• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation and Analysis of Power Consumption and Metzner-Otto Constant for Impeller of 6PBT

    2014-03-01 01:47:48LUANDeyuCHENQiaoandZHOUShenjie

    LUAN Deyu, CHEN Qiao and ZHOU Shenjie

    1 School of Mechanical and Electrical Engineering, Qingdao University of Science and Technology,Qingdao 266061, China

    2 School of Mechanical Engineering, Shandong University, Jinan 250061, China

    1 Introduction

    Stirred tanks are widely used in chemical industries and biotechnological processes for mixing highly viscous non-Newtonian fluids[1]. Majority of these non-Newtonian fluids are pseudoplastic with shear-thinning property, and some also possess a yield stress. The rheological complexities of pseudoplastic fluids can cause a variety of difficulties, including most important changes in viscosity during processing. For example, shear-thinning fluids are viscous at the beginning, and then once the shear rate is increased the viscosity will drops dramatically, as well as being different in different parts of the mixing tank. In these situations, it is difficult to predict accurately the power consumption and mean shear rate in a stirred vessel to achieve a optimum way of economical mixing. Apparent viscosity concept proposed by Metzner and Otto[2]has been adapted widely and become a classical method of solving the power consumption for mixing of non-Newtonian fluids.The concept assumes that the mean shear rate γ˙is proportional to the rotation speed of impeller, where the proportional coefficient ksis referred to as the Metzner-Otto constant. The power curve of non-Newtonian fluids obtained using the Metzner-Otto method is consistent with that of Newtonian fluids. This explains the fact that the Metzner-Otto method is a widely used method to design impellers for non-Newtonian fluids applications[3–4]. As a result, the ksvalue has become a key factor to predict power consumption. It is readily agreed that ksis a function of impeller geometry, but there are some conflicting conclusions regarding the relationship between ksand fluid rheological index n. For instance, BECKNER, et al[5],and SAWINSKY, et al[6], concluded thatsk decreases sharply as n increases. However, CALDERBANK, et al[7], SCHILO[8]and SESTAK, et al[3], found that ksdecreases weakly as n increases. TANGUY, et al[9], and CARREAU, et al[10], reported that ksincreases slowly with the increasing n. The work of POLLARD, et al[11]and RIEGER, et al[12]showed that ksis a constant that should be insensitive to the rheological properties of the fluids in the laminar regime for any given impeller geometry. Generally, close-clearance impellers, such as anchors, helical screws or helical ribbons, are recommended for mixing highly viscous non-Newtonian fluids as the most effective mixers. However, such impellers, for example helical ribbons, are sensitive to highly shear-thinning behavior which reduces their mixing effectiveness[13].

    The impeller composed of perturbed six-bent-bladed turbine (6PBT) is an improved shape on basis of six-bent-bladed turbine (6BT) with its good mixing performance and its capacity of operating over a wide viscosity range. The six bent blades are perturbed up and down, respectively, to generate the periodically changeable flow in a stirred tank and then induce the chaotic mixing of pseudoplastic fluids[14]. Therefore, the aim of this paper is to use computational fluid dynamics (CFD) as a tool to study the power consumption of the 6PBT impeller with different geometries in stirring pseudoplastic fluids possessing yield stress. The experimental power values are used to validate the CFD model. The influence of pseudoplasticity is analyzed using the classical approaches found in the literature, such as Metzner-Otto concept[2]and Rieger-Novak method[12]. This work provides the complete correlations of power constant and Metzner-Otto constant with impeller geometry. These results can be used to accurately predict the power consumption and mean shear rate of the pseudoplastic fluids in laminar flow region,comparatively.

    2 Experimental Setup and Procedure

    The experimental setup is shown in Fig. 1. The mixing vessel used in this work consists of a transparent cylindrical tank of diameter (T) 0.21 m. The flat-bottomed tank was fitted with four equally spaced flat baffles, each with a width (w) equal to T/10. The fluid height (H) was maintained constant at a height equal to the tank diameter.The 6PBT impeller was mounted on a centrally located shaft of diameter 0.016 m and driven by a variable-speed motor. The impeller was positioned at an off-bottomed clearance (C) of T/3 and backswept angle of blade is θ.Further details about the geometrical characteristics of the stirred tank are showed in Fig. 1. The torque and speed of the impeller were measured using a rotary-torque transducer.

    A Newtonian fluid (glycerine solution) and seven types of opaque xanthan gum solutions in water at different mass concentrations ranging from 0.5 wt %–2.0 wt % were used in this work. The rheological properties of the fluids were determined by a Brookfield rheometer.

    For Newtonian fluid, the viscosity is independent of the shear rate at a fixed temperature. The density ρ of glycerine solution measured is 1260 kg/m3, and its viscosity η=0.799 Pa ? s. Theoretical and experimental studies[15]have shown that the power number Npis inversely proportional to the Reynolds number Re in the laminar flow:

    where N is impeller speed, and D is impeller diameter.

