的网站| 成年人黄色毛片网站| 亚洲天堂国产精品一区在线| 久久久久久人人人人人| 叶爱在线成人免费视频播放| 亚洲人成网站在线播| 欧美不卡视频在线免费观看| 草草在线视频免费看| 男女视频在线观看网站免费| 国产精品一区二区免费欧美| 国产午夜福利久久久久久| 国产精品一区二区三区四区久久| 国产成人av教育| 亚洲中文日韩欧美视频| 亚洲真实伦在线观看| 最近视频中文字幕2019在线8| 免费在线观看成人毛片| 精品人妻一区二区三区麻豆 | 国产欧美日韩一区二区精品| 黄色丝袜av网址大全| 少妇熟女aⅴ在线视频| 欧美+亚洲+日韩+国产| 亚洲精品色激情综合| 久久亚洲真实| xxxwww97欧美| 欧美乱码精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 99热只有精品国产| aaaaa片日本免费| 国产久久久一区二区三区| 国产欧美日韩精品一区二区| 亚洲国产精品合色在线| 国产三级中文精品| 亚洲精品色激情综合| 欧美成人a在线观看| 首页视频小说图片口味搜索| 中文字幕久久专区| 国内精品一区二区在线观看| av在线蜜桃| av中文乱码字幕在线| 日本精品一区二区三区蜜桃| 国产91精品成人一区二区三区| 欧美一区二区亚洲| 夜夜爽天天搞| 黄色片一级片一级黄色片| 性欧美人与动物交配| 精品久久久久久成人av| 级片在线观看| 久久久精品大字幕| 国产精品一区二区三区四区免费观看 | 成人无遮挡网站| 国产麻豆成人av免费视频| 99久久综合精品五月天人人| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 九九热线精品视视频播放| 啪啪无遮挡十八禁网站| 久久久久九九精品影院| 欧美色视频一区免费| 日本在线视频免费播放| 淫妇啪啪啪对白视频| 成人一区二区视频在线观看| 男女那种视频在线观看| 99精品在免费线老司机午夜| 亚洲国产日韩欧美精品在线观看 | 18禁在线播放成人免费| 免费观看的影片在线观看| 老司机福利观看| 在线播放无遮挡| 成人av一区二区三区在线看| 草草在线视频免费看| 精品免费久久久久久久清纯| 久99久视频精品免费| 黄色丝袜av网址大全| 少妇熟女aⅴ在线视频| av中文乱码字幕在线| 久久香蕉国产精品| 男人的好看免费观看在线视频| 性欧美人与动物交配| 在线国产一区二区在线| 成人av一区二区三区在线看| 久久精品国产清高在天天线| 18禁美女被吸乳视频| xxxwww97欧美| 欧美最黄视频在线播放免费| 国产亚洲精品综合一区在线观看| 亚洲中文字幕日韩| 日韩欧美精品v在线| 精华霜和精华液先用哪个| 亚洲无线在线观看| 国产精品 国内视频| 51国产日韩欧美| 国产成人av教育| 亚洲av电影不卡..在线观看| 啦啦啦韩国在线观看视频| 手机成人av网站| 精品人妻1区二区| 19禁男女啪啪无遮挡网站| 嫁个100分男人电影在线观看| 色综合欧美亚洲国产小说| 亚洲中文日韩欧美视频| 老汉色∧v一级毛片| 国产精品,欧美在线| 天天躁日日操中文字幕| 成年女人毛片免费观看观看9| 中文字幕av在线有码专区| 精品一区二区三区人妻视频| 色吧在线观看| 午夜福利在线观看吧| 色综合欧美亚洲国产小说| 色老头精品视频在线观看| 宅男免费午夜| 国产精品亚洲av一区麻豆| 波野结衣二区三区在线 | 操出白浆在线播放| 亚洲国产欧美网| 男人舔女人下体高潮全视频| 51国产日韩欧美| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| 国产视频内射| av在线蜜桃| 天美传媒精品一区二区| 久久久精品大字幕| 国产男靠女视频免费网站| 国产高清有码在线观看视频| 成人精品一区二区免费| 国产免费av片在线观看野外av| 午夜精品久久久久久毛片777| 一本综合久久免费| 一进一出好大好爽视频| 日本黄色片子视频| 91久久精品电影网| 最后的刺客免费高清国语| 天堂av国产一区二区熟女人妻| 18禁黄网站禁片免费观看直播| 日本一二三区视频观看| 欧美高清成人免费视频www| 人人妻,人人澡人人爽秒播| 夜夜爽天天搞| 