• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    可見(jiàn)光輻射下活性炭-鐵酸鎳雜化催化劑光催化氧化氨氮

    2014-02-18 12:06:34劉守清
    物理化學(xué)學(xué)報(bào) 2014年9期
    關(guān)鍵詞:鐵酸雜化物理化學(xué)

    肖 波 劉守清

    (蘇州科技學(xué)院,化學(xué)生物與材料工程學(xué)院,江蘇省環(huán)境功能材料重點(diǎn)實(shí)驗(yàn)室,江蘇蘇州215009)

    1 Introduction

    Nickel ferrite(NiFe2O4)is a promising photo-Fenton catalyst in practical application due to its easy immobilization,separation,recovery,and reuse by external magnetic field.The literature has shown,however,a single component of NiFe2O4has no photocatalytic activity to hydrogen peroxide due to the inhibition of nickel atoms in the crystal lattice.1,2Thus,it is necessary to modify the single NiFe2O4.Wang′sgroup3,4utilized graphene and multiwall carbon tubes to fabricate hybrid catalysts for the degradation of organic pollutants.Doet al.5applied activated carbons(ACs)to prepare Fe3O4and MnFe2O4hybrid materials as heterogeneous Fenton catalysts for the oxidation decomposition of methyl orange(MO).Huet al.6prepared an activated carbon-titanium dioxide composite for the degradation of dyes.Other carbon materials were also utilized to synthesize photocatalysts to promote the photocatalytic efficiency.7-9However,the activated carbonnickel ferrite(AC-NiFe2O4)hybrid catalyst has not been employed to degrade ammonia in the presence of hydrogen peroxide.

    Aqueous ammonia(NH3/NH4+)is a major aquatic pollutant,which comes from livestock waste and agricultural fertilizer.The excess of its existence in soil and waters makes eutrophication and depletion of dissolved oxygen,and increases biological oxygen demand.Therefore,some techniques such as the breakpoint chlorination,ion exchange,air stripping,and biological nitrification and denitrification for the removal of ammonia have been developed.10The photocatalytic technique was also developed to oxidize ammonia using TiO2.11-21The advantage of the TiO2catalyst is that it is stable and nontoxic.However,TiO2,especially,nano-sized TiO2is not easy to be immobilized,consequently,it runs off with effluent.And moreover,it is not response to visible light.Therefore,it is necessary to develop novel photocatalysts that have high activities,respond to visible light,and are easy to be immobilized.Therefore,herein we present the activated carbonnickel ferrite as a hybrid catalyst for the photo-Fenton oxidization of ammonia in the presence of hydrogen peroxide under visible light irradiation and explore the mechanism of oxidation of ammonia.

    2 Experimental

    2.1 Chemicals

    Activated carbon was purchased from Shanghai General Chemical Factory(Shanghai,China).Ferric chloride hexahydrate(FeCl3?6H2O),and sodium hydroxide(NaOH),sodium carbonate,and sodium bicarbonate were purchased from Tianjin Damao Chemical Factory,China.Ni(II)sulfate hexahydrate(NiSO4?6H2O)was obtained from Nanjing Chemical Reagent Co.,Ltd.All reagents were of analytical grade and used without further purification.All solutions were prepared with deionized Milli-Q water(18.2 MΩ?cm).

    2.2 Synthesis of AC-NiFe2O4catalyst

    NiSO4?6H2O(2.6285 g,0.01 mol)and FeCl3?6H2O(5.4058 g,0.02 mol)were separately dissolved in 15.0 mL of water.Both of the solutions were mixed under stirring.The activated carbon was pretreated by heating to 110°C and maintained for 1 h.Then,the pretreated activated carbon(0.2344 g)was added in the mixed solution,and was continuously stirred for 30 min.NaOH(3.2000 g,0.08 mol)was dissolved in 10.0 mL of deionized water,the NaOH solution was added dropwise to the mixed suspension solution.Another 20.00 mL of deionized water was added in the suspension solution up to the final volume of 60.0 mL,and it continued to be stirred for 30 min.The suspension solution including nickel ferrite paste and activated carbon was transferred into a 100 mL Teflon-lined stainless-steel autoclave that was sealed and maintained at 180°C for 10 h.The suspension was filtered to obtain AC-NiFe2O4precipitates,which were rinsed thrice with water to remove the excess of NaOH and other electrolytes.Finally,magnetic powder was obtained after sintering at 200°C for 4 h.The magnetic powder was utilized for the characterization and photocatalytic degradation of ammonia.The single NiFe2O4was prepared for comparison.

