• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pre-deformation for Assembly Performance of Machine Centers

    2014-03-01 01:48:16SUNYongpingWANGDelunDONGHuiminXUERuniuandYUShudong

    SUN Yongping, WANG Delun, , DONG Huimin, XUE Runiu, and YU Shudong

    1 Department of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

    2 Dalian Machine Tool Group Co., LTD, Dalian 116600, China

    3 Department of Mechanical and Industrial Engineering, Ryerson University, Toronto M5B 2K3, Canada

    1 Introduction

    *The rapid development of the manufacturing industry has increased the demand for precision, heavy, and highly reliable CNC machine centers, which requires a flexible manufacturing line for machines[1]. In a machine tool production line, assembly is a key process for achieving machine center accuracy[2–3]. The fitting assembly method is the main approach used in the assembly stage. By applying this method, the repair link is adjusted based on worker experience. Thus, this step is becoming a bottleneck in mass production. Moreover, machine centers are subject to thermal and gravity load while in operation, during which volumetric performance varies based on the coordinate position[4–5]. Consequently, assembly accuracy and efficiency are affected. In such case the variation of deformation must be analyzed to enhance the machine assembly cycle and improve efficiency.

    Recent research on machine assembly mainly focused on design for manufacture and assembly (DFMA) and computer-aided assembly process plan (CAAPP). This research status mainly focuses on three areas.

    (1) DFMA. During the component design stage, DFMA reduces assembly costs, component count, and overall costs while improving the reliability of the product[6]. Boothroyd and Dewhurst developed the methodologies and computer solutions for DFMA[7–8].The concept has been applied in commercial design software.

    (2) CAAPP. CAAPP is the function of determining how a product will be made to satisfy the requirements specified at the most economical cost[9]. Ref. [10] lays the foundation for computer-aided assembly sequence planning studies.The design method is widely used in process planning design.

    (3) Geometric error compensation (GEC). Schultschik established the kinematic error vector model, which contains 18 motion errors[11]. KIM[12]developed a new volumetric accuracy analysis method based on the generalized geometric error models. KIRIDENA, et al[13],discussed an approach for modeling the effects of the positioning errors of a machine’s axes on the accuracy of the cutting tool in its work space. No study has been conducted on pre-deformation, with most involving only machine tool geometric error modeling.

    However, although considerable research has been conducted on DFMA and CAAPP, the output of the former and the input of the latter lack the elastic deformation trajectory of moving components. This condition results in volumetric error in the workspace. Volumetric performance represents the overall errors of a machine center. Therefore,this factor has become an important index representing the quality of a machine tool. If the machine center structure is designed using DFMA and CAAPP, assembly accuracy will not reach up to the allowance. In such case, workers have to use the fitting assembly method, which restricts assembly efficiency.

    In this paper, pre-deformation for assembly performance(PFAP) method, which compensates for volumetric error, is presented to improve the accuracy and performance of the machine center assembly. The concept of travel error of moving component is defined, and the machine center assembly performance is analyzed under cold condition and thermal balance condition, such that the expression of pre-deformation is established. Then, the guide surfaces in normal direction of the X, Y, and Z axes are processed with the pre-deformation function, and the performance of a machine tool is measured using a laser interferometer.Although pre-deformation method has been widely applied in production practice, its application in machine tool assembly is not clear. This paper is significant in the process improvement and structure design of precision machine tools.

    2 Theory and Design Procedure

    2.1 Design theory for pre-deformation

    The machine center is composed of the X-, Y-, and Zaxis sub-systems. The table is the moving component of the X axis, the table-saddle is the moving component of the Y axis, and the spindle head is the moving component of the Z axis[14]. The functional point presents the relative motion between the component of the machine that carries the cutting tool and that which carries the work piece. The configuration and working volume of the vertical machine center (VMC) are shown in Fig. 1.

    Fig. 1. Configuration and working volume of the vertical machine center

    The working volume of VMC is defined by the travel of the machine linear axes for machining operations with dimensions of 850 mm×510 mm×510 mm. The X-, Y-, and Z-axis sub-systems are connected to bearings and ball screws. The column and bed are bolted to each other at the joints. Meanwhile, the internal weighted system of the column can reduce loading on the spindle. As shown in Figs. 2(a) to 2(c), the machine center structures during travel differ in terms of working volume.

    Fig. 2.Three different coordinates of vertical machine center

    When one component moves along its linear axis, the sustain component appears with a different degree of elastic deformation. The straightness, positioning, and angular errors are then generated. The concept of pre-deformation is thus presented. The fundamental theory is to process the guide surface in the contrary geometric error function during the cutting stage. When moving components move along their linear axis, geometric error could be compensated, and high accuracy and performance could be achieved.

    2.2 Procedure of pre-deformation

    The PFAP method for a machine center has three steps:(1) establishment of the model and features of assembly; (2)collaborative computer-aided engineering (CAE)calculation; and (3) contribution and variation analysis. The criterion for pre-deformation could be the basis for the improvement of the machine tool structure. The flow chart of pre-deformation for an assembly machine center is shown in Fig. 3.