    Fig. 1. Experimental setup

    The power consumption P drawn by the impeller, was computed by means of the torque

    where M is the moment vector about the center of the impeller.

    Then the power number Npwas calculated as follows

    The xanthan gum solution is a pseudoplastic fluid with a yield stress. Thus, its rheology can be described by Herschel-Bulkley model[16-17]:

    Table 1 summarizes the rheological parameters of xanthan gum solutions with seven mass concentrations based on measured data.

    Table 1. Rheological parameters of xanthan gum solutions

    Metzner-Otto correlation was used to obtain apparent Reynolds number for Herschel-Bulkley fluids. According to this correlation, the mean shear rate can be related to the impeller speed by

    where ksis Metzner-Otto constant and it is assigned a value of 11.5 for the radial flow impeller[18],is mean shear rate.

    The mean shear rate can be used to evaluate the apparent viscosity aη of the solutions using Herschel-Bulkley rheological model:

    The apparent Reynolds numbercan be defined as

    Metzner-Otto and Rieger-Novak methods are widely used to solve ksvalue. Metzner-Otto method defines Renand Kpnby

    where Rne is Reynolds number for non-Newtonian fluids,is power constant for non-Newtonian fluids, it is a function of n, so that

    The ksvalue can be directly calculated from Eq. (11)and this method is also referred to as direct calculation of

    Rieger-Novak method is denoted as the slope method based on the linearized Eq. (11):

    If ln Kpnhas a linear relationship with (1?n), it shows that ksis independent of the flow behavior index n. Then the ksvalue can be obtained from the slope of the straight line resulting from the plot of ln Kpnversus (1?n).

    WANG, et al[19], found that when ksis independent of the flow behavior index n, the slope method which avoids exponential operation, can be applied to predict ksmore accurately than direct calculation method. Therefore,Rieger-Novak method was adopted to determine kpand ksvalue through CFD data- processing in this work.

    3 CFD Simulations

    Fluent V6.3 (Fluent Inc.) was used to simulate the steady-state 3D flow field in laminar regime by solving the conservation of mass and momentum equations. It utilized the steady-state multiple reference frames (MRF) technique to realistically model the rotation of the impeller in the mixing vessel. This technique has been found to yield flow field predictions comparable to those obtained using the sliding mesh (SM) model[20–21]. A pre-processor (Gambit 2.3, Fluent Inc.) was used to discretize the flow domain with a tetrahedral mesh. The domain is segmented into two zones: stator zone and rotor zone (Fig. 2). Grid independence was verified by demonstrating the additional requirement on mesh cells that did not change the calculated power number and velocity magnitude in the regions of high velocity gradients close to the impeller blades by more than 3%. The original 3D mesh of the model for calculation domain had about 342 100 cells by taking the 6PBT impeller ofas an example. The number increased to about 660 500 to verify the grid independency. This increase changed the velocity and power number in regions of high velocity gradients by more than 3%. When the number of cells further increased to 1 086 432, the velocity and power number changed by less than 3% in the regions of high velocity gradients.Therefore, 1 086 432 cells were employed. The same mesh density was used to determine the number of cells for the other 6PBT impellers with differently geometrical characteristics.

    Fig. 2. Computational grids of the stirred system

    No slip boundary conditions were imposed at the solid walls of the tank and the impeller, while the free surface at the top of the vessel was treated as a flat, shear free boundary. The xanthan gum solution rheology was modeled as Herschel-Bulkley fluid. Simulations were considered converged when the scaled residuals were below 1× 1 0?5for each transport equation. The original condition was determined as 0.

    4 Results and Discussions

    4.1 Validation of CFD model

    CFD results for the power consumption of the 6PBT impeller (= 0.2and θ= 30?) in glycerine solution at different rotational speeds were compared to experimental data (Fig. 3) to validate the model. These results show good agreement between calculated power consumption and the experimentally determined values,which validated the laminar flow model developed in this study.

    Fig. 3. Comparison between calculated powers and experimental values at different rotational speeds

    Fig. 4 shows the calculated power number Npversus the apparent Reynolds number*Re in Newtonian and pseudoplastic fluids. It can be seen that the line with the slope of ?1 fits the data quite well at*Re less than 30,namely, the critical Reynolds number is 30 in laminar regime for pseudoplastic fluids. Based on the apparent viscosity method, all the power number curves for shear-thinning fluids are in coincidence with those of Newtonian fluids.

    Fig. 4. Calculated power number vs. apparent Reynolds number for 6PBT impeller

    4.2 CFD solution of ks and Kp

    Fig. 5 shows typical power consumption of the shear thinning fluids in laminar regime for illustrating the effects of rheological index (using 6PBT impeller withand θ= 30?). It is observed that power consumption decreases as a function of the level of rheological index for a given Rne, and a group of parallel lines are also presented with the slope of ?1 from a log-log plot of Npversus Ren. Thus, Kpnvalues are dependent on n value and decrease with n.