    2.3 Characterization for structure and magnetism

    X-ray diffraction(XRD)measurements were performed using anX′Pert-ProMPD X-ray diffractometer(Panalytical,Netherland).The X-ray source was Cu-Kαradiation with a wavelength of 0.154 nm,tube voltage of 40 kV,and tube current of 40 mA.Morphological observations were conducted using a transmission electron microscopy(TEM)system(TecnaiG220,FEI,USA)and a scanning electronic microscopy(SEM)system(Quanta 400 FEG,FEI,USA).AC-NiFe2O4and activated carbon powder were dispersed in water using an ultrasonic device,placed on carboncoated copper grids,and dried under ambient conditions for morphological observation.A Fourier-transform infrared(FTIR)spectrophotometer(Spectrum BX,PerkinElmer Ltd.,USA)was used for the characterization of group vibrations at an optical resolution of 4 cm-1.The mulls of AC-NiFe2O4were supported by a KBr plate.Magnetic measurements were made using a vibrating sample magnetometer(Lake Shore 7410,Lake Shore Cryotronics,Inc.,USA)at(25±2)°C.

    2.4 Degradation tests and analytical methods

    All photocatalytic experiments were conducted under visible light irradiation(λ>400 nm).A300 W UV-visible lamp(OSRAM,Germany)was used as a light source.Photo-Fenton degradation of ammonia was performed in a 100 mL beaker at room temperature((25.0±0.2)°C).The distance between the lamp and test solution was approximately 10 cm.The wall of the beaker was shielded from the surrounding light with tinfoil.Visible light was obtained with a cut-off filter(λ>400 nm),which covered the window of the beaker to absorb UV light and allow visible light ofλ>400 nm to pass through.Atest solution of about 50 mL was typically used in the photo-Fenton experiments.The pH value of solutions was adjusted by 0.1 mol?L-1NaHCO3-Na2CO3buffer,and the AC-NiFe2O4(0.20 g)was utilized as the catalyst.The absorbance at 425 nm was measured at regular intervals using a double beam TU-1901 spectrophotometer during the photo-Fenton process to probe the concentration of ammonia by Nessler reagent.Atest solution of 1.0 mL was taken out and diluted into 25.0 mL to track the content of ammonia during the photocatalytic degradation of ammonia.

    The Nessler reagent(alkaline solution of dipotassium tetraiodomercurate(II))was prepared according to the following procedure:10 g HgI2and 7 g KI were dissolved in water and added to NaOH solution(16 g NaOH in 50 mL of water)and finally diluted to 100 mL by deionized water.22The Nessler reagent was stored in dark bottle and diluted properly before analysis.Ammonia reacts with the Nessler reagent to yield colored solutions by reaction(1):

    The absorbance at 425 nm was measured to obtain the concentration of ammonia during the photo-Fenton process.

    3 Characterization results and discussion

    3.1 XRD characterization

    Fig.1 shows the XRD patterns of the as-synthesized ACNiFe2O4and NiFe2O4samples.The diffraction angle positions of the characteristic peaks(2θ)for both samples are in good agreement with the data in the JCPDS card(No.74-2081)of NiFe2O4,confirming the same crystal structure of theAC-NiFe2O4sample as that of the NiFe2O4sample.It is a cubic spinel ferrite,crystallizing in the cubic spinel type structure(a=0.8433 nm),space groupFd3m.Considering atomic occupancy,NiFe2O4is written as(Fe3+)A[Ni2+Fe3+]BO42?,where A and B represent tetrahedral and octahedral sites,respectively.23

    The peaks of the AC-NiFe2O4and NiFe2O4samples are distinctly broad,indicating that the AC-NiFe2O4particles are very small.The average diameter(D)of the as-synthesized ACNiFe2O4particles was calculated to be 10.7 nm using the Debye-Scherrer equation24D=Kλ/(Wcosθ)at a diffraction angle of 35.59°(2θ).Wis the breadth of the observed diffraction peak at its half height,Kis the so-called shape factor(usually approximately 0.89),andλis the wavelength of the X-ray source used(0.154 nm by our measurement).TheDvalue based on the Debye-Scherrer equation is consistent with that obtained from the SEM and TEM observations.

