• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Cooperative Adaptive Cruise Control (CACC) Algorithm Considering Invalid Communication

    2014-03-01 01:48:06WANGPangweiWANGYunpengYUGuizhenandTANGTieqiao

    WANG Pangwei, WANG Yunpeng, YU Guizhen, and TANG Tieqiao

    School of Transportation Science and Engineering, Beihang University, Beijing 100191, China

    1 Introduction

    Recent improvements in sensing, communication, and computing technologies have led to the development of driver-assistance systems (DAS). Adaptive cruise control(ACC) system is the first commercial implementation of DAS[1]. ACC aims to relieve drivers from manually performing a repetitive and boring task, and to automatically maintain cruise driving while assisting them in reducing crashes. Extending the standard ACC functionality with wireless inter-vehicle communication enables driving at smaller inter-vehicle distances while maintains string stability[2]. Such extended functionality is called cooperative adaptive cruise control (CACC).

    A vast amount of literature on CACC is available. NAUS,et al[3], worked on CACC setup aiming at ensuring the feasibility of real-world implementation. However, in their studies, all vehicles were assumed to communicate with their preceding vehicle only. Communication among multiple vehicles or between a vehicle and a designated platoon leading vehicle was not considered. GIRARD,et al[4], from the University of California Berkeley,established a fuzzy control algorithm and a collision warning model for CACC. Meanwhile, GERRIT, et al[5],from the Eindhoven University of Technology, established a CACC model based on the variable structure sliding control algorithm and analyzed the stability with frequency response. Several other researchers used longitudinal control algorithms to design CACC controllers for vehicle platoons[6–12]and intelligent vehicle highway system(IVHS)[14–15]. ZHANG, et al[13], applied vector Lyapunov function approach to longitudinal control of vehicles in a platoon, and the controller was established by sliding mode control method.

    The design of controllers for the CACC system requires the specification of string stability. A precise definition of string stability was provided by CHU[17]. String stability refers to the capability in which any perturbation of the velocity or position of the leading vehicle will not result in amplified fluctuations to the following vehicle’s velocity and position. XIAO, et al[21–25], considered the existence of delay factors in the sensors and actuators of communication systems. He analyzed the CACC string stability based on different information frameworks and then simulated the results.

    A CACC algorithm considering invalid communication has not yet been developed according to the literature review. This is the reason why this paper focuses on designing an improved algorithm that ensures the functionality of the CACC system even if inter-vehicle communication is partially invalid. The improved algorithm is based on the sliding mode control algorithm and can adjust the CACC structure to ensure string stability.Therefore, the algorithm can prevent vehicle chain collisions even with communication system partially invalid. The feasibility of the algorithm has been verified based on MATLAB/Simulink.

    The organization of this paper is described as follows.Section 2 focuses on designing the CACC hierarchical controller based on sliding control and obtains the string stable conditions. Section 3 improves the CACC hierarchical controller under the circumstance of communication being partially invalid and obtains the relevant string stability conditions. Section 4 then presents the simulation results of the MATLAB/Simulink model.Finally, section 5 summarizes the conclusions and proposes directions for further research.

    2 CACC Controller

    As in many other longitudinal vehicle control applications, the CACC hierarchical controller in this paper also consists of an upper control layer and a lower execution layer, as shown in Fig. 1. The upper control layer calculates the value of the desired acceleration using all the relevant information obtained by the CACC module, and then transfers the information to the lower execution layer.The lower execution layer achieves the desired acceleration by the actuators, which are controlled by the relevant control module. This process is the core of the CACC controller.

    Fig. 1. Structure of CACC

    2.1 CACC algorithm based on sliding control

    In the CACC platoon, vehicles communicate with each other to exchange information, thus facilitating fleet cooperative control. The latest Wi-Fi is based on the IEEE802.11g communication protocol and utilizes 2.4 GHz band, transmission speed of up to 54 Mb/s, and maximum transmission distance of 6.5 km. Such communication technology is suitable for vehicle communications owing to its high stability.

    The leading vehicle of the platoon controlled by the CACC controller runs along certain orbits, followed by the other vehicles. The platoon structure is shown in Fig. 2.

    Fig. 2. CACC platoon

    In Fig. 2, the CACC platoon obtains the acceleration information by the communication system according to the CACC algorithm with Wi-Fi. Hence, the CACC controller Y can sum the spacing error and calculate the relative speed of the following vehicles, which tends to approach zero:

    All the above can be represented as follows:

    where l is the vehicle length. Using the sliding control method, we can obtainwhenthe equation is true, andis the control parameter.