    Fig. 5. Curve of Np vs Rne for 6PBT impeller

    The relationship curve of ln Kpnversus (1?n) for 6PBT impeller was plotted in Fig. 6 using the data from Newtonian and the pseudoplastic fluids based on Riger-Novak method. It can be seen that ln Kpnhas a linear relationship with (1?n). So ksis independent of the flow behavior index n for 6PBT impeller, which is consistent with the conclusion of other radial impeller, according to the above analysis. It is determined that the value of ksis 14.8 by the line slope, and the value of Kpis 84.2 as n= 1.

    Fig. 6. Relationship of ln Kpn vs (1 ?n)for 6PBT impeller

    4.3 Complete correlations of Kp, as well as ks,with impeller geometrical characteristics

    The power consumptions of ten 6PBT impellers with differently geometrical characteristics in laminar regime were numerically calculated at rotatory speed of 15 r/min,30 r/min, 45 r/min, 60 r/min, 75 r/min, and 90 r/min,respectively, by using xanthan gum solutions in water at seven mass concentrations. The Kpvalue of the 6PBT impeller could be solved by the above method, and the value of kswas obtained by the line slope of ln Kpnversus(1?n). These results are summarized in Table 2.

    Table 2. Kp and ks values for 6PBT impeller with differently geometrical characteristics

    For all the 6PBT impellers, a linear regression analysis on Kpand ksdata provided the following correlations in the laminar regime with a standard error of 7.31 % and 6.82%, respectively.

    In order to verify the regression correlations, the power consumption of the 6PBT impellers in laminar regime was calculated again at the other rotatory speed of 9 r/min, 18 r/min, 24 r/min, 36 r/min, 54 r/min, and 72 r/min,respectively. Table 3 shows the computed results.

    Table 3. Kp and ks values of the 6PBT impellers at other speeds

    The following correlations were obtained by the linear regression analysis on Kpand ksdata:

    The standard errors of the two correlations on Kpand ksare 8.47 % and 7.61%, respectively. It can be seen that the standard errors have very slight variations. Therefore, the above two sets of Kpandsk data (in Table 2 and Table 3)were put together and a linear regression analysis was conducted once again. Kpand kscould be correlated by the following equations with a standard error of 6.80 % and 5.93 %, respectively.

    It is noticed that the values of the standard error drop slightly, which indicates that the computed value of Kpand ks, obtained by the above three sets of the complete correlations, seems similar. The error of 6.80 %and 5.93 % on Kpand ksdata, respectively, is a fully acceptable result for engineering design. Here, Eqs. (17)and (18) are adopted as the final regression correlations in this study to solve the Kpand ksvalue of the 6PBT impeller. The ranges of two correlations covered are

    5 Conclusions

    (1) Ten types of 6PBT impeller were investigated quantitatively in terms of power consumption as a function of impeller geometry and the pseudoplasticity of the fluid in the laminar region by using the CFD method. The numerical power consumption results with Newtonian fluid were in good agreement with the experimental data, which validated the laminar model developed in this study.

    (2) A shift of the upper limit Reynolds number was observed as 30 in various shear thinning fluids for the laminar regime towards transitional flow regime.

    (3) For 6PBT impeller, based on Rieger and Novak’s method, the Kpnvalue is close dependent on n value and decrease with n. The ln Kpnhas a linear relationship with(1-n), therefore, ksis nearly independent of n value even for highly shear thinning fluids and depends only on the impeller geometrical characteristics.

    (4) The computed data of Kpand ksfrom the slope method are correlated with the geometrical ratiosand θ through the linear regression analysis with different speeds. The standard errors of the two correlations, Kpand ks, are 6.80 % and 5.93 %,respectively, values acceptable for engineering design. As a result, the correlations can be used to predict accurately the power consumption and average shear rate of pseudoplastic fluids in laminar flow.

    [1] EIN-MOZAFFARI F, UPRETI S R. Using ultrasonic doppler velocimetry and CFD modeling to investigate the mixing of non-Newtonian fluids possessing yield stress[J]. Chem Eng Res Des,2009, 87(4): 515–523.

    [2] METZNER A B, OTTO R E. Agitation of non-Newtonian fluids[J].AIChE J, 1957, 3(1): 3–11.

    [3] SESTAK J, ZITNY R, HOUSKA M. Anchor-agitated systems:Power input correlation for pseudoplastic and thixotropic fluids in equilibrium[J]. AIChE J, 1986, 32(1): 155–158.

    [4] TANGUY P A, LACROIX R, BERTRAND F, et al. Finite element analysis of viscous mixing with a helical ribbon-screw impeller[J].AIChE J, 1992, 38(6): 939–944.