    3.2 FTIR characterization

    All spinels,particularly ferrites,show two characteristic bands in their infrared spectra.The higher bandν1,observed from 600 to 550 cm-1,corresponds to intrinsic stretching vibrations of the metal at the tetrahedral site Mtetra?O.The lower bandν2,which is observed from 450 to 385 cm-1,corresponds to octahedral metal stretching Mocta?O.25Thus,the absorption bandν1is caused by stretching vibrations of the tetrahedral metal-oxygen bond,whereas the absorption bandν2is caused by metal-oxygen vibrations at the octahedral sites.

    Fig.2 shows an absorption band located at 598 cm-1,which is assigned to the tetrahedral metal stretching vibrations.Another band is observed at 412 cm-1,corresponding to the octahedral metal stretching vibrations.These results agree with the data from the literature,25also confirmed by the data of XRD.The absorption band at 1622 cm-1is assigned to adsorbed water hydroxyl ions,that at 1125 cm-1is assigned to sulfate ions adsorbed on the surface of the particles,and that at 2366 cm-1is assigned to carbon dioxide.The absorption bands at 1026 and 3414 cm-1are attributed to stretching vibrations of C―O groups and O―H stretching vibrations,25respectively,indicating the activated carbon partially oxidized.

    3.3 Morphology and spectific area

    Fig.3 shows the TEM images of the NiFe2O4and AC-NiFe2O4samples.The elaborative observations found that the size of ACNiFe2O4particles is almost the same as that of NiFe2O4particles,being equal to about 10 nm.This diameter of AC-NiFe2O4particles is also close to that calculated by the Debye-Scherrer equation.However,Brunauer-Emmett-Teller(BET)surface area measurements show that the specific areas of theAC-NiFe2O4and NiFe2O4samples are very different,147.83 m2?g-1forAC-NiFe2O4and73.14 m2?g-1for NiFe2O4,showing the enhanced effect of the activated carbon in specific area.

    Fig.1 XRD patterns of the samples

    Fig.2 FTIR spectra of the samples

    Fig.3 TEM images of the NiFe2O4(A)and AC-NiFe2O4(B)samples

    Fig.4 Hysteresis loops for the NiFe2O4andAC-NiFe2O4 samples at room temperature

    3.4 Magnetic characterization

    Magnetization hysteresis loops of the as-synthesized ACNiFe2O4and NiFe2O4samples at room temperature were measured using a vibrating sample magnetometer,as shown in Fig.4.The saturation magnetization of AC-NiFe2O4is 48.4 emu?g-1,whereas that of NiFe2O4is 40.4 emu?g-1.The saturation magnetization of the AC-NiFe2O4sample is larger than that of the NiFe2O4sample,showing that the activated carbon enhances the order of the microstructure for NiFe2O4particles.

    4 Degradation of ammonia by AC-NiFe2O4 catalyst

    4.1 Photo-Fenton degradation of ammonia in the presence of H2O2

    Fig.5 presents the degradation curves of ammonia using ACNiFe2O4and NiFe2O4as catalysts in the presence or absence of H2O2under visible light irradiation or in dark in solutions with pH 10.5.Curve 1 shows an abatement of 91.0%for ammonia using AC-NiFe2O4as the Fenton-like catalyst in the presence of 1.0 mmol?L-1H2O2under visible light irradiation,while only an abatement of 30.0%(curve 2)for ammonia using NiFe2O4as the catalyst under similar conditions in 10 h.The results indicate that the AC-NiFe2O4catalyst is capable of responding to visible light and the activated carbon plays an indispensable role in absorbing visible light.

    Fig.5 Photo-Fenton degradation of ammonia in 50.0 mLsolutions

    Curve 3 shows a low abatement efficiency of 24.0%after a 10.0 h irradiation in the absence of the AC-NiFe2O4catalyst.Compared with this curve,curve 1 indicates that the AC-NiFe2O4material plays a vital role of catalyst.Curve 4 shows a low degradation ratio of 23.0%without H2O2under similar conditions.Compared with this curve,curve 1 indicates that the AC-NiFe2O4catalyst is capable of utilizing hydrogen peroxide to oxidize ammonia.

    The abatement of 9.3%in dark at 10.0 h(curves 6)shows that ammonia can be adsorbed on the AC-NiFe2O4catalyst or be volatized a little.Curve 5 shows that hydrogen peroxide degraded ammonia slightly in the dark.Compared with curves 6 and 5,curve 1 indicates that the visible light irradiation plays a significant promotion role of degradation of ammonia.