国产亚洲精品av在线| 久久精品国产亚洲av香蕉五月| 最近在线观看免费完整版| 国产精品99久久久久久久久| 中文字幕人妻丝袜一区二区| 人妻久久中文字幕网| 国产一区二区三区视频了| 深爱激情五月婷婷| 日日夜夜操网爽| 无遮挡黄片免费观看| 啪啪无遮挡十八禁网站| 亚洲午夜理论影院| 十八禁网站免费在线| 亚洲欧美精品综合久久99| 麻豆久久精品国产亚洲av| 狠狠狠狠99中文字幕| 精品国内亚洲2022精品成人| 97人妻精品一区二区三区麻豆| 亚洲成av人片免费观看| 免费av不卡在线播放| 国产成人福利小说| 亚洲国产精品久久男人天堂| av天堂在线播放| 一边摸一边抽搐一进一小说| 在线十欧美十亚洲十日本专区| 波多野结衣高清作品| 少妇的丰满在线观看| 身体一侧抽搐| a在线观看视频网站| 亚洲国产日韩欧美精品在线观看 | 国产激情偷乱视频一区二区| 精品乱码久久久久久99久播| 国产亚洲欧美98| 夜夜看夜夜爽夜夜摸| 18禁美女被吸乳视频| 99热精品在线国产| 欧美午夜高清在线| 精品久久久久久成人av| 日韩成人在线观看一区二区三区| 少妇人妻精品综合一区二区 | 国产精品影院久久| 久9热在线精品视频| 激情在线观看视频在线高清| 露出奶头的视频| 久久人妻av系列| 日韩成人在线观看一区二区三区| 精品无人区乱码1区二区| 久久国产精品影院| 亚洲国产精品成人综合色| 午夜视频国产福利| 男女床上黄色一级片免费看| 精品日产1卡2卡| 在线观看av片永久免费下载| 日韩亚洲欧美综合| 熟女电影av网| 嫩草影院入口| 欧美激情久久久久久爽电影| 香蕉丝袜av| 成人一区二区视频在线观看| 欧美黑人欧美精品刺激| 国产精品 欧美亚洲| 99国产极品粉嫩在线观看| 午夜免费激情av| 国内精品一区二区在线观看| 免费观看人在逋| 国产欧美日韩精品一区二区| 亚洲精品色激情综合| 校园春色视频在线观看| 少妇人妻一区二区三区视频| 国产日本99.免费观看| 国产午夜福利久久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产精品野战在线观看| 免费电影在线观看免费观看| 法律面前人人平等表现在哪些方面| 神马国产精品三级电影在线观看| 亚洲成人久久爱视频| 欧美区成人在线视频| 日本免费a在线| 天堂av国产一区二区熟女人妻| 国产精品免费一区二区三区在线| 久久伊人香网站| 美女大奶头视频| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久久电影 | 色哟哟哟哟哟哟| 免费搜索国产男女视频| 伊人久久精品亚洲午夜| 欧美性猛交黑人性爽| 最近最新中文字幕大全电影3| 欧美在线黄色| 女人被狂操c到高潮| 日韩人妻高清精品专区| 国产亚洲精品久久久com| 精品福利观看| 久久6这里有精品| 国产亚洲精品综合一区在线观看| 欧美一区二区国产精品久久精品| 美女被艹到高潮喷水动态| 亚洲,欧美精品.| 亚洲不卡免费看| 色在线成人网| 最新在线观看一区二区三区| 日韩人妻高清精品专区| 国产美女午夜福利| 欧美一区二区精品小视频在线| 桃红色精品国产亚洲av| 国产精品久久久久久久电影 | 9191精品国产免费久久| 亚洲精品成人久久久久久| 亚洲av一区综合| xxxwww97欧美| 国产探花极品一区二区| 亚洲美女视频黄频| 久久久色成人| 国产亚洲精品综合一区在线观看| 3wmmmm亚洲av在线观看| 国产亚洲精品久久久com| 人人妻人人看人人澡| 精华霜和精华液先用哪个| a在线观看视频网站| 亚洲av中文字字幕乱码综合| 日韩欧美精品v在线| 最后的刺客免费高清国语| 国产激情欧美一区二区| 日本与韩国留学比较| www.www免费av| 免费观看精品视频网站| 村上凉子中文字幕在线| 国产成人影院久久av| 亚洲欧美日韩高清在线视频| 国产真实伦视频高清在线观看 | 亚洲欧美日韩卡通动漫| 欧美绝顶高潮抽搐喷水| 搡老妇女老女人老熟妇| 天天一区二区日本电影三级| 精品免费久久久久久久清纯| 岛国在线观看网站| 99久久无色码亚洲精品果冻| 欧美最新免费一区二区三区 | 久久精品91无色码中文字幕| 