    [5] BECKNER J L, SMITH J M. Anchor-agitated systems: Power input with Newtonian and pseudo-plastic fluids[J]. Trans Instn Chem Engrs, 1966, 44(6): 224–236.

    [6] SAWINSKY J, BALINT A, BENDE S. Conversion for laminar flow of bingham plastic fluids in an isothermal tube reactor[J].Chem Eng Sci, 1988, 43(5): 1209–1211.

    [7] CALDERBANK P H, MOO-YANG M B. Power characteristics of agitators for mixing of Newtonian and non-Newtonian fluids[J].Trans Instn Chem Engrs, 1961, 39(5): 337–347.

    [8] SCHILO D. Power requirements of tangential stirrers for stirring non-Newtonian liquids[J]. Chem Ing Tech, 1969, 41(5–6): 253–259.

    [9] TANGUY P A, THIBAULT F, DE LA FUENTE E B. A new investigation of the Metzner-Otto concept for anchor mixing impellers[J]. Can J Chem Eng, 1996, 74(2): 222–228.

    [10] CARREAU P J, CHHABRA R P, CHENG J. Effect of rheological properties on power consumption with helical ribbon agitators[J].AIChE J, 1993, 39(9): 1421–1430.

    [11] POLLARD J, KANTYKA T A. Heat transfer to agitated non-Newtonian fluids [J]. Trans Instn Chem Engrs, 1969, 47(1):21–27.

    [12] RIEGER F, NOVAK V. Power consumption scale-up in agitating non-Newtonian fluids[J]. Chem Eng Sci, 1974, 29(11): 2229–2234.

    [13] BRITO-DE LA FUENTE E, CHOPLIN L, TANGUY P A. Mixing with helical ribbon impellers: effect of highly shear thinning behaviour and impeller geometry [J]. Chem Eng Res Des, 1997,75A1(A1): 45–52.

    [14] LUAN Deyu, ZHOU Shenjie, CHEN Songying, et al..,Investigation on the chaotic agitation of pseudoplastic fluid with a perturbed six-bent-bladed impeller [J]. China Chem Eng, 2011, 39(9): 41–46.(in Chinese)

    [15] NOVAK V, RIEGER F. Homogenization with helical screw agitator[J]. Trans Inst Chem Eng, 1969, 47 (10): 335–340.

    [16] PAKZAD L, EIN-MOZAFFARI F, CHAN P. Using electrical resistance tomography and computational fluid dynamics modeling to study the formation of cavern in the mixing of pseudoplastic fluids possessing yield stress[J]. Chem Eng Sci, 2008, 63(9):2508–2522.

    [17] SAEED S, EIN-MOZAFFARI F. Using dynamic tests to study the continuous mixing of xanthan gum solutions[J]. Chem Technol Biotechnol, 2008, 83(4): 559–568.

    [18] AMANULLAH A, HJORTH S A, NIENOW A W. Cavern sizes generated in highly shear thinning viscous fluids by SCABA 3SHP1 impeller[J]. FoodBioprod Process, 1997, 75(4): 232–238.

    [19] WANG Jiajun, FENG Lianfeng, GU Xueping, et al. Power consumption of inner-outer helical ribbon impellers in viscous Newtonian and non-Newtonian fluids[J]. Chem Eng Sci, 2000,55(12): 2339–2342.

    [20] BRUCATO A, CIOFALO M, CRISFI F, et al. Numerical prediction of flow fields in baffled stirred vessels: a comparison of alternative modeling approaches[J]. Chem Eng Sci, 1998, 53(21): 3653–3684.

    [21] DEEN N G, SOLBERG T, HJERTAGER B H. Flow generated by an aerated Rushton impeller: Two-phase PIV experiments and numerical simulations[J]. Can J Chem Eng, 2002, 80(4): 638–652.