    4.2 Effects of AC content

    A series of AC-NiFe2O4hybrid materials containing various mass concentrations of activated carbon from 0.0%to 8.0%were synthesized by the above mentioned methods,and the as-synthesized products were utilized as the photo-Fenton catalyst for the degradation of ammonia.The degradation curves were shown in Fig.6.The results show that at the initial stage the degradation ratio increases as the mass concentration of AC rises in the composite,the degradation ratio reaches a top of 86.0%when the AC content is equal to 4.0%.Then,the degradation ratio starts to fluctuate when the AC content continues to increase.Both 6.0%and 8.0%contents of AC do not result in any expected increase of degradation ratio.Contrary to what it was expected,the degradation ratio decreased slightly.Thus,an optimal mass concentration of AC is equal to 4.0%in the composite catalyst for the degradation of ammonia.The reason for the fluctuation could involve the adsorption of ammonia on nickel ferrite.On the one hand,the increase of AC content in the composite catalyst can improve the absorption to visible light,resulting in promoting the degradation rate for ammonia.On the other hand,the overload of AC could inhibit the adsorption of ammonia on the surface of nickel ferrite catalyst because AC decreased the concentration of transition metal atoms exposed on the surface of the composite catalyst.

    Fig.6 Effect of the content of activated carbon on degradation ratio of ammonia under visible light irradiation

    4.3 Effects of pH

    The pH value of solutions is capable of greatly affecting the degradation rate,even standstill due to protonation of ammonia in acidic solutions.Thus,ammonia solutions with various pH values were utilized to examine the photo-catalytic degradation efficiency shown in Fig.7.The results indicated that the solutions with pH value less than 9.0 have very low degradation ratios.A pH 7.0 solution has only 10.0%of the degradation ratio for ammonia,another pH 8.0 solution responds to a 14.0%of degradation ratio.However,the solutions with pH value larger than or equal to 9.0 yield high degradation ratios.And the degradation ratio increases with the incease of pH value.The 86.0%degradation ratio was achieved in pH 10.5 solution while only the 10.0%degradation ratio in pH 7.0 solution.

    For phenomenon,it is attributed to the protonation of ammonia.11The pKaof NH4+is equal to 9.3,so it is predominantly protonated in pH<9.3 solutions.The protonated ammonia is charged positively,which is not easy to coordinate to the nickel ferrite surface.The higher pH values of solutions favor to adsorption of ammonia on the catalyst.Thus,the degradation rate is faster and faster with the increase of pH value in solutions.In addition,the hydroxyl radicals(?OH)can oxidize NH3but not NH4+,26the more concentration of NH3led to the faster degradation rate in a higher pH solution.

    Fig.7 Effect of pH values on degradation ratio of ammonia during photo-Fenton process

    4.4 Effects of H2O2concentration

    In order to obtain the optimal concentration of H2O2,a series of solutions containing 0.5,1.0,and 10.0 mmol?L-1H2O2solution were tested.The results showed that at 8.0 h the degradation ratios for ammonia approached to 71.3%,86.0%,and 87.0%with respect to three concentrations of H2O2,respectively.As seen in Fig.8,the degradation ratio for ammonia rose with the increase of H2O2concentration.However,the degradation ratio of ammonia did not go up sharply when the concentration of H2O2is more than 1.0 mmol?L-1.Compared with the concentration of 1.0 mmol?L-1,a 10-fold H2O2concentration resulted only in a rise of 1.0%in the degradation ratio of ammonia.Thus,the concentration of 1.0 mmol?L-1H2O2is proper in economy.

    4.5 Effects of catalyst loading

    The impact of AC-NiFe2O4dosage on the degradation of ammonia was investigated in the range of 2.0-6.0 g?L-1(0.1-0.3 g in 50 mL solution).As shown in Fig.9,the degradation efficiency increased with the catalyst dosage up to 4.0 g?L-1,and then slightly decreased upon further addition of the catalyst.The phenomenon is similar to that reported by literature.27,28The inhibition effect of iron species is considered as the reason for this decrease because the scavenging of hydroxyl radicals or other radicals will occur when excessive catalyst is exposed to the radicals,which can be expressed by the following equations.29,30

    4.6 Effects of Anions

    Fig.8 Effect of initial concentrations of H2O2on degradation ratio of ammonia

    Fig.10 demonstrates the dependence of the degradation ratio on the different anions under similar conditions.As seen in Fig.10,the degradation ratios of ammonia are slightly different in the presence of such anions,The order of the degradation rate followssuggesting the acceleration of degradation of ammonia in the presence of chloride.The reason is that chloride ions are oxidized by hydroxyl radicals to[ClOH]-?(Eq.(4)),subsequently,the ClO-species are formed(Eq.(5)).31,32Finally,ammonia is removed quickly33by equations(6)and(7).