    Taking the time delay of the actuators and sensors into consideration, the CACC controller Ui(t )is represented as follows:

    Delay time exists in the data transmission process in actual communication systems; hence it must be taken into account when calculating the expected acceleration algorithm. The time compensation is represented by Δ,which means that the expression of the control law Ui(t )is replaced with:

    2.2 String stability of the CACC platoon

    According to Ref. [21], based on the vehicle longitudinal dynamics model, vehicle i has a delay of Δ seconds to respond to the actuators, and suffers a lag of τ seconds to respond to the commanding signal. Combining the equations of the controller, the longitudinal dynamics equation of the following vehicle i is as follows:

    Similarly, the longitudinal dynamics equation of the following vehicle i?1 is as the following:

    The above two equations show the acceleration and spacing error, and the distance between vehicle i and vehicle i?1. After subtracting Eq. (8) from Eq. (7), the following Eq. (9) is obtained through a differential and a Laplace transform:

    Eq. (9) is the spacing error dynamic model for a platoon controlled by CACC in the frequency domain. In order to maintain stability, which means keepingthe following two conditions should be satisfied.

    Condition 2: Because the controller parameter>0 ,fixed time spacing should be described as follows:where Δ is the delay time of communication and τ is the delay time of the actuators.

    When the two conditions are satisfied,can be founded for anyand the platoon controlled by CACC can maintain string stability.

    3 Improved CACC Algorithm in Case of Communication Being Partially Invalid

    In this section, we demonstrate that the traditional CACC algorithm cannot ensure string stability under consideration of the communication being partially invalid, and the CACC algorithm how to be improved to meet the requirements of string stability.

    3.1 Improved control algorithm for vehicle i

    In case of invalid communication for vehicle i, the following vehicle i cannot obtain the acceleration information of the preceding vehicle i?1, making the traditional CACC algorithm dysfunctional. Therefore, the algorithm should be improved in cases such that the communication between vehicle i and vehicle i-1 is not available, but vehicle i?1 can communicate with vehicle i+1, as shown in Fig. 3.

    Fig. 3. CACC platoon in cases of invalid communication(vehicle i cannot communicate with vehicle i-1)

    In Fig. 3, according to string stability, the communication of vehicle i is invalid, making it unable to obtain the acceleration information of the preceding vehicle.

    The aim of the controller design is to make the spacing error at a minimum, hence it is important to maintain the ideal distance. The equation is as follows:

    Using the sliding control method, we can obtainwhenthe equation is true, andiis the control parameter.

    Taking the time delays of the actuators and sensors into consideration, when the communication of vehicle i is invalid, the CACC controller Ui(t )is as follows:

    Based on the vehicle longitudinal dynamics model, the following equation is obtained:

    where ai(t) is the acceleration of the vehicle i; The lag time of the actuators is denoted by(s) . Combining this with the equation of the controller, the longitudinal dynamics equations of the following vehicle i and its preceding vehicle i?1 are shown as follows:

    After subtracting Eq. (17) from Eq. (16) to obtain a differential and a Laplace transform, the following is concluded:

    To maintain communication stability, when the communication of vehicle i is invalid,must be satisfied; hence the range of the controller parameteris as follows:

    In addition, because the controller parameter meets> 0, the fixed time spacing should be satisfied as follows:

    3.2 Improved control algorithm for vehicle i+1

    In case of invalid communication for vehicle i, the following vehicle i+1 cannot obtain the acceleration information of the preceding vehicle i. Vehicle i+1 will communicate with vehicle i?1, and vehicle i+1 will obtain the acceleration information of vehicle i?1. The controlleris shown as follows:

    then,

    Based on the vehicle longitudinal dynamics model,the lag time of the actuators is denoted by τ(s). Combining this with the equation of the controller, the longitudinal dynamics equations of the following vehicle i+1 and its preceding vehicle i?1 are shown as follows:

    Similarly, the longitudinal dynamics equation of the following vehicle i?1 is shown as below:

    After subtracting Eq. (26) from Eq. (25) to obtain a differential and a Laplace transform, the following equation is obtained:

    To maintain communication stability when communication of the vehicle i is invalid,must be satisfied; hence the range of controller parameteris as follows:> 0, the fixed time spacing should be satisfied as

    Additionally, because the controller parameter meets

    The controller parameters should be adjusted as above to ensure communication stability and keep the vehicle i in the platoon.

    In conclusion, the sliding controller parameters should be satisfied as follows:

    The fixed time spacing should be satisfied as follows:

    In case of invalid communication for vehicle i, the traditional CACC algorithm should be adjusted, and the algorithm for vehicle i and vehicle i+1 should be improved with the other maintaining invariants. The controller parameters should be adjusted to maintain communication stability when the communication of vehicle i is invalid and ensure that vehicle i is kept in the platoon. Chain collisions arising from invalid communication can be avoided.

    4 Simulation Results

    In the initial situation, the leading vehicle stands still, v0=0 m/s and a0=0 m/s2. After continuous acceleration, the speed of the leading vehicle reaches vf=40 m/s at time t=20 s.Its speed then remains constant. The other four vehicles’initial state is the same as that of the head vehicle, and they are as following.The initial spacing between any two vehicles is 5 m. The parameters of CACC are shown in Table 1.