    国产高清不卡午夜福利| 天天躁日日操中文字幕| 一级黄片播放器| 中文字幕人妻熟人妻熟丝袜美| 亚洲最大成人中文| 少妇被粗大猛烈的视频| 我要搜黄色片| 狂野欧美白嫩少妇大欣赏| 天堂影院成人在线观看| 亚洲国产高清在线一区二区三| av国产免费在线观看| 亚洲精品国产成人久久av| 能在线免费看毛片的网站| 成熟少妇高潮喷水视频| 亚洲经典国产精华液单| 国产精品免费一区二区三区在线| 最近手机中文字幕大全| 真实男女啪啪啪动态图| 我的老师免费观看完整版| 国产精品免费一区二区三区在线| 国产精品嫩草影院av在线观看| 日本在线视频免费播放| 99久久九九国产精品国产免费| 亚洲欧美精品专区久久| 免费大片18禁| 一卡2卡三卡四卡精品乱码亚洲| 久久久久免费精品人妻一区二区| av天堂在线播放| 久久精品综合一区二区三区| 久久人人爽人人片av| 国产欧美日韩精品一区二区| 亚洲精品日韩在线中文字幕 | 一卡2卡三卡四卡精品乱码亚洲| 欧美+日韩+精品| 自拍偷自拍亚洲精品老妇| a级毛片免费高清观看在线播放| 99在线视频只有这里精品首页| 亚洲av成人精品一区久久| 欧美日韩综合久久久久久| 国内揄拍国产精品人妻在线| 亚洲va在线va天堂va国产| 久久久久久久久久久丰满| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 综合色丁香网| 欧美高清性xxxxhd video| 黄色配什么色好看| 国产精品久久久久久精品电影| 免费人成视频x8x8入口观看| 亚洲国产精品久久男人天堂| 亚洲第一区二区三区不卡| 丰满人妻一区二区三区视频av| 国产精品久久视频播放| 亚洲av成人精品一区久久| 欧美日韩一区二区视频在线观看视频在线 | 我要看日韩黄色一级片| 又爽又黄无遮挡网站| 欧美日韩国产亚洲二区| avwww免费| 亚洲国产精品成人综合色| 欧美成人精品欧美一级黄| 亚洲在久久综合| 又粗又爽又猛毛片免费看| 午夜a级毛片| 亚洲激情五月婷婷啪啪| 久久久精品大字幕| 久久这里有精品视频免费| 久久久久国产网址| 国内精品美女久久久久久| 边亲边吃奶的免费视频| 国产真实伦视频高清在线观看| 99国产极品粉嫩在线观看| 男人舔奶头视频| 丰满的人妻完整版| 丰满乱子伦码专区| 久久久久久久午夜电影| 精品国产三级普通话版| 91麻豆精品激情在线观看国产| 99九九线精品视频在线观看视频| 丝袜美腿在线中文| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩无卡精品| 亚洲欧洲日产国产| 国产精品三级大全| 久久午夜亚洲精品久久| 亚洲欧美精品综合久久99| 欧美潮喷喷水| 网址你懂的国产日韩在线| 又粗又爽又猛毛片免费看| 久久久久久伊人网av| 亚洲最大成人av| 欧美在线一区亚洲| 国产美女午夜福利| 尤物成人国产欧美一区二区三区| 尾随美女入室| 不卡一级毛片| 亚洲美女视频黄频| 我要搜黄色片| 国产精品一区www在线观看| 亚洲国产精品久久男人天堂| 亚洲国产日韩欧美精品在线观看| 天堂中文最新版在线下载 | 亚洲激情五月婷婷啪啪| 高清日韩中文字幕在线| 最好的美女福利视频网| 男女下面进入的视频免费午夜| 国产黄a三级三级三级人| 美女内射精品一级片tv| 99热这里只有是精品在线观看| 久久久久久久亚洲中文字幕| 国内精品一区二区在线观看| 此物有八面人人有两片| 国产精品,欧美在线| 亚洲七黄色美女视频| 久99久视频精品免费| 又爽又黄a免费视频| 搞女人的毛片| 亚洲精品乱码久久久久久按摩| 国产私拍福利视频在线观看| а√天堂www在线а√下载| 国产成人影院久久av| 久久精品久久久久久久性| 亚洲三级黄色毛片| 人人妻人人澡人人爽人人夜夜 | 能在线免费看毛片的网站| 免费看日本二区| 日本三级黄在线观看| 亚洲人成网站在线观看播放| h日本视频在线播放| 国产极品天堂在线| 亚洲国产欧美在线一区| 久久韩国三级中文字幕| 亚洲成人久久爱视频| 高清毛片免费看| 欧美变态另类bdsm刘玥| 插逼视频在线观看| 男的添女的下面高潮视频| 乱人视频在线观看| 99久久成人亚洲精品观看| 亚洲一区二区三区色噜噜| a级毛片免费高清观看在线播放| 婷婷色av中文字幕| 午夜福利在线观看免费完整高清在 | 久久国产乱子免费精品| 波多野结衣高清作品| 天美传媒精品一区二区| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩高清在线视频| 国产极品精品免费视频能看的| 免费av毛片视频| or卡值多少钱| 久久久久九九精品影院| 如何舔出高潮| 日韩成人伦理影院| 国产成人精品久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 亚洲最大成人av| 99久国产av精品国产电影| 亚洲av电影不卡..