    Fig. 3.. Flow chart of pre-deformation for assembly

    The key point in pre-deformation is obtaining the variation of the function of geometric errors. PFAP has the following features.

    (1) Precision compensation function. Based on the method of PFAP, the geometry errors caused by the structures are compensated with high accuracy, thus improving assembly performance.

    (2) High-efficiency mass production. The surface of a slide-guide is processed by the grinder rather than through the manual fitting assembly method. This process could reduce the machine assembly cycle and improve efficiency.

    (3) Weight-reduction structure design. A designer could realize a lighter component structure by using the PFAP method. A green design that avoids the heavy structure of moving components is achieved.

    3 Modeling Assembly Features

    The geometric error of a machine component along its axis of motion corresponds to six deflections, which is analogous to the six degrees-of-freedom of a body in space.This condition could ensure assembly accuracy by checking the geometric error under a quasi-static condition.Quasi-static errors are defined as errors that slowly vary with time and are related to the geometry of the machine center. A typical linear moving component (table) in the X direction[15]is shown in Fig. 4.

    Fig. 4. Three translator and three rotary deflections of a table with one axis of movement

    As shown in Fig. 4, error motions are identified by the letter E followed by a subscript, where the first letter is the name of the axis corresponding to the direction of the error motion, and the second letter is the name of the axis of motion. The linear error motion along the X direction is called the linear positioning error, which is expressed by EX(X). The other two translational error motions are called straightness errors, which are expressed by EY(X) and EZ(X). The angular error motion around the A, B, and C axes are EA(X), EB(X), and EC(X), respectively. Based on Fig. 4, 18 geometric VMC errors are shown in Table 1.

    Table 1. Geometric errors of translator and rotary axis in the machine center assembly process

    The variation of the deviation of the Y and Z directions of the table-saddle with X-axis movement is shown in Fig.5.

    Fig. 5.. Moving trajectory of the travel error of the X-axis moving component

    Definition 1: The machine center travel error is a function of coordinate position. If we consider a point where the coordinate is P0(x, y, z) in a numerical control system with an actual position P(x′, y′, z′), the translation axial error vector is shown in Eq. (1)

    The travel error could be curve fitted by four-order polynomial data fitting and could be expressed in Eq. (2):

    where E—Error of moving component,

    X, Y, Z—Direction of error,

    A, B, C—Rotation in the X, Y, Z axes,

    (j)—Component of machine tool,

    x, y, z—Travel of the X, Y, Z axes.

    4 Coordinate CAE Calculation

    The coordinate CAE analysis is a computer-aided analysis that calculates the deformation of a machine tool under both cold condition and thermal balance condition.Under cold condition, a machine tool is subject to gravity in standard ambient temperature (20 °C)[16–17]. Under thermal balance condition, the machine tool is subject to thermal-mechanical loading in thermal equilibrium. The framework of the pre-deformation of the coordinate CAE analysis of a machine tool is shown in Fig. 6.

    As shown in Fig. 6, the solid model is built based on a 2D drawing. The element distribution of a machine tool is controlled by the program. The boundary and material properties are defined by the features of the machine tool.The cold condition and thermal balance condition are then calculated.

    Fig. 6.Flow chart of coordinate CAE analysis of VMC

    5 Error Contribution and Variation Analysis

    5.1 Error contribution analysis

    Different loadings could have different degrees of impact on machine tool travel error. Machine centers are subject to thermal and gravity load while in operation. Thus, 33 disperse position structures of working volume were calculated In order to determine the influence of different loadings on travel error. The conditions are gravity, thermal loading, and thermo-mechanical couple loading (T-M).Most of the travel errors are shown in Table 2.

    Table 2. Summarizing of translator and rotary travel error

    It is shown in Table 2 that the maximum geometric variation ratio of the X and Y axes is 18.3% of the allowance[18], whereas for the Z axis, the maximum value is 158.9%. EY(Z) and EA(Z) both exceeded the allowance,which can be attributed to the bending moment of the G structure loop. Thus, we should analyze the degree of influence in further detail.

    As shown in Table 3, the deformation in Y-direction of Z component under thermal condition is approximately equal to the difference of the thermal balance and cold conditions.The maximum difference of variation and thermal condition is only 0.696 μm in the 0 coordinate under thermal condition. The results show that the deformation changes uniformly in the Z axis under thermal loading and that travel error is mainly caused by gravity.

    Table 3. Comparison of different conditions of the deformation in Y-direction of Z component μm

    5.2 Volumetric performance

    5.2.1 Counter map of working volume

    First, 121 positions of the XY plane and 11 positions of the Z axis are calculated under cold condition and thermal balance condition to obtain the variation of the working volume. As shown in Figs. 7 and 8, a 3D gray map surface of travel error in XY plane is presented when the coordinate of the Z axis is 255.

    Fig. 7.. Travel error of XY plane under cold condition (μm)

    Fig. 8.. Travel error of XY plane under thermal balance condition (μm)

    As shown in Figs. 7 and 8, the variation of travel error in the XY plane presents a half-cylinder under cold condition with a maximum of ?4.25 μm. On the other hand, under thermal balance condition, the XY plane presents an inclined surface with a maximum of 3.69 μm. The travel error variations can be attributed to the asymmetric arrangement caused by the heat source in the fixed end. A 3D gray map surface of travel error in the YZ plane is presented in Figs. 9 and 10, in which the table is in between the X and Y axes.