    Table 1. Parameters of the traditional CACC

    4.1 Results of traditional CACC in case of communication being partially invalid

    In this case, we assume that the communication of the third vehicle is invalid at t=10 s. The result of the traditional CACC platoon is shown as Figs. 4–6.

    Fig. 4. Velocity curve of the traditional CACC platoon

    Fig. 5. Displacement curve of the traditional CACC platoon

    Fig. 6. Spacing curve of the traditional CACC platoon

    As shown in the above figures, at t=15 s, the speed of the third vehicle is higher than that of the second vehicle;and the conditions of string stability are not satisfied. At t=30 s, the displacement of the third vehicle is more than that of the second vehicle, and the collision accident occurred. In addition, the spacing between the second and third vehicles tends to reach zero. String stability cannot be maintained, and chain collisions happen under actual circumstances.

    4.2 Results of the improved CACC in case of communication being partially invalid

    In order to solve the problem of the communication of the third vehicle being invalid, the CACC controller of the third vehicle is improved, and the parameters are adjusted according to Eq. (30) and Eq. (31) to meet the requirements of string stability as shown in Table 2.

    Table 2. Adjusted parameters of CACC

    The simulation result of the improved CACC platoon is shown as Figs. 7–9. As shown in Figs. 7–9, the third vehicle’s communication turns invalid at t=10 s, and the control algorithm switches at the same time to the improved CACC. As a result, the spacing between the third vehicle and the second vehicle was enlarged to prevent accidents. The displacement of the third vehicle is always less than that of the second vehicle, and there is no impact to the other vehicles’ spacing. Chain collisions are therefore prevented.

    Fig. 7. Velocity curve of the improved CACC platoon

    Fig. 8. Displacement curve of the improved CACC platoon

    5 Conclusions

    (1) This paper presents the improved CACC algorithm based on the sliding mode control algorithm. It establishes a dynamic model of vehicle spacing deviation in a platoon and analyzes the vehicle stability conditions under improved CACC.

    Fig. 9. Spacing curve of the improved CACC platoon

    (2) The CACC algorithm is verified through an automatic platoon model involving five vehicles.

    (3) The paper analyzes the improved CACC algorithm and the adjusted controller parameters to maintain string stability under the condition of communication being partially invalid.

    (4) The feasibility of the algorithm has been demonstrated through model simulation. The improved CACC algorithm achieves vehicle-following effects and effectively maintains string stability.

    (5) It covers the shortages of the traditional CACC algorithm by avoiding oscillation of vehicle spacing and chain collision accidents caused by partially invalid communication.

    [1] VANDER WERF J, SHLADOVER S E, MILLER M A, et al.Effects of adaptive cruise control systems on highway traffic flow capacity[J]. Transportation Research Record: Journal of the Transportation Research Board, 2002, 1800(1): 78–84.

    [2] RAJAMANI R, ZHU C. Semi-autonomous adaptive cruise control systems[J]. Vehicular Technology, IEEE Transactions on, 2002,51(5): 1186–1192.

    [3] NAUS G, VUGTS R, PLOEG J, et al. Towards on-the-road implementation of cooperative adaptive cruise control[C]//Proceedings of the 16th World Congress and Publication exhibition on Intelligent Transport Systems and Services, Stockholm Sweden,2009: 21–25.

    [4] GIRARD A R, SOUSA J B, MISENER J A, et al. A control architecture for integrated cooperative cruise control and collision warning systems[C]//The 40th IEEE Conference on Decision and Control, Orlando, 2001, 2: 1491–1496.

    [5] GERRIT J, RENé P, JEROEN P, et al. String-stable CACC design and experimental validation: A frequency-domain approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(9): 4268–4278.

    [6] SHLADOVER S E. Longitudinal control of automated guide way transit vehicles within platoons[J]. Journal of Dynamic Systems,Measurement and Control, 1978, 100(4): 302–310.

    [7] ZHANG Jian, IOANNOU P A. Longitudinal control of heavy trucks in mixed traffic: Environmental and fuel economy considerations[J].Intelligent Transportation Systems, IEEE Transactions on, 2006,7(l): 92–104.

    [8] SHEIKHOLESLAM S, DESOER C A. Control of interconnected nonlinear dynamical systems: The platoon problem[J]. Automatic Control, IEEE Transactions on, 1992, 37(6): 806–810.

    [9] DRUZHININA M, MOKLEGAARD L, STEFANOPOULOU A.Parameter estimation and supervisory techniques for robust longitudinal control of heavy vehicles[R]. PATH Research Report,UCB-ITS-PRR-2003-15, University of California, Berkeley, USA, 2003.

    [10] FUJIOKA T, ASO M, KIMURA T. Longitudinal vehicle following control for autonomous driving[C]//Proceedings of International Symposium on Advanced Vehicle Control, Aachen, Germany, 1996:1293–1304.