在线观看| 久久久久久久久中文| 1000部很黄的大片| 亚洲av免费在线观看| 日日干狠狠操夜夜爽| 麻豆精品久久久久久蜜桃| 99精品在免费线老司机午夜| 国产成人精品久久久久久| 亚洲无线在线观看| 尤物成人国产欧美一区二区三区| 此物有八面人人有两片| 高清毛片免费观看视频网站| 欧美+日韩+精品| 丰满的人妻完整版| 成人二区视频| 国产午夜福利久久久久久| 亚洲精品国产成人久久av| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜福利久久久久久| a级毛片a级免费在线| 亚洲av电影不卡..在线观看| 此物有八面人人有两片| 国产精品久久久久久av不卡| 久久亚洲国产成人精品v| 久久99热这里只有精品18| 成人性生交大片免费视频hd| 一个人看的www免费观看视频| 一边亲一边摸免费视频| 校园春色视频在线观看| 久久精品人妻少妇| 午夜免费激情av| 欧美高清成人免费视频www| 久久精品夜夜夜夜夜久久蜜豆| 老司机影院成人| 欧美人与善性xxx| 国产精品免费一区二区三区在线| 人妻系列 视频| 三级经典国产精品| 亚洲av一区综合| 中文在线观看免费www的网站| 91午夜精品亚洲一区二区三区| 久久6这里有精品| 亚洲三级黄色毛片| 免费av毛片视频| 少妇人妻精品综合一区二区 | 久久精品国产清高在天天线| 一个人观看的视频www高清免费观看| 欧美高清性xxxxhd video| 色5月婷婷丁香| 在线观看av片永久免费下载| 日韩制服骚丝袜av| 久久午夜福利片| 亚洲图色成人| 人人妻人人看人人澡| 亚洲电影在线观看av| 国产真实伦视频高清在线观看| 久久综合国产亚洲精品| 国产麻豆成人av免费视频| 欧美潮喷喷水| 2022亚洲国产成人精品| 亚洲精品国产成人久久av| 久久精品国产亚洲网站| kizo精华| 热99在线观看视频| 最近手机中文字幕大全| 成人美女网站在线观看视频| 日本三级黄在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲精品久久久久久婷婷小说 | 国产午夜精品久久久久久一区二区三区| 97在线视频观看| 午夜爱爱视频在线播放| 亚洲丝袜综合中文字幕| 亚洲中文字幕一区二区三区有码在线看| 色吧在线观看| 国产精品久久久久久av不卡| 日本在线视频免费播放| 国产黄片美女视频| 精品一区二区免费观看| 国产精华一区二区三区| 一个人看的www免费观看视频| 少妇的逼好多水| 91精品国产九色| 国产免费一级a男人的天堂| 丝袜美腿在线中文| 精品少妇黑人巨大在线播放 | 老司机影院成人| 亚洲国产精品合色在线| 精品久久国产蜜桃| 午夜精品一区二区三区免费看| 精华霜和精华液先用哪个| 国产精品久久久久久精品电影小说 | 变态另类成人亚洲欧美熟女| 两个人视频免费观看高清| av专区在线播放| 日韩制服骚丝袜av| 午夜精品国产一区二区电影 | 禁无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 青春草亚洲视频在线观看| 国产综合懂色| 一区福利在线观看| 久久精品国产亚洲网站| 国产一级毛片七仙女欲春2| 青青草视频在线视频观看| 国内精品久久久久精免费| 久久亚洲精品不卡| 国产精品蜜桃在线观看 | 春色校园在线视频观看| 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| a级一级毛片免费在线观看| 日韩欧美一区二区三区在线观看| 亚洲久久久久久中文字幕| 日产精品乱码卡一卡2卡三| 在现免费观看毛片| 国产高清不卡午夜福利| 国产精品久久久久久av不卡| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 啦啦啦韩国在线观看视频| 免费av毛片视频| 91精品国产九色| 日韩精品青青久久久久久| 久久国内精品自在自线图片| 中文亚洲av片在线观看爽| 欧美激情在线99| 亚洲国产日韩欧美精品在线观看| 狂野欧美激情性xxxx在线观看| 国产成人a区在线观看| 久久精品国产亚洲av香蕉五月| 亚洲成a人片在线一区二区| 国产精品一区二区性色av| 欧美成人一区二区免费高清观看| 亚洲经典国产精华液单| 色播亚洲综合网| 尾随美女入室| 欧美性猛交╳xxx乱大交人| 联通29元200g的流量卡| 又粗又硬又长又爽又黄的视频 | 最近手机中文字幕大全| 91狼人影院| 久久久久久久午夜电影| 