    Fig. 9.. Travel error of YZ plane under cold condition (μm)

    Fig. 10.Travel error of YZ plane under thermal balance condition (μm)

    As indicated in Figs. 9 and 10, the variation of travel error in the XY plane presents an inclined surface under cold condition and thermal balance condition with a maximum of 23.9 μm. The gradient of cold condition is very similar to that of the thermal balance condition.

    5.2.2 Travel error components

    From the above analysis, the travel error in the Z axis exceeded the allowance, whereas the travel error of the X and Y axes in the Z direction are in the sensitive direction.Thus, the travel error of the Z axis in the Y direction as well as the travel error of the X, Y component in the Z direction should be discussed further. The deviation of the travel error can be attributed to the straightness. When straightness is analyzed, the other axes are assumed to be located near the center travel of the machine tool axes.

    As illustrated in Fig. 11, the travel error under cold condition and thermal balance condition of the X axis is contrasted. Under cold condition, the maximum elastic deformation is at the 0 and 850 coordinates. The straightness reaches the minimum at the 425 coordinate and presents as a convex shape in during travel. Under thermal balance condition, the travel error presents an asymmetric shape and is caused by the DB bearing arrangement. The straightness values are only 1.38 μm and 1.49 μm, with a difference of only 0.11 μm.

    Fig. 11.Straightness deviations of X component in Z direction

    As shown in Fig. 12, the travel error in the Y axis is contrasted. Under cold condition, the straightness is 1.16 μm and presents an uphill (uptrend) shape. Under thermal balance condition, the straightness is 1.35 μm and likewise presents an uphill shape. The two conditions both exhibit an uphill (uptrend) shape, and the variation of straightness is only 0.21 μm.

    Fig. 12.Straightness deviations of Y component in Z direction

    As indicated in Fig. 13, the travel error in the Z axis is contrasted. Under cold condition, the straightness is 23.33 μm and presents an uphill (uptrend) shape. Under thermal balance condition, the straightness is 23.84 μm and likewise presents an uphill shape. Both conditions exhibit an uphill (downtrend) shape, with a difference of only 0.51 μm. Other travel errors of the vertical machine center are shown in Appendix.

    Fig. 13.Straightness deviations of Z component in Y-direction

    5.3 Pre-deformation of machine center

    Based on the analysis, the Z direction is found to be the sensitive direction of error, and EY(Z) significantly exceeded the allowance. Thus, the data on slide pre-deformation is curve fitted using the least square method through four-order polynomial data fitting. The function of pre-deformation is shown in Eq. (3):

    The parameters of Eq. (3) are shown in Table 4. The data on the pre-deformation curve in the X-, Y-, and Z-axis moving components are shown in Fig. 14.

    Table 4. Parameters of least squares (Eq. (3))

    Fig. 14.Pre-deformation function of guide surface in normal direction

    The function of pre-deformation is shown in Fig. 14. The pre-deformation of vertical machine center is set as follows:(1) The variation of the X-axis travel error changes in a convex shape, whereas that in the Y axis changes in an uptrend shape, but deformation is minimal. The data should exhibit 10 μm pre-deformation in a convex shape when considering the abrasion of the G-structure of the machine tool. (2) The variation of the Z-axis travel error exceeded the allowance and should thus present a downhill shape.The variation of the Z axis is approximately linear. Thus,the joints of the bed and column should be processed with an angle of 8.94″ or the slide should be processed with the opposite deformation.

    6 Verify Experiment

    6.1 Test instruments and method

    The machine center assembly performance is verified in this experiment. The travel error measurement device consists of a computer and a laser interferometer (laser head, optical module, dual reflector, and temperature compensation module). The resolution of straightness is measured as 0.1 μm. Fig. 15 shows the experiment device.

    Fig. 15.Direct measurement using an interferometer

    The components of VMC move at a constant speed, and the optical modal follows the movement, thus facilitating changes in the optical lens group of the beam. The travel error could then be measured.

    6.2 Verification and discussion

    The guide surfaces in normal directions are grinded using a precision grinder according to the data shown in Fig.14. The travel error is measured by travel error measurement device after the assembly, and the tested results are shown in Fig. 16.

    Fig. 16.Measurement result of performance experiment

    As shown in Fig. 16, the normal direction straightness of the X axis is 2.5 μm, and that of the Y axis is 2.2 μm. This difference is mainly attributed to the installation error. EY(Z)is 2.1 μm, which has been reduced by 91.2% of the travel error of the Z-axis component.

    7 Conclusions

    (1) According to the pre-deformation of vertical machine center, this method is technically based on the modeling feature of assembly and on coordinate CAE analysis, by which the precision assembly performance of a machine center is realized.

    (2) Through the coordinate CAE analysis of a C-type frame machine center under cold and thermal balance conditions, gravity is demonstrated to be the main cause of travel error in workspace volume.