精品99又大又爽又粗少妇毛片 | 男人舔奶头视频| 99久久无色码亚洲精品果冻| 国产又黄又爽又无遮挡在线| 国产精品亚洲一级av第二区| 国产精品久久久人人做人人爽| 18禁裸乳无遮挡免费网站照片| 日日摸夜夜添夜夜添小说| 国产一区二区在线观看日韩 | 国产精品电影一区二区三区| 97人妻精品一区二区三区麻豆| 男人的好看免费观看在线视频| 久久久久免费精品人妻一区二区| 九九久久精品国产亚洲av麻豆| av女优亚洲男人天堂| 成人国产综合亚洲| 变态另类丝袜制服| 日韩欧美国产在线观看| 最好的美女福利视频网| 亚洲最大成人手机在线| 三级国产精品欧美在线观看| 熟女人妻精品中文字幕| 成人国产一区最新在线观看| 夜夜夜夜夜久久久久| 成人亚洲精品av一区二区| 亚洲精品在线观看二区| 很黄的视频免费| av天堂在线播放| 97超级碰碰碰精品色视频在线观看| 日本五十路高清| 免费在线观看亚洲国产| 成人三级黄色视频| 成人鲁丝片一二三区免费| 2021天堂中文幕一二区在线观| 桃色一区二区三区在线观看| 精华霜和精华液先用哪个| 婷婷丁香在线五月| 国产精品av视频在线免费观看| 法律面前人人平等表现在哪些方面| 日本 av在线| svipshipincom国产片| 国产伦精品一区二区三区视频9 | 男女下面进入的视频免费午夜| 亚洲男人的天堂狠狠| 久久精品国产亚洲av香蕉五月| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 中文在线观看免费www的网站| 久久中文看片网| 国产高清三级在线| 国产一区二区激情短视频| 小蜜桃在线观看免费完整版高清| 欧美一区二区亚洲| 看黄色毛片网站| 在线免费观看的www视频| 男人的好看免费观看在线视频| 男插女下体视频免费在线播放| 欧美高清成人免费视频www| 精品乱码久久久久久99久播| 亚洲国产中文字幕在线视频| 国产高清视频在线播放一区| 免费搜索国产男女视频| 在线观看舔阴道视频| 草草在线视频免费看| 欧美日韩福利视频一区二区| 欧美区成人在线视频| 一个人免费在线观看电影| 男女那种视频在线观看| 日韩精品青青久久久久久| 国产精品久久视频播放| 亚洲成av人片在线播放无| 色综合亚洲欧美另类图片| 国产v大片淫在线免费观看| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说| 国产成人av激情在线播放| 日韩欧美精品v在线| 日本一二三区视频观看| 国内精品一区二区在线观看| 久久久国产精品麻豆| av黄色大香蕉| 少妇人妻一区二区三区视频| 操出白浆在线播放| 亚洲 欧美 日韩 在线 免费| 女人十人毛片免费观看3o分钟| 午夜日韩欧美国产| 88av欧美| 亚洲国产精品久久男人天堂| 男女午夜视频在线观看| 麻豆成人午夜福利视频| 三级男女做爰猛烈吃奶摸视频| 亚洲av电影在线进入| 男女那种视频在线观看| 99国产极品粉嫩在线观看| 日韩欧美精品v在线| 亚洲av免费高清在线观看| 国产伦在线观看视频一区| 亚洲片人在线观看| 国内精品久久久久久久电影| 久久久久久人人人人人| 免费观看的影片在线观看| 免费看光身美女| 国产精品久久久久久精品电影| 成年免费大片在线观看| 12—13女人毛片做爰片一| 中亚洲国语对白在线视频| 搞女人的毛片| 舔av片在线| 丰满人妻熟妇乱又伦精品不卡| 美女大奶头视频| av片东京热男人的天堂| 精品电影一区二区在线| 久久久色成人| 成人特级黄色片久久久久久久| 国产精品久久久久久人妻精品电影| 91在线观看av| 亚洲熟妇中文字幕五十中出| 中文字幕人妻熟人妻熟丝袜美 | 成人无遮挡网站| 老熟妇乱子伦视频在线观看| 日本免费a在线| 欧美乱码精品一区二区三区| 亚洲无线在线观看| 国产欧美日韩精品一区二区| 久久精品影院6| 国产高清三级在线| 宅男免费午夜| 丰满人妻熟妇乱又伦精品不卡| 国内少妇人妻偷人精品xxx网站| 欧美成人a在线观看| 一区二区三区国产精品乱码| 亚洲国产欧美人成| 免费人成在线观看视频色| 男女床上黄色一级片免费看| 久久久久精品国产欧美久久久| 少妇人妻一区二区三区视频| x7x7x7水蜜桃| 