99热精品在线国产| 变态另类丝袜制服| 欧美潮喷喷水| 国产一区二区在线av高清观看| 真实男女啪啪啪动态图| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品人妻少妇| 久久精品夜色国产| 亚洲精品乱码久久久久久按摩| 禁无遮挡网站| 永久网站在线| 亚洲欧美日韩高清专用| 成人毛片60女人毛片免费| 18禁裸乳无遮挡免费网站照片| 伦理电影大哥的女人| 一个人免费在线观看电影| 久久久欧美国产精品| 久久精品影院6| 观看免费一级毛片| 日韩欧美三级三区| 成人美女网站在线观看视频| 国产高清视频在线观看网站| 十八禁国产超污无遮挡网站| 九九久久精品国产亚洲av麻豆| 如何舔出高潮| 在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久久久免| 精华霜和精华液先用哪个| 美女高潮的动态| 国产极品天堂在线| 成年免费大片在线观看| 黄片无遮挡物在线观看| 亚洲第一电影网av| 男女下面进入的视频免费午夜| 亚洲精品456在线播放app| 国产三级在线视频| 久久久国产成人精品二区| 国产亚洲5aaaaa淫片| 在线免费观看不下载黄p国产| 12—13女人毛片做爰片一| 精品欧美国产一区二区三| 亚洲电影在线观看av| 一本久久中文字幕| 国内精品美女久久久久久| 给我免费播放毛片高清在线观看| 免费观看在线日韩| 国内精品宾馆在线| 悠悠久久av| 一区二区三区免费毛片| 国产成人午夜福利电影在线观看| 少妇丰满av| 国模一区二区三区四区视频| 国内精品久久久久精免费| 日本与韩国留学比较| 六月丁香七月| 少妇的逼水好多| 亚洲精品成人久久久久久| 美女cb高潮喷水在线观看| 国产在线男女| 男人舔女人下体高潮全视频| 免费观看的影片在线观看| 色5月婷婷丁香| 久久精品久久久久久噜噜老黄 | 久久久久性生活片| 变态另类成人亚洲欧美熟女| 久久久久久国产a免费观看| 成年av动漫网址| 欧美一区二区精品小视频在线| 男女视频在线观看网站免费| 男女那种视频在线观看| 在线免费观看的www视频| 国产综合懂色| 久久人人爽人人爽人人片va| 99久久精品一区二区三区| 亚洲国产欧美人成| 日韩成人伦理影院| а√天堂www在线а√下载| 天天一区二区日本电影三级| 亚洲aⅴ乱码一区二区在线播放| 国内精品一区二区在线观看| 好男人视频免费观看在线| 国产精品一区二区在线观看99 | 精华霜和精华液先用哪个| 嘟嘟电影网在线观看| 日本色播在线视频| 欧美高清性xxxxhd video| 国产伦精品一区二区三区视频9| 欧美高清性xxxxhd video| 热99在线观看视频| 十八禁国产超污无遮挡网站| 九色成人免费人妻av| 国产av麻豆久久久久久久| 国产精品三级大全| 亚洲性久久影院| 国产黄色小视频在线观看| 黄色配什么色好看| 亚洲精品久久国产高清桃花| 三级国产精品欧美在线观看| 午夜激情福利司机影院| 久久人人精品亚洲av| 国产精品久久久久久久久免| 国产精品av视频在线免费观看| 九九爱精品视频在线观看| 久久久成人免费电影| 精品久久久久久久久久久久久| 美女黄网站色视频| 国产伦精品一区二区三区四那| 国产精品爽爽va在线观看网站| 91狼人影院| 日日干狠狠操夜夜爽| 亚洲av二区三区四区| 性色avwww在线观看| 不卡一级毛片| 久久人人爽人人片av| 2021天堂中文幕一二区在线观| 欧美3d第一页| 久久婷婷人人爽人人干人人爱| 国产 一区 欧美 日韩| 国产一区亚洲一区在线观看| 小蜜桃在线观看免费完整版高清| 日本免费a在线| www.av在线官网国产| 亚洲高清免费不卡视频| 色哟哟哟哟哟哟| 最近的中文字幕免费完整| 日本五十路高清| 成人二区视频| 精品一区二区免费观看| 啦啦啦观看免费观看视频高清| 成年女人永久免费观看视频| 国产精品99久久久久久久久| 毛片一级片免费看久久久久| 国产一级毛片七仙女欲春2| 一进一出抽搐动态| 91av网一区二区| 亚洲久久久久久中文字幕| 国产私拍福利视频在线观看| 国产av不卡久久| 亚洲在线观看片| 久久精品综合一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 中国美女看黄片| 亚洲中文字幕一区二区三区有码在线看| 能在线免费观看的黄片| 亚洲自拍偷在线| 精品99又大又爽又粗少妇毛片| 国产成人91sexporn| 久久久精品大字幕| 18禁在线播放成人免费| 国产精品1区2区在线观看.