    (3) The straightness of the X- and Y-axis components is minimal. Thus, the grinding allowance should be equal to 10 μm of pre-deformation in a convex shape to consider the abrasion of the slide.

    (4) The straightness of the Z-axis moving component is 158.9% of the allowance. Thus, the joints of the bed and column should be processed with an angle of 8.94″ or the slide should present a downhill shape.

    (5) An experiment test on the assembly performance of VMC pre-deformation is conducted. EY(Z) has been reduced to 91.2%. The results verify that a high accuracy of machine tool could be achieved by the PFAP method.

    [1] WIENDAHL H P, EIMARAGHY H A, NYHUIS P, et al. Changeable manufacturing-classification, design and operation[J]. CIRP Annals-Manufacturing Technology, 2007, 56(2): 783–809.

    [2] HUSSAIN T, YANG Z, POPOV A A, WILLIAM S Mc. Straight-build assembly optimization: a method to minimize stage-by-stage eccentricity error in the assembly of axisymmetric rigid components(two-dimensional case study)[J]. Journal of Manufacturing Science and Engineering, 2011, 226(7): 1259–1274.

    [3] ARAI T A, TAKEUCHI K A. Simulation system on assembly accuracy[J]. CIRP Annals-Manufacturing Technology, 1992, 41(1):37–40.

    [4] WECK Manfred. Handbook of machine tools volume 2: construction and mathematical analysis[M]. New York : Wiley, 1984.

    [5] MAYR Josef, JEDRZEJEWSKI Jerzy, UHIMANN Eckart, et al.Thermal issues in machine tools[J]. CIRP Annals-Manufacturing Technology, 2012, 61(2): 771–791.

    [6] BOOTHROYD Geoffrey, DEWHURST Peter, KNIGHT Winston A.Product design for manufacture and assembly[M]. USA: CRC Press,2011.

    [7] BOOTHROYD G, ALTING L. Design for assembly and disassembly[J]. CIRP Annals-Manufacturing Technology, 1992, 41(2):625–636.

    [8] BOOTHROYD Geoffrey, DEWHURST Peter, KNIGHT Winston A.Product design for manufacture and assembly[J]. Computer-Aided Design, 1994, 26(7): 505–520.

    [9] MARRI H B, GUNASEKARAN A, GRIEVE R J. Computer-aided process planning: a state of art[J]. The International Journal of Advanced Manufacturing Technology, 1998, 14(4): 261–268.

    [10] HOMEM DE MELLO S Luiz, LEE Sukhan. Computer-aided mechanical assembly planning[M]. Massachusetts, Springer, 1991.

    [11] SCHULTSCHIK R. The components of the volumetric accuracy[J].Annals of the CIRP, 1977, 25(1): 223–228.

    [12] KIM K, KIM M K. Volumetric accuracy analysis based on generalized geometric error model in multi-axis machine tools[J].Mechanism and Machine Theory, 1991, 26(2): 207–219.

    [13] KIRIDENA V, FERREIRA P M. Mapping the effects of positioning errors on the volumetric accuracy of five-axis CNC machine tools[J].International Journal of Machine Tools and Manufacture, 1993, 33(3):417–437.

    [14] HUNG Jui Pin, LAI Yuan Lung, LIN Ching Yuan, et al. Modeling the machining stability of a vertical milling machine under the influence of the preloaded linear guide[J]. International Journal of Machine Tools and Manufacture, 2011, 51(9): 731–739.

    [15] ISO 230-1, Test code for machine tools–Part 1: Geometric accuracy of machines operating under no-load finishing conditions[S]. ISO,2007.

    [16] ISO 230-3, Test code for machine tools–part 3: determination of thermal effects[S]. ISO, 2007.

    [17] ASME B5.54, Methods for performance evaluation of computer numerically controlled machining centers[S]. ASME, 2005.

    [18] ISO 10791-1, Test conditions for machining centers. Part 1:geometric tests for machines with horizontal spindle and with accessory heads (horizontal Z-axis)[S]. ISO, 1998.