久久精品人妻少妇| 国产淫片久久久久久久久 | 91在线观看av| 国产精品爽爽va在线观看网站| 国产av麻豆久久久久久久| 亚洲熟妇中文字幕五十中出| 黑人欧美特级aaaaaa片| 亚洲激情在线av| 午夜久久久久精精品| 国产蜜桃级精品一区二区三区| 国产精品久久电影中文字幕| 中文字幕人成人乱码亚洲影| 少妇的丰满在线观看| 国产成人系列免费观看| 久久草成人影院| av国产免费在线观看| 99久久综合精品五月天人人| 亚洲真实伦在线观看| 91av网一区二区| 国产精品嫩草影院av在线观看 | 国产精品一及| av黄色大香蕉| 香蕉av资源在线| 尤物成人国产欧美一区二区三区| 最新中文字幕久久久久| 亚洲av电影不卡..在线观看| 欧美在线黄色| 成熟少妇高潮喷水视频| av国产免费在线观看| 特大巨黑吊av在线直播| 国产一区二区在线观看日韩 | 精品不卡国产一区二区三区| 最近最新免费中文字幕在线| av福利片在线观看| 日韩高清综合在线| 女同久久另类99精品国产91| 一本久久中文字幕| 国产一级毛片七仙女欲春2| 国产欧美日韩一区二区精品| 国产高清视频在线播放一区| 99精品久久久久人妻精品| 中文字幕av成人在线电影| 欧美色欧美亚洲另类二区| 欧美日本亚洲视频在线播放| 欧美色欧美亚洲另类二区| 国产午夜精品久久久久久一区二区三区 | 两性午夜刺激爽爽歪歪视频在线观看| 一个人免费在线观看电影| 成人国产综合亚洲| 国产黄色小视频在线观看| 手机成人av网站| 亚洲成av人片免费观看| 一区二区三区激情视频| 久久久国产成人免费| 久久久久久九九精品二区国产| 热99re8久久精品国产| 日韩免费av在线播放| 亚洲人成电影免费在线| 久久久久亚洲av毛片大全| 欧美3d第一页| 午夜a级毛片| 久久国产精品人妻蜜桃| 久久久久久久午夜电影| 又黄又粗又硬又大视频| 一区二区三区免费毛片| 老汉色∧v一级毛片| 日本撒尿小便嘘嘘汇集6| 五月伊人婷婷丁香| 午夜久久久久精精品| 少妇丰满av| 国产成人a区在线观看| 国产精品自产拍在线观看55亚洲| 一个人看视频在线观看www免费 | 婷婷精品国产亚洲av| 色精品久久人妻99蜜桃| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线 | 亚洲欧美精品综合久久99| 欧美午夜高清在线| 成人欧美大片| 制服丝袜大香蕉在线| 国产黄片美女视频| 国产精品嫩草影院av在线观看 | 女人被狂操c到高潮| 男人舔女人下体高潮全视频| 最新美女视频免费是黄的| 99热只有精品国产| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 欧美精品啪啪一区二区三区| 十八禁人妻一区二区| 好男人电影高清在线观看| 狂野欧美激情性xxxx| 国产伦精品一区二区三区视频9 | 亚洲专区中文字幕在线| 99热6这里只有精品| 国产午夜精品久久久久久一区二区三区 | 国产精品野战在线观看| 久久天躁狠狠躁夜夜2o2o| 婷婷精品国产亚洲av在线| 一本精品99久久精品77| 一夜夜www| 国内少妇人妻偷人精品xxx网站| 丰满人妻熟妇乱又伦精品不卡| 听说在线观看完整版免费高清| 午夜福利在线观看免费完整高清在 | 亚洲av成人精品一区久久| 狠狠狠狠99中文字幕| 91字幕亚洲| 国产aⅴ精品一区二区三区波| 性色av乱码一区二区三区2| 亚洲成人久久性| 成人18禁在线播放| 制服丝袜大香蕉在线| ponron亚洲| 丰满人妻熟妇乱又伦精品不卡| 国内毛片毛片毛片毛片毛片| 人妻夜夜爽99麻豆av| 国产精品 欧美亚洲| 免费大片18禁| 国产高潮美女av| 高清在线国产一区| 国产伦人伦偷精品视频| 国产乱人视频| 国产又黄又爽又无遮挡在线| 两个人视频免费观看高清| 波多野结衣高清无吗| 淫妇啪啪啪对白视频| 国产精品 国内视频| 久久国产乱子伦精品免费另类| 怎么达到女性高潮| 一区二区三区免费毛片| 成人三级黄色视频| 少妇的逼水好多| 欧美成狂野欧美在线观看| 最新中文字幕久久久久| 香蕉久久夜色| 久久久国产成人免费| 午夜免费观看网址|