    [11] SWAROOP D, HEDRICK J K, CHOI S B. Direct adaptive longitudinal control of vehicle platoons[J]. IEEE Transactions on Vehicular Technology, 2001, 50(1): 150–161.

    [12] SAINTE-MARIE J, MAMMAR S, NOUVELIERE L, et al.Sub-optimal longitudinal control of road vehicles with capacity and safety considerations[J]. ASME Journal of Dynamic Systems,Measurement, and Control, 2004, 126(l): 26–35.

    [13] ZHANG J, SUDA Y, IWASA T, et al. Vector Lyapunov function approach to longitudinal control of vehicles in a platoon[J]. JSME International Journal (Series C), 2004, 47(2): 653–658.

    [14] HEDRIEK K, MCMAHON D, NARENDRAN V, et al.Longitudinal vehicle controller design for IVHS systems[C]//Proceedings of the American Control Conference,Boston, 1991: 3107–3111.

    [15] MCMAHON D. Longitudinal vehicle controller design for IVHS:Theory and experiment[C]//Proceedings of the American Control Conference, Chicago, 1992: 1753–1757.

    [16] NOUVELIEREA L, MAMMAR S. Experimental vehicle longitudinal control using a second order sliding model technique[J].Control Engineering Practice, 2007, 15(8): 943–954.

    [17] CHU K. Decentralized control of high-speed vehicular strings[J].Transportation Science, 1974, 8(3): 361–384.

    [18] YI K, HONG J, KWON Y D. A vehicle control algorithm for stop-and-go cruise control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2001, 215(10): 1099–1115.

    [19] LUO Yugong, CHEN Tao, ZHOU Lei, et al. Adaptive cruise control system of besturn intelligent hybrid electric vehicle[J]. Chinese Journal of Mechanical Engineering, 2010, 46(6): 2–7. (in Chinese)

    [20] JOSE E, NARANJO. Adaptive fuzzy control for inter-vehicle gap keeping[J]. IEEE Transactions on Intelligent Transportations, 2003,4(3): 132–142.

    [21] XIAO Lingyun, GAO Feng. On string stable control of platoon of automated vehicles with predecessor-successor information framework[J]. Chinese Journal of Mechanical Engineering, 2010,23(5): 627–634.

    [22] XIAO Lingyun, GAO Feng. Practical string stability of platoon of adaptive cruise control vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1184–1194.

    [23] XIAO Lingyun, GAO Feng. A comprehensive review of the development of adaptive cruise control (ACC) systems[J]. Vehicle System Dynamics, 2010, 48(10): 1167–1192.

    [24] XIAO Lingyun, GAO Feng. Effect of information delay on string stability of platoon of automated vehicles under typical information frameworks[J]. Journal of Central South University of Technology,2010, 17(6): 1271–1278.

    [25] XIAO Lingyun, DARBHA S, GAO Feng. Stability of string of adaptive cruise control vehicles with parasitic delays and lags[C]//Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems, Beijing, China, 2008:1101–1106.

    [26] PEPPARD L. String stability of relative-motion PID vehicle control systems[J]. IEEE Transactions on Automatic Control, 1974, 19(5):579–581.

    [27] PEI Xiaofei, LIU Zhaodu, MA Guocheng, et al. Multi-mode switching controller for vehicle adaptive cruise control system[J].Chinese Journal of Mechanical Engineering, 2012, 48(10): 96–102.