    国产男女内射视频| 午夜福利,免费看| 亚洲国产毛片av蜜桃av| 国产成人一区二区在线| 18在线观看网站| 亚洲欧美成人综合另类久久久| 亚洲精品国产一区二区精华液| 国产免费一区二区三区四区乱码| 晚上一个人看的免费电影| 国产成人午夜福利电影在线观看| 国产伦人伦偷精品视频| 日韩制服骚丝袜av| 高清不卡的av网站| 亚洲av综合色区一区| 国产av一区二区精品久久| 免费观看av网站的网址| 成年女人毛片免费观看观看9 | 19禁男女啪啪无遮挡网站| 丰满少妇做爰视频| bbb黄色大片| 国产黄色免费在线视频| 伦理电影大哥的女人| 国产淫语在线视频| 精品亚洲成a人片在线观看| 精品人妻一区二区三区麻豆| 午夜影院在线不卡| 国产色婷婷99| 热99久久久久精品小说推荐| 蜜桃在线观看..| 欧美黑人欧美精品刺激| 欧美黑人欧美精品刺激| 捣出白浆h1v1| 色网站视频免费| 欧美激情极品国产一区二区三区| 久久女婷五月综合色啪小说| 中文字幕另类日韩欧美亚洲嫩草| 色吧在线观看| 老司机亚洲免费影院| 亚洲少妇的诱惑av| 亚洲第一区二区三区不卡| 菩萨蛮人人尽说江南好唐韦庄| 国产av国产精品国产| 亚洲精品中文字幕在线视频| 美女高潮到喷水免费观看| 亚洲色图 男人天堂 中文字幕| 级片在线观看| 亚洲精品在线美女| 国产一卡二卡三卡精品| 在线观看免费日韩欧美大片| 看免费av毛片| 日韩欧美国产一区二区入口| 欧美日韩亚洲综合一区二区三区_| 三级毛片av免费| 亚洲 欧美一区二区三区| 999久久久精品免费观看国产| 国产不卡一卡二| 精品人妻在线不人妻| 丰满的人妻完整版| 一二三四社区在线视频社区8| 90打野战视频偷拍视频| 国产精品av久久久久免费| tocl精华| 亚洲人成电影观看| 后天国语完整版免费观看| 操出白浆在线播放| 很黄的视频免费| 美女 人体艺术 gogo| 久久久精品国产亚洲av高清涩受| 精品无人区乱码1区二区| 一级作爱视频免费观看| 女性生殖器流出的白浆| 精品国产一区二区三区四区第35| 夜夜看夜夜爽夜夜摸| 咕卡用的链子| 亚洲国产中文字幕在线视频| 亚洲色图 男人天堂 中文字幕| 人成视频在线观看免费观看| 男人的好看免费观看在线视频 | 777久久人妻少妇嫩草av网站| 精品不卡国产一区二区三区| 日本五十路高清| 男女下面进入的视频免费午夜 | 成人国产一区最新在线观看| 国产欧美日韩一区二区三| 91精品三级在线观看| 国产一区二区三区在线臀色熟女| 禁无遮挡网站| 欧美久久黑人一区二区| 成人特级黄色片久久久久久久| 黄片小视频在线播放| 18禁裸乳无遮挡免费网站照片 | 一区二区三区国产精品乱码| 波多野结衣av一区二区av| 日本免费a在线| 国产成人欧美在线观看| 精品少妇一区二区三区视频日本电影| 国产精品免费一区二区三区在线| 99香蕉大伊视频| 91精品国产国语对白视频| 亚洲 国产 在线| 午夜福利免费观看在线| 国产亚洲欧美精品永久| 日本黄色视频三级网站网址| 成人免费观看视频高清| 日本vs欧美在线观看视频| 国产亚洲精品一区二区www| 波多野结衣av一区二区av| 满18在线观看网站| 九色国产91popny在线| 妹子高潮喷水视频| 亚洲狠狠婷婷综合久久图片| 亚洲国产中文字幕在线视频| 99久久久亚洲精品蜜臀av| 美女高潮到喷水免费观看| 很黄的视频免费| 亚洲自偷自拍图片 自拍| 国产又色又爽无遮挡免费看| 久久天躁狠狠躁夜夜2o2o| 欧美久久黑人一区二区| 亚洲专区中文字幕在线| 99国产精品一区二区蜜桃av| 精品国产乱子伦一区二区三区| 男人舔女人的私密视频| 高清黄色对白视频在线免费看| 午夜成年电影在线免费观看| 日本免费一区二区三区高清不卡 | 激情在线观看视频在线高清| 亚洲熟妇中文字幕五十中出| 国内精品久久久久久久电影| 国产精品99久久99久久久不卡| 精品乱码久久久久久99久播| 97超级碰碰碰精品色视频在线观看| 欧美乱码精品一区二区三区| 黄色 视频免费看| 又紧又爽又黄一区二区| 成人永久免费在线观看视频| 变态另类成人亚洲欧美熟女 | 国产精品久久久久久人妻精品电影| 母亲3免费完整高清在线观看| 日本免费a在线| 国产亚洲精品久久久久5区| 欧美午夜高清在线| 国产免费av片在线观看野外av| 亚洲电影在线观看av| 国产成人精品久久二区二区免费| 十八禁人妻一区二区| 免费在线观看日本一区| 亚洲成a人片在线一区二区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲自偷自拍图片 自拍| 操美女的视频在线观看| 