    Fig.9 Influence of AC-NiFe2O4catalyst dosage on the degradation ratio of ammonia

    4.7 Stability and reuse

    The cyclic tests were performed in order to evaluate the catalytic activity and stability during a series of experiments and to observe the possibility of catalyst reuse.The catalyst was tested in eight consecutive experiments by using the fresh ammonia solutions under conditions(50.0 mg?L-1ammonia,1.0 mmol?L-1H2O2with pH 10.5,and 0.2 g catalyst in 50.0 mL solution).The reaction time was about 8 h each run.At the end of the previous experiment,the catalyst was collected by using an external magnetite,and then separated and washed with deionized water for three times.It was observed that the degradation rate was almost unchanged for eight runs(Fig.11),indicating that theACNiFe2O4catalyst is very stable,recoverable and reusable.A XRD measurement was also conducted on the hybrid catalyst after the photocatalytic reaction,the result showed that the positions of major peaks are almost unchanged(not shown here),confirming the stability of the catalyst again.

    The leaching tests showed that it is very difficult for iron leaching due to forming the hydrolysis of iron ions in the alkali solutions.As a matter of fact,the concentration of iron ions is very low(2.9×10-5mol?L-1),even if nickel ferrite is in an acidic medium of pH 3.0,this value is far lower than that of leaching from Fe2O3.2Hence,the iron leaching during the reaction is negligible.

    Fig.10 Effect of anions on degradation of ammonia

    4.8 Kinetic analysis

    The initial concentration of ammonia was varied as desired while the concentration of 1.0 mmol?L-1H2O2,0.2 g catalyst in 50.0 mL solution with pH 10.5 were constant.The degradation curves for the various ammonia concentrations were shown in Fig.12.The studies showed that the ammonia degradation follows a pseudo-first order kinetic law.The parameter ln(C0/Ct)is linearly proportional to the irradiation timet,shown in Fig.13.According to the integral equation(8)and experimental data,the average value of an apparent rate constantkappcan be obtained,which is equal to 3.538×10-3min-1.

    4.9 Reaction mechanism

    There are two pathways for the oxidization of ammonia after ammonia is adsorbed on the catalyst surface.34,35The one is through a series of NH2,NH,N2Hx+y(x+y=0,1,2)intermediates including hydrazine to release nitrogen gas.The other one is through HONH2,NO2-intermediates,finally,to form nitrate ions.These two pathways could be denoted as follows

    Reaction pathway 1:

    Fig.11 Cyclic tests of AC-NiFe2O4catalyst for stable check

    Fig.12 Effects of the initial concentrations of ammonia on degradation rate

    The absorption peaks for NO3?and NO2?anions are at 203 and 210 nm,respectively.To decline the interference of NO3?,the absorbance at 220 nm was measured.Atest for the degradation of ammonia was performed.The results showed that the absorbance for nitrite increased from zero to 1.63 over the irradiation time,whereas the absorbance for ammonia decreased from 1.68 to 0.12 shown in Fig.14,indicating the major product ofyielded by oxidization of ammonia.In order to confirm the oxidization pathway of ammonia,p-dimethylamino-benzaldehyde,a chromogenic agent for hydrazine intermediate(it will lead to absorbance at 460 nm if there is hydrazine in solution),was utilized to detect if there was any hydrazine intermediate during photo-Fenton degradation of ammonia.The result showed that no hydrazine was found.Therefore,consideration of abatement of ammonia in solution in dark(curve 6 in Fig.5),the mechanism for ammonia oxidization suggested that ammonia was first adsorbed on the catalyst surface,then,it was oxidized through HONH2tounder visible light irradiation.

    Fig.13 Dependence of ln(C0/Ct)on irradiation time for ammonia degradation

    Fig.14 Dependence of absorbance for nitrite anions on irradiation time

    Compared with that of the NiFe2O4sample,the diffuse reflection spectrum of theAC-NiFe2O4catalyst shows a red shift and an enhanced absorption of visible light shown in Fig.15,indicating that AC-NiFe2O4can utilize visible light more effectively than NiFe2O4for photocatalytic degradation of ammonia.Another photoelectrochemical test showed that the NiFe2O4composite on indium tin oxide(ITO)glass electrode has no photo-currents(not shown)at 0.8 V(vsSCE)in 0.1 mol?L-1Na2SO4solution,suggesting that the photocatalytic process is a photo-Fenton process.Thus,the electron transfer mechanism may be suggested as follows shown in Fig.16.