    精品无人区乱码1区二区| 男女做爰动态图高潮gif福利片| 久久婷婷人人爽人人干人人爱| 叶爱在线成人免费视频播放| 禁无遮挡网站| 国产人伦9x9x在线观看| 亚洲欧美日韩高清在线视频| 熟女电影av网| 国产91精品成人一区二区三区| 久久久久久国产a免费观看| 国产精品久久视频播放| 满18在线观看网站| 国产亚洲欧美98| 人妻丰满熟妇av一区二区三区| 国产精品乱码一区二三区的特点| 免费看a级黄色片| 亚洲精品国产精品久久久不卡| 最近最新中文字幕大全免费视频| 99热6这里只有精品| 高潮久久久久久久久久久不卡| 搞女人的毛片| 精华霜和精华液先用哪个| 日韩三级视频一区二区三区| 男人操女人黄网站| 久久伊人香网站| 熟妇人妻久久中文字幕3abv| 欧美一区二区精品小视频在线| 午夜免费观看网址| av超薄肉色丝袜交足视频| 性欧美人与动物交配| 热re99久久国产66热| 日韩中文字幕欧美一区二区| 亚洲男人天堂网一区| 99国产精品一区二区蜜桃av| 熟女少妇亚洲综合色aaa.| 欧美乱码精品一区二区三区| 国产av在哪里看| 变态另类丝袜制服| 亚洲人成电影免费在线| 日日爽夜夜爽网站| 精品少妇一区二区三区视频日本电影| 中文字幕人成人乱码亚洲影| 亚洲黑人精品在线| 欧美国产日韩亚洲一区| 一级黄色大片毛片| 宅男免费午夜| 亚洲色图 男人天堂 中文字幕| 中文字幕最新亚洲高清| 熟女电影av网| 十八禁网站免费在线| www.www免费av| 校园春色视频在线观看| 中文字幕精品免费在线观看视频| 久久国产乱子伦精品免费另类| 视频区欧美日本亚洲| 久久午夜亚洲精品久久| 日日摸夜夜添夜夜添小说| 老汉色∧v一级毛片| 免费在线观看完整版高清| 免费看十八禁软件| 久久人妻av系列| 亚洲专区国产一区二区| 欧美黄色片欧美黄色片| 在线观看日韩欧美| 波多野结衣巨乳人妻| 麻豆久久精品国产亚洲av| 91麻豆精品激情在线观看国产| 两个人视频免费观看高清| 久久久久久亚洲精品国产蜜桃av| 一本大道久久a久久精品| 波多野结衣高清无吗| 久久香蕉国产精品| aaaaa片日本免费| 精品国产国语对白av| 欧美绝顶高潮抽搐喷水| 午夜激情福利司机影院| 免费无遮挡裸体视频| 制服人妻中文乱码| 麻豆av在线久日| 嫩草影院精品99| 一进一出好大好爽视频| 欧美在线黄色| 精品国内亚洲2022精品成人| 1024手机看黄色片| 性色av乱码一区二区三区2| 91字幕亚洲| 亚洲精品在线美女| 中文字幕av电影在线播放| 淫妇啪啪啪对白视频| 欧美性长视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | www.熟女人妻精品国产| 亚洲国产中文字幕在线视频| 99久久精品国产亚洲精品| 97超级碰碰碰精品色视频在线观看| 女警被强在线播放| 免费看美女性在线毛片视频| 中文字幕人成人乱码亚洲影| 韩国精品一区二区三区| 国产午夜福利久久久久久| 我的亚洲天堂| 桃色一区二区三区在线观看| 免费在线观看黄色视频的| 欧美激情高清一区二区三区| 久久久久久国产a免费观看| 一级毛片精品| 制服诱惑二区| 国产亚洲av嫩草精品影院| 久久精品91无色码中文字幕| 亚洲性夜色夜夜综合| 在线观看免费视频日本深夜| 亚洲va日本ⅴa欧美va伊人久久| 99国产精品99久久久久| 国产免费男女视频| 黄色成人免费大全| 国内少妇人妻偷人精品xxx网站 | 日本一区二区免费在线视频| 亚洲成av片中文字幕在线观看| 老司机在亚洲福利影院| 亚洲一区二区三区色噜噜| 国产野战对白在线观看| 欧美激情 高清一区二区三区| АⅤ资源中文在线天堂| 在线永久观看黄色视频| 国产黄a三级三级三级人| 欧美在线一区亚洲| 男女那种视频在线观看| www.自偷自拍.com| 免费观看人在逋| 精品久久蜜臀av无| 在线观看www视频免费| 亚洲熟妇熟女久久| 精品久久蜜臀av无| 亚洲电影在线观看av| 亚洲久久久国产精品| 国产精品美女特级片免费视频播放器 | 嫩草影院精品99| 欧美成人性av电影在线观看| 99国产精品一区二区蜜桃av| 亚洲欧美日韩无卡精品| 欧美最黄视频在线播放免费| 中文字幕精品免费在线观看视频| 亚洲色图av天堂| 国产一级毛片七仙女欲春2 | 18禁黄网站禁片免费观看直播| 亚洲九九香蕉| 午夜老司机福利片| 国产亚洲精品综合一区在线观看 | 日韩免费av在线播放| 国产一区在线观看成人免费| 久久精品夜夜夜夜夜久久蜜豆 | 国产av在哪里看| 18禁国产床啪视频网站| 男人舔女人的私密视频| 香蕉av资源在线| а√天堂www在线а√下载| 麻豆国产av国片精品| 国产日本99.