嫁个100分男人电影在线观看| 亚洲av电影在线进入| 免费高清视频大片| 国产精品一区二区三区四区久久 | 老司机午夜十八禁免费视频| 校园春色视频在线观看| 香蕉久久夜色| 国语自产精品视频在线第100页| 亚洲熟女毛片儿| 好男人电影高清在线观看| 美女午夜性视频免费| 91成年电影在线观看| 午夜福利在线观看吧| 这个男人来自地球电影免费观看| 真人一进一出gif抽搐免费| 最新美女视频免费是黄的| 国产精品亚洲一级av第二区| 18禁国产床啪视频网站| 一级,二级,三级黄色视频| 亚洲欧美精品综合久久99| 中文字幕精品免费在线观看视频| 99国产极品粉嫩在线观看| 精品乱码久久久久久99久播| 亚洲狠狠婷婷综合久久图片| 女人被狂操c到高潮| 国产熟女xx| 18禁观看日本| 亚洲精品粉嫩美女一区| 午夜精品久久久久久毛片777| 脱女人内裤的视频| 丝袜在线中文字幕| 长腿黑丝高跟| 香蕉国产在线看| 一级毛片女人18水好多| 国产午夜福利久久久久久| 欧美午夜高清在线| 日韩欧美免费精品| 精品国产乱码久久久久久男人| 美女午夜性视频免费| 亚洲狠狠婷婷综合久久图片| 他把我摸到了高潮在线观看| 九色亚洲精品在线播放| 少妇 在线观看| 波多野结衣高清无吗| 侵犯人妻中文字幕一二三四区| 黄片大片在线免费观看| 9色porny在线观看| 999久久久精品免费观看国产| 亚洲熟妇中文字幕五十中出| 满18在线观看网站| 午夜福利成人在线免费观看| 欧美日韩瑟瑟在线播放| 91成人精品电影| 日本a在线网址| 成人三级做爰电影| 成年版毛片免费区| 他把我摸到了高潮在线观看| 制服诱惑二区| 淫妇啪啪啪对白视频| 九色亚洲精品在线播放| 1024香蕉在线观看| 欧美乱妇无乱码| 9色porny在线观看| 亚洲av五月六月丁香网| 村上凉子中文字幕在线| 天堂√8在线中文| 亚洲五月婷婷丁香| 人妻久久中文字幕网| 精品卡一卡二卡四卡免费| 免费在线观看影片大全网站| 免费在线观看完整版高清| 满18在线观看网站| 亚洲欧美日韩无卡精品| 亚洲av成人不卡在线观看播放网| 亚洲中文字幕日韩| 欧美性长视频在线观看| 一级毛片高清免费大全| 亚洲一区二区三区不卡视频| 婷婷丁香在线五月| 老司机午夜福利在线观看视频| 亚洲人成伊人成综合网2020| 国内精品久久久久久久电影| 一级片免费观看大全| 在线观看免费日韩欧美大片| 午夜精品在线福利| 青草久久国产| 美女 人体艺术 gogo| 在线观看免费午夜福利视频| 日本vs欧美在线观看视频| 亚洲情色 制服丝袜| 国产午夜福利久久久久久| 国产精品一区二区三区四区久久 | 精品乱码久久久久久99久播| 18美女黄网站色大片免费观看| 亚洲第一欧美日韩一区二区三区| 俄罗斯特黄特色一大片| 真人一进一出gif抽搐免费| 国内精品久久久久精免费| 欧美日韩黄片免| 在线永久观看黄色视频| 天天添夜夜摸| 免费在线观看亚洲国产| 亚洲午夜理论影院| 久久欧美精品欧美久久欧美| 天天添夜夜摸| 97超级碰碰碰精品色视频在线观看| 波多野结衣巨乳人妻| 人人妻,人人澡人人爽秒播| 精品一品国产午夜福利视频| 搡老妇女老女人老熟妇| 在线av久久热| 99久久99久久久精品蜜桃| 精品国产超薄肉色丝袜足j| 男女床上黄色一级片免费看| 一区二区三区精品91| 九色国产91popny在线| 国产精品综合久久久久久久免费 | 最近最新免费中文字幕在线| 精品第一国产精品| 国产成人欧美| 99国产综合亚洲精品| 国产精品久久电影中文字幕| 国产伦一二天堂av在线观看| 国产亚洲精品一区二区www| 亚洲视频免费观看视频| 国产一区二区激情短视频| 欧美中文日本在线观看视频| 无限看片的www在线观看| 在线观看免费视频网站a站| 亚洲欧美一区二区三区黑人| 级片在线观看| 免费在线观看影片大全网站| 90打野战视频偷拍视频| 非洲黑人性xxxx精品又粗又长| 脱女人内裤的视频| 亚洲电影在线观看av| 亚洲精品美女久久av网站| 女警被强在线播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美日韩无卡精品| 亚洲国产精品成人综合色| √禁漫天堂资源中文www| 国产亚洲精品久久久久久毛片| 人人妻人人爽人人添夜夜欢视频| 亚洲精品中文字幕一二三四区| 色尼玛亚洲综合影院| 精品福利观看| av视频在线观看入口| 国产亚洲精品av在线| 一二三四社区在线视频社区8| 亚洲第一电影网av| 亚洲片人在线观看| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 