    There are graphene sheets in activated carbon materials,and grapheme sheets are semiconductor materials,when photons hit on the semiconductor materials,a fraction of the incident photon flux provokes the photo-generated electrons,which will diffuse through the graphene sheets to the Fe 3dorbital.Therefore,photons trigger the catalytic reaction.The role of the graphitic sheets of carbons would be of paramount importance for the migration of the photo-generated electrons,minimizing recombination,and favoring the electron transfer to the Fe 3dorbital to form Fe(II)ions.36-39Therefore,the activated carbon plays the role in absorbing photons,forming photo-generated electrons,and transferring the photo-generated electrons to the Fe 3dorbital.When H2O2approached Fe(II)ions diffusively,the reaction oc-curred to yield radicals?OH,thus,triggering the Fenton oxidization process by Eq.(14).

    Fig.15 Diffuse reflectance spectra of AC-NiFe2O4and NiFe2O4

    Fig.16 Photochemical process mediated by activated carbon in theAC-NiFe2O4material

    5 Conclusions

    Activated carbon-Nickel ferrite hybrid can be utilized as a heterogeneous photo-Fenton catalyst to degrade ammonia in the presence of hydrogen peroxide under visible light irradiation.Activated carbon plays a vital role in absorption of visible light.The oxidization pathway for ammonia is through HONH2intermediate to form nitrite ions.The kinetic studies show that the oxidization of ammonia follows the pseudo-first order kinetic law,the rate constant is equal to 3.538×10-3min-1.Eight runs show the catalyst is very stable,recoverable,separable and reusable,suggesting its potential application at the disposal of ammonia.

    (1) Costa,R.C.C.;Lelis,M.F.F.;Oliveira,L.C.A.;Fabris,J.D.;Ardisson,J.D.;Rios,R.R.V.A.;Silva,C.N.;Lago,R.M.J.Hazard.Mater.B2006,129,171.doi:10.1016/j.jhazmat.2005.08.028

    (2)Liu,S.Q.;Feng,L.R.;Xu,N.;Chen,Z.G.;Wang,X.M.Chem.Eng.J.2012,203,432.doi:10.1016/j.cej.2012.07.071

    (3)Fu,Y.S.;Chen,H.Q.;Sun,X.Q.;Wang,X.AIChE J.2012,58,3298.doi:10.1002/aic.13716

    (4)Pan,X.;Fu,Y.;Wang,L.;Wang,X.Chem.Eng.J.2012,149,195.

    (5)Nguyen,T.D.;Phan,N.H.;Do,M.H.;Ngo,K.T.J.Hazard.Mater.2011,185,653.doi:10.1016/j.jhazmat.2010.09.068

    (6)Xu,X.;Wang,X.J.;Hu,Z.H.;Liu,Y.F.;Wang,C.C.;Zhao,G.H.Acta Phys.-Chim.Sin.2010,26,79.[徐 鑫,王曉靜,胡中華,劉亞菲,王晨晨,趙國(guó)華.物理化學(xué)學(xué)報(bào),2010,26,79.]doi:10.3866/PKU.WHXB20100131

    (7)Yang,H.P.;Zhang,Y.C.;Fu,X.F.;Song,S.S.;Wu,J.M.Acta Phys.-Chim.Sin.2013,29,1327.[楊漢培,張穎超,傅小飛,宋雙雙,吳俊明.物理化學(xué)學(xué)報(bào),2013,29,1327.]doi:10.3866/PKU.WHXB201303212

    (8)Long,M.;Cong,Y.;Li,X.K.;Cui,Z.W.;Dong,Z.J.;Yuan,G.M.Acta Phys.-Chim.Sin.2013,29,1344.[龍 梅,叢 野,李軒科,崔正威,董志軍,袁觀明.物理化學(xué)學(xué)報(bào),2013,29,1344.]doi:10.3866/PKU.WHXB201303263

    (9)Xing,W.N.;Ni,L.;Yan,X.S.;Liu,X.L.;Luo,Y.Y.;Lu,Z.Y.;Yan,Y.S.;Huo,P.W.Acta Phys.-Chim.Sin.2014,30,141.[邢偉男,倪 良,顏學(xué)升,劉馨琳,羅瑩瑩,逯子揚(yáng),閆永勝,霍鵬偉.物理化學(xué)學(xué)報(bào),2014,30,141.]doi:10.3866/PKU.WHXB201311211

    (10)Ou,H.H.;Hoffmann,