免费观看| 午夜久久久在线观看| 亚洲欧美一区二区三区黑人| 亚洲精品美女久久久久99蜜臀| 亚洲天堂国产精品一区在线| 久久草成人影院| 亚洲av成人一区二区三| 久久国产精品影院| 搡老岳熟女国产| 日本免费a在线| 免费在线观看亚洲国产| 成人欧美大片| 身体一侧抽搐| 国产91精品成人一区二区三区| 夜夜爽天天搞| 国产成人欧美在线观看| 色播在线永久视频| 999久久久精品免费观看国产| 久久狼人影院| 亚洲片人在线观看| av在线天堂中文字幕| 亚洲精品中文字幕一二三四区| av福利片在线| 丁香六月欧美| 欧美+亚洲+日韩+国产| 亚洲精品美女久久av网站| 青草久久国产| 亚洲黑人精品在线| 999久久久国产精品视频| 亚洲中文字幕一区二区三区有码在线看 | 成人国产一区最新在线观看| 色在线成人网| 免费高清在线观看日韩| 日本一区二区免费在线视频| 国产又黄又爽又无遮挡在线| 成人一区二区视频在线观看| 国产亚洲av高清不卡| 少妇被粗大的猛进出69影院| 亚洲av熟女| 国产成人av教育| 一区二区三区国产精品乱码| 嫩草影视91久久| 久久精品国产亚洲av香蕉五月| 搡老岳熟女国产| 黄色女人牲交| av有码第一页| 午夜福利免费观看在线| 免费看十八禁软件| 女人高潮潮喷娇喘18禁视频| 最好的美女福利视频网| 国产一级毛片七仙女欲春2 | 日韩欧美三级三区| 欧美在线一区亚洲| 亚洲avbb在线观看| 久久久久国产精品人妻aⅴ院| 色在线成人网| 免费女性裸体啪啪无遮挡网站| 女人被狂操c到高潮| 一本大道久久a久久精品| 欧美av亚洲av综合av国产av| 黑丝袜美女国产一区| 成年免费大片在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品在线观看二区| 久久人妻福利社区极品人妻图片| 两人在一起打扑克的视频| 一本大道久久a久久精品| www日本黄色视频网| 亚洲精华国产精华精| 国内精品久久久久久久电影| 妹子高潮喷水视频| 免费观看人在逋| 我的亚洲天堂| 欧美午夜高清在线| 亚洲欧美激情综合另类| 欧美亚洲日本最大视频资源| 视频在线观看一区二区三区| 熟妇人妻久久中文字幕3abv| 欧美日韩中文字幕国产精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 男人舔女人的私密视频| a级毛片在线看网站| 在线国产一区二区在线| 天堂√8在线中文| 精品久久久久久成人av| 国产男靠女视频免费网站| 午夜免费激情av| 99精品在免费线老司机午夜| 亚洲国产日韩欧美精品在线观看 | 免费看十八禁软件| 人人妻人人澡人人看| 国产精品久久电影中文字幕| 窝窝影院91人妻| 亚洲av成人一区二区三| 无遮挡黄片免费观看| 免费人成视频x8x8入口观看| 黄色片一级片一级黄色片| 男女那种视频在线观看| 久久精品亚洲精品国产色婷小说| 麻豆成人av在线观看| 男女下面进入的视频免费午夜 | 国语自产精品视频在线第100页| 精品国产亚洲在线| 国产又色又爽无遮挡免费看| 大型av网站在线播放| 高清在线国产一区| 麻豆成人av在线观看| 在线免费观看的www视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品卡一卡二卡四卡免费| 亚洲国产精品sss在线观看| 极品教师在线免费播放| 午夜激情福利司机影院| 国产精品国产高清国产av| 啦啦啦免费观看视频1| 精品国产乱码久久久久久男人| 亚洲欧美精品综合久久99| 757午夜福利合集在线观看| 一区二区日韩欧美中文字幕| a在线观看视频网站| 欧美最黄视频在线播放免费| 男人舔奶头视频| 午夜亚洲福利在线播放| 美女扒开内裤让男人捅视频| av免费在线观看网站| 欧美黄色片欧美黄色片| 国产极品粉嫩免费观看在线| 香蕉久久夜色| 黄色女人牲交| 男人操女人黄网站| 国产精品亚洲美女久久久| 草草在线视频免费看| 久久九九热精品免费| 亚洲av成人一区二区三| 国产一区在线观看成人免费| 欧美成人一区二区免费高清观看 | 国产精品一区二区三区四区久久 | 热99re8久久精品国产| 老司机福利观看| 老司机深夜福利视频在线观看| 久久狼人影院| 成年人黄色毛片网站| 制服人妻中文乱码| 精品不卡国产一区二区三区| 男女床上黄色一级片免费看| 亚洲国产欧美一区二区综合| 黄色片一级片一级黄色片| 50天的宝宝边吃奶边哭怎么回事| 