99久久综合精品五月天人人| 日韩免费av在线播放| 国内毛片毛片毛片毛片毛片| 美女大奶头视频| 亚洲熟妇熟女久久| 成人手机av| 黄色a级毛片大全视频| 日本黄色视频三级网站网址| 中文字幕人妻丝袜一区二区| 欧美人与性动交α欧美精品济南到| 人人澡人人妻人| 人人妻,人人澡人人爽秒播| 久久人妻熟女aⅴ| 国产精品久久电影中文字幕| 又黄又粗又硬又大视频| 亚洲美女黄片视频| 亚洲性夜色夜夜综合| 亚洲成国产人片在线观看| 99国产精品一区二区三区| 国产xxxxx性猛交| 高清毛片免费观看视频网站| 亚洲情色 制服丝袜| 亚洲成人精品中文字幕电影| 一边摸一边抽搐一进一小说| 日韩欧美国产在线观看| 亚洲国产欧美日韩在线播放| 亚洲av五月六月丁香网| 国产91精品成人一区二区三区| 久9热在线精品视频| 国产aⅴ精品一区二区三区波| 波多野结衣高清无吗| 中文字幕另类日韩欧美亚洲嫩草| 十分钟在线观看高清视频www| 丝袜美足系列| 国产不卡一卡二| av超薄肉色丝袜交足视频| 三级毛片av免费| 欧美 亚洲 国产 日韩一| av视频免费观看在线观看| 亚洲国产欧美一区二区综合| 高清在线国产一区| 亚洲精品中文字幕在线视频| 国产精品九九99| 久久久久久亚洲精品国产蜜桃av| 老司机深夜福利视频在线观看| 国产蜜桃级精品一区二区三区| 欧美日韩一级在线毛片| 亚洲午夜理论影院| 欧美黑人精品巨大| 久久九九热精品免费| 9191精品国产免费久久| 在线观看一区二区三区| 人成视频在线观看免费观看| 日韩大尺度精品在线看网址 | 人人妻人人爽人人添夜夜欢视频| 巨乳人妻的诱惑在线观看| 两个人视频免费观看高清| 女人被狂操c到高潮| 不卡一级毛片| 精品人妻在线不人妻| 亚洲aⅴ乱码一区二区在线播放 | 精品国产一区二区三区四区第35| 亚洲黑人精品在线| 精品国产乱子伦一区二区三区| 亚洲专区中文字幕在线| 欧美日韩乱码在线| 法律面前人人平等表现在哪些方面| 成人av一区二区三区在线看| 亚洲人成77777在线视频| 色尼玛亚洲综合影院| 欧美色视频一区免费| 国产熟女xx| videosex国产| 精品一区二区三区av网在线观看| 午夜福利18| 色播亚洲综合网| 国产成人精品久久二区二区免费| 美女大奶头视频| 一边摸一边抽搐一进一小说| 国产成人免费无遮挡视频| 无遮挡黄片免费观看| 一级片免费观看大全| 我的亚洲天堂| 中文字幕最新亚洲高清| 婷婷精品国产亚洲av在线| 中文字幕色久视频| 国产精品亚洲美女久久久| 久久国产精品影院| 欧美激情极品国产一区二区三区| 黄片播放在线免费| 日日摸夜夜添夜夜添小说| 日本撒尿小便嘘嘘汇集6| 91大片在线观看| 国内久久婷婷六月综合欲色啪| 国产99久久九九免费精品| 少妇熟女aⅴ在线视频| 亚洲av成人不卡在线观看播放网| 涩涩av久久男人的天堂| 国产精品精品国产色婷婷| 亚洲国产欧美一区二区综合| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩一区二区三区精品不卡| 搡老熟女国产l中国老女人| 99久久久亚洲精品蜜臀av| 久久婷婷人人爽人人干人人爱 | 精品欧美一区二区三区在线| 亚洲av片天天在线观看| 丝袜在线中文字幕| 亚洲成av片中文字幕在线观看| 久久久国产精品麻豆| 国产成人精品久久二区二区免费| 在线观看免费视频日本深夜| 午夜免费观看网址| 午夜免费激情av| 久久热在线av| 亚洲国产高清在线一区二区三 | 欧美黄色淫秽网站| 欧美绝顶高潮抽搐喷水| 欧美av亚洲av综合av国产av| 淫秽高清视频在线观看| av片东京热男人的天堂| 免费在线观看视频国产中文字幕亚洲| 亚洲精品一区av在线观看| 国产成人免费无遮挡视频| 两人在一起打扑克的视频| 亚洲精品国产区一区二| 免费人成视频x8x8入口观看| 色综合婷婷激情| 亚洲av美国av| 法律面前人人平等表现在哪些方面| 午夜福利高清视频| 国产高清有码在线观看视频 | 成人永久免费在线观看视频| 色综合亚洲欧美另类图片| 18禁黄网站禁片午夜丰满| netflix在线观看网站| 美女高潮喷水抽搐中文字幕| 欧美中文综合在线视频| 人人妻人人澡欧美一区二区 | 欧美日韩黄片免| 一区二区三区激情视频| or卡值多少钱| a级毛片在线看网站| 精品国产一区二区久久| 一边摸一边抽搐一进一出视频| 美女高潮喷水抽搐中文字幕| 久久久久久亚洲精品国产蜜桃av| 999久久久精品免费观看国产| 欧美日韩一级在线毛片| 成人欧美大片| 久久国产乱子伦精品免费另类| 亚洲精品粉嫩美女一区| 