| 禁无遮挡网站| 99国产极品粉嫩在线观看| 特大巨黑吊av在线直播| 高清日韩中文字幕在线| 中文字幕久久专区| 日韩三级伦理在线观看| 亚洲精品456在线播放app| 一本精品99久久精品77| 看非洲黑人一级黄片| 51国产日韩欧美| 国产极品精品免费视频能看的| 六月丁香七月| 亚洲精华国产精华液的使用体验 | 真实男女啪啪啪动态图| 菩萨蛮人人尽说江南好唐韦庄 | 久久精品国产99精品国产亚洲性色| 亚洲精品亚洲一区二区| 禁无遮挡网站| 夜夜看夜夜爽夜夜摸| 97热精品久久久久久| 特级一级黄色大片| 亚洲精品国产成人久久av| 99热这里只有精品一区| 国产午夜精品久久久久久一区二区三区| 男人和女人高潮做爰伦理| 在线天堂最新版资源| 亚洲aⅴ乱码一区二区在线播放| 免费人成在线观看视频色| 五月玫瑰六月丁香| 中文在线观看免费www的网站| 成人国产麻豆网| 一级av片app| av免费观看日本| 亚洲精品乱码久久久v下载方式| 在线观看一区二区三区| 最近手机中文字幕大全| 老熟妇乱子伦视频在线观看| 超碰av人人做人人爽久久| 少妇熟女aⅴ在线视频| 欧美性猛交黑人性爽| 乱码一卡2卡4卡精品| 日日撸夜夜添| 午夜精品一区二区三区免费看| 亚洲av.av天堂| 99热这里只有精品一区| 久久99热这里只有精品18| 亚洲av电影不卡..在线观看| 国产一区二区在线观看日韩| 国产精品蜜桃在线观看 | 丝袜美腿在线中文| 人妻制服诱惑在线中文字幕| 夜夜爽天天搞| 久久久久久久久久久免费av| 夜夜爽天天搞| 日本成人三级电影网站| 日本av手机在线免费观看| 国产精品电影一区二区三区| or卡值多少钱| 日韩国内少妇激情av| 综合色丁香网| 久久久久免费精品人妻一区二区| 黄色视频,在线免费观看| 国产精品不卡视频一区二区| 中文字幕熟女人妻在线| 国内久久婷婷六月综合欲色啪| 日韩三级伦理在线观看| 99热这里只有是精品50| 美女国产视频在线观看| 日韩欧美国产在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 在线免费十八禁| 男的添女的下面高潮视频| 两个人视频免费观看高清| 国产精品乱码一区二三区的特点| 91久久精品国产一区二区成人| 国产免费男女视频| 综合色丁香网| 国产高清不卡午夜福利| 国产老妇伦熟女老妇高清| 我的老师免费观看完整版| 午夜精品在线福利| 中文字幕av成人在线电影| 国产中年淑女户外野战色| 久久99精品国语久久久| 久久精品夜色国产| 亚洲成人精品中文字幕电影| 欧美高清性xxxxhd video| 国产亚洲5aaaaa淫片| 欧美色欧美亚洲另类二区| 国产一区二区三区av在线 | 全区人妻精品视频| 精品人妻熟女av久视频| 国产 一区精品| 性欧美人与动物交配| 国产不卡一卡二| 中文字幕人妻熟人妻熟丝袜美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一个人看的www免费观看视频| av卡一久久| 在线观看免费视频日本深夜| 日韩欧美精品免费久久| 午夜福利在线观看免费完整高清在 | 久久亚洲国产成人精品v| 欧美日韩乱码在线| av天堂中文字幕网| 高清毛片免费观看视频网站| 国产毛片a区久久久久| 亚洲精品国产av成人精品| 亚洲精品自拍成人| 亚洲成a人片在线一区二区| 精华霜和精华液先用哪个| 久久精品国产亚洲av天美| 五月玫瑰六月丁香| 天堂av国产一区二区熟女人妻| 黄色视频,在线免费观看| 亚洲最大成人中文| 最近手机中文字幕大全| 午夜福利在线在线| 亚洲成人久久爱视频| 最好的美女福利视频网| 精品欧美国产一区二区三| 国产女主播在线喷水免费视频网站 | 中文资源天堂在线| 亚洲国产精品成人综合色| 亚洲欧美日韩卡通动漫| 天天一区二区日本电影三级| 欧美zozozo另类| 高清午夜精品一区二区三区 | av.在线天堂| 精品人妻熟女av久视频| 91aial.com中文字幕在线观看| 精品99又大又爽又粗少妇毛片| 高清日韩中文字幕在线| 大又大粗又爽又黄少妇毛片口| 中国国产av一级| 变态另类成人亚洲欧美熟女| 国产成人aa在线观看| 亚洲自拍偷在线| 内地一区二区视频在线| 亚洲熟妇中文字幕五十中出| 麻豆一二三区av精品| 成人漫画全彩无遮挡| 国产毛片a区久久久久| 欧美成人a在线观看| 午夜福利在线观看免费完整高清在 | 观看免费一级毛片| 少妇的逼好多水| 99久久精品一区二区三区| av在线播放精品| 我的老师免费观看完整版| 一边摸一边抽搐一进一小说| 国产白丝娇喘喷水9色精品| 国产男人的电影天堂91| 男人的好看免费观看在线视频| 国产三级中文精品| 日本一本二区三区精品| 女人十人毛片免费观看3o分钟| 亚洲精品日韩在线中文字幕 | 五月玫瑰六月丁香| 黄色日韩在线| 一级av片app| a级毛片免费高清观看在线播放|