岛国在线观看网站| 天天躁夜夜躁狠狠躁躁| avwww免费| 国产一级毛片七仙女欲春2 | av欧美777| 俄罗斯特黄特色一大片| 黄色片一级片一级黄色片| av电影中文网址| 草草在线视频免费看| 大香蕉久久成人网| 一级毛片高清免费大全| 亚洲第一av免费看| 十八禁人妻一区二区| 成人精品一区二区免费| www日本黄色视频网| 亚洲五月婷婷丁香| 9191精品国产免费久久| 久久亚洲精品不卡| 久9热在线精品视频| 久久精品亚洲精品国产色婷小说| av在线播放免费不卡| 麻豆国产av国片精品| 99国产精品一区二区三区| 欧美黑人欧美精品刺激| 欧美黄色淫秽网站| 黑人巨大精品欧美一区二区mp4| 欧美日韩乱码在线| 免费在线观看视频国产中文字幕亚洲| 俄罗斯特黄特色一大片| 欧美乱色亚洲激情| 欧美日韩亚洲综合一区二区三区_| 99国产精品99久久久久| 午夜福利免费观看在线| 黑人操中国人逼视频| 亚洲av日韩精品久久久久久密| 亚洲在线自拍视频| 国产一区在线观看成人免费| 成人手机av| 黄色视频,在线免费观看| а√天堂www在线а√下载| 午夜久久久久精精品| 久久久久久免费高清国产稀缺| 波多野结衣av一区二区av| 视频区欧美日本亚洲| 国产成人一区二区三区免费视频网站| 99久久精品国产亚洲精品| 欧美一级a爱片免费观看看 | 性欧美人与动物交配| 中文字幕精品免费在线观看视频| 麻豆久久精品国产亚洲av| 女性生殖器流出的白浆| bbb黄色大片| 色婷婷久久久亚洲欧美| 哪里可以看免费的av片| 99在线视频只有这里精品首页| 天堂影院成人在线观看| 麻豆久久精品国产亚洲av| 久久久久久国产a免费观看| 后天国语完整版免费观看| 免费在线观看成人毛片| 午夜激情福利司机影院| 桃红色精品国产亚洲av| 两个人看的免费小视频| 日韩欧美国产一区二区入口| 男女之事视频高清在线观看| 国产久久久一区二区三区| 午夜日韩欧美国产| 97碰自拍视频| 国产精品久久视频播放| 亚洲人成网站高清观看| 久久精品91蜜桃| 午夜亚洲福利在线播放| 人人澡人人妻人| 熟女电影av网| 丁香欧美五月| av在线天堂中文字幕| 狂野欧美激情性xxxx| 欧美精品亚洲一区二区| 亚洲精品美女久久av网站| 午夜激情福利司机影院| 免费在线观看日本一区| 大型黄色视频在线免费观看| 亚洲精品久久成人aⅴ小说| 免费人成视频x8x8入口观看| 国产激情偷乱视频一区二区| 亚洲真实伦在线观看| 性色av乱码一区二区三区2| 久久草成人影院| 精品国产亚洲在线| 国产成人精品无人区| 国产aⅴ精品一区二区三区波| 丝袜在线中文字幕| 亚洲av成人不卡在线观看播放网| 欧美成人性av电影在线观看| 亚洲av中文字字幕乱码综合 | 麻豆成人午夜福利视频| 老司机在亚洲福利影院| 成在线人永久免费视频| 50天的宝宝边吃奶边哭怎么回事| 久久狼人影院| xxxwww97欧美| 一区二区三区高清视频在线| 久久精品成人免费网站| 欧美性长视频在线观看| 亚洲精品粉嫩美女一区| 午夜久久久久精精品| 18禁黄网站禁片免费观看直播| 十八禁人妻一区二区| 欧美乱码精品一区二区三区| 变态另类丝袜制服| 亚洲第一电影网av| 黑人巨大精品欧美一区二区mp4| 黑丝袜美女国产一区| 日韩欧美国产在线观看| 欧美日本亚洲视频在线播放| 最近在线观看免费完整版| 国产精品免费视频内射| 久久人妻福利社区极品人妻图片| 制服人妻中文乱码| 国产一区在线观看成人免费| 免费在线观看亚洲国产| 丝袜在线中文字幕| 午夜福利在线观看吧| 一级a爱视频在线免费观看| a在线观看视频网站| 亚洲精品中文字幕在线视频| 精品无人区乱码1区二区| 亚洲美女黄片视频| 亚洲国产中文字幕在线视频| 亚洲精品色激情综合| 窝窝影院91人妻| 国产一区二区三区在线臀色熟女| 色婷婷久久久亚洲欧美| 在线观看午夜福利视频| 午夜视频精品福利| 97超级碰碰碰精品色视频在线观看| 丁香欧美五月| 欧美大码av| 哪里可以看免费的av片| 香蕉久久夜色| 99久久无色码亚洲精品果冻| 国产一区二区三区视频了| 一个人观看的视频www高清免费观看 | 久久中文字幕人妻熟女| 日韩精品中文字幕看吧| 日韩高清综合在线| 久久精品人妻少妇| 国产精品亚洲av一区麻豆| 亚洲片人在线观看| xxx96com| 亚洲精品美女久久久久99蜜臀| 看黄色毛片网站| 免费女性裸体啪啪无遮挡网站| 午夜激情av网站| 久久九九热精品免费| 成人国产一区最新在线观看| 老司机午夜福利在线观看视频| 一区福利在线观看| 