精品欧美国产一区二区三| 欧美乱码精品一区二区三区| 村上凉子中文字幕在线| 精品免费久久久久久久清纯| 99久久国产精品久久久| av电影中文网址| 日本五十路高清| 国产一区二区三区在线臀色熟女| 亚洲欧美精品综合久久99| 午夜两性在线视频| 国产精品精品国产色婷婷| 久久热在线av| 亚洲成人精品中文字幕电影| 久久精品91无色码中文字幕| 精品卡一卡二卡四卡免费| 在线观看免费视频网站a站| 一区在线观看完整版| 国产亚洲精品一区二区www| 国产精品,欧美在线| 两人在一起打扑克的视频| 国产精品免费视频内射| 亚洲精品国产精品久久久不卡| 狂野欧美激情性xxxx| 国产亚洲精品久久久久久毛片| 亚洲精品美女久久av网站| 国产亚洲欧美98| 久久国产精品影院| 亚洲av电影在线进入| 99久久综合精品五月天人人| 日本黄色视频三级网站网址| or卡值多少钱| 制服人妻中文乱码| 久久人人精品亚洲av| 高清毛片免费观看视频网站| 香蕉久久夜色| 99热只有精品国产| 欧美黄色淫秽网站| 久久婷婷成人综合色麻豆| а√天堂www在线а√下载| 国产aⅴ精品一区二区三区波| 精品电影一区二区在线| 色播亚洲综合网| 一级毛片女人18水好多| 久久人人精品亚洲av| 一区二区三区精品91| 日韩国内少妇激情av| 十八禁网站免费在线| 91麻豆av在线| 亚洲熟女毛片儿| 久久精品国产亚洲av高清一级| 国产1区2区3区精品| 国产蜜桃级精品一区二区三区| 国产精品亚洲av一区麻豆| 悠悠久久av| 亚洲国产欧美一区二区综合| 亚洲国产欧美网| 深夜精品福利| 精品久久久久久成人av| 国产精品综合久久久久久久免费 | 美女高潮喷水抽搐中文字幕| 首页视频小说图片口味搜索| 国产一级毛片七仙女欲春2 | 91成年电影在线观看| 欧美日韩亚洲国产一区二区在线观看| 久久婷婷成人综合色麻豆| 国产精品 国内视频| netflix在线观看网站| 老汉色av国产亚洲站长工具| 成人亚洲精品av一区二区| 婷婷精品国产亚洲av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品免费视频内射| 免费看美女性在线毛片视频| 脱女人内裤的视频| 波多野结衣av一区二区av| 桃红色精品国产亚洲av| 一本大道久久a久久精品| 国产精品一区二区三区四区久久 | 精品久久久久久久毛片微露脸| 久久久久久久久免费视频了| 久久狼人影院| 首页视频小说图片口味搜索| av天堂在线播放| 国产色视频综合| 少妇 在线观看| 少妇裸体淫交视频免费看高清 | 老司机在亚洲福利影院| 久久久久久大精品| 一级毛片女人18水好多| 国产精品,欧美在线| 法律面前人人平等表现在哪些方面| 无遮挡黄片免费观看| 国产欧美日韩综合在线一区二区| 一区二区三区激情视频| 一个人观看的视频www高清免费观看 | 夜夜躁狠狠躁天天躁| 男人舔女人下体高潮全视频| 十分钟在线观看高清视频www| 侵犯人妻中文字幕一二三四区| 黑丝袜美女国产一区| 99精品在免费线老司机午夜| 日韩欧美三级三区| 亚洲avbb在线观看| 美女大奶头视频| 国内精品久久久久久久电影| 身体一侧抽搐| 国产成人影院久久av| 777久久人妻少妇嫩草av网站| 黄频高清免费视频| 看黄色毛片网站| 亚洲久久久国产精品| 国内久久婷婷六月综合欲色啪| 搡老岳熟女国产| aaaaa片日本免费| 久久久久亚洲av毛片大全| 一进一出抽搐动态| 日本免费一区二区三区高清不卡 | 久久 成人 亚洲| 久久中文看片网| 国产精品永久免费网站| 国产成人系列免费观看| 国产麻豆69| 日本免费一区二区三区高清不卡 | 亚洲一区中文字幕在线| 亚洲性夜色夜夜综合| 亚洲色图综合在线观看| 黄片小视频在线播放| 黄色丝袜av网址大全| 在线观看免费视频网站a站| 久久久久国产一级毛片高清牌| 国产精品影院久久| 热99re8久久精品国产| 久久婷婷成人综合色麻豆| 如日韩欧美国产精品一区二区三区| 亚洲欧美一区二区三区黑人| 中文字幕高清在线视频| 在线天堂中文资源库| 日日爽夜夜爽网站| 亚洲男人天堂网一区| 级片在线观看| 国产精品久久久人人做人人爽| 国产激情久久老熟女| 成人三级黄色视频| 国产亚洲欧美98| 亚洲成人精品中文字幕电影| 十分钟在线观看高清视频www| 99国产极品粉嫩在线观看| av福利片在线| 老司机靠b影院| 一区二区三区精品91| 亚洲精品在线美女| 十八禁人妻一区二区| 久久久久久免费高清国产稀缺| 国产精华一区二区三区| 不卡一级毛片| 欧美日韩一级在线毛片| 好男人电影高清在线观看| 久9热在线精品视频|