国内精品久久久久精免费| 91成年电影在线观看| 精品国产国语对白av| 一个人免费在线观看的高清视频| 中文字幕av电影在线播放| 久久久久久久久久黄片| 欧美中文综合在线视频| 97人妻精品一区二区三区麻豆 | 天堂影院成人在线观看| 在线视频色国产色| 国产麻豆成人av免费视频| 亚洲人成网站高清观看| 变态另类成人亚洲欧美熟女| 精品国产乱码久久久久久男人| 中文字幕高清在线视频| 国产午夜精品久久久久久| 一级毛片女人18水好多| 深夜精品福利| xxx96com| 精品乱码久久久久久99久播| 级片在线观看| 免费av毛片视频| 国产成人啪精品午夜网站| 亚洲国产看品久久| 特大巨黑吊av在线直播 | 久久久久国内视频| 国产精品免费视频内射| 亚洲五月天丁香| 岛国在线观看网站| 满18在线观看网站| 又黄又爽又免费观看的视频| 亚洲七黄色美女视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美日韩无卡精品| 97超级碰碰碰精品色视频在线观看| 亚洲真实伦在线观看| 免费在线观看亚洲国产| 香蕉国产在线看| 丁香六月欧美| 欧美黄色片欧美黄色片| 高清在线国产一区| 色综合亚洲欧美另类图片| 在线播放国产精品三级| 草草在线视频免费看| 亚洲国产中文字幕在线视频| 一a级毛片在线观看| 成人亚洲精品av一区二区| 国产真人三级小视频在线观看| 亚洲成国产人片在线观看| 亚洲国产毛片av蜜桃av| 免费看日本二区| 亚洲第一av免费看| 成人三级做爰电影| 日韩精品免费视频一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产看品久久| www.精华液| 在线永久观看黄色视频| 中文在线观看免费www的网站 | 午夜免费观看网址| 最新美女视频免费是黄的| 欧美黑人欧美精品刺激| 久久青草综合色| 琪琪午夜伦伦电影理论片6080| 午夜日韩欧美国产| 国内毛片毛片毛片毛片毛片| 搡老熟女国产l中国老女人| 精品国产乱码久久久久久男人| 99国产精品一区二区三区| 欧美在线一区亚洲| 侵犯人妻中文字幕一二三四区| 色精品久久人妻99蜜桃| 黄网站色视频无遮挡免费观看| 午夜精品在线福利| 午夜福利高清视频| 亚洲人成伊人成综合网2020| 久久香蕉激情| 国产午夜福利久久久久久| 一级作爱视频免费观看| 97碰自拍视频| 欧美人与性动交α欧美精品济南到| 999久久久国产精品视频| 日本撒尿小便嘘嘘汇集6| 成人三级黄色视频| www.精华液| 天堂√8在线中文| 人人妻人人看人人澡| 听说在线观看完整版免费高清| 亚洲自偷自拍图片 自拍| 啪啪无遮挡十八禁网站| 午夜两性在线视频| 一级作爱视频免费观看| 人人妻,人人澡人人爽秒播| 精品久久蜜臀av无| 久久精品国产亚洲av香蕉五月| 九色国产91popny在线| 啦啦啦 在线观看视频| 黑人操中国人逼视频| 日日干狠狠操夜夜爽| 变态另类成人亚洲欧美熟女| 亚洲五月天丁香| 久久国产精品影院| 男人操女人黄网站| 日本 av在线| 人妻久久中文字幕网| 亚洲自拍偷在线| 精品日产1卡2卡| 亚洲精品久久成人aⅴ小说| 18禁黄网站禁片午夜丰满| 日本免费一区二区三区高清不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 天天躁夜夜躁狠狠躁躁| 成年免费大片在线观看| 日韩成人在线观看一区二区三区| 免费在线观看成人毛片| 此物有八面人人有两片| x7x7x7水蜜桃| 男人舔女人下体高潮全视频| 成人18禁在线播放| 18禁国产床啪视频网站| 欧美最黄视频在线播放免费| 天天添夜夜摸| 色老头精品视频在线观看| 国产成人影院久久av| 国内少妇人妻偷人精品xxx网站 | 无遮挡黄片免费观看| 法律面前人人平等表现在哪些方面| 欧美性猛交黑人性爽| 一区二区三区激情视频| 人妻久久中文字幕网| 亚洲av电影在线进入| 动漫黄色视频在线观看| 精品久久久久久成人av| 黑丝袜美女国产一区| 欧美亚洲日本最大视频资源| 法律面前人人平等表现在哪些方面| 久久久精品欧美日韩精品| 亚洲一区二区三区色噜噜| 国产久久久一区二区三区| 亚洲九九香蕉| 一进一出抽搐gif免费好疼| 正在播放国产对白刺激| 男女之事视频高清在线观看| 好男人电影高清在线观看| 久久人妻av系列| 人成视频在线观看免费观看| 精品人妻1区二区| 免费在线观看日本一区| 视频在线观看一区二区三区| 一级a爱片免费观看的视频| 中文字幕高清在线视频| 国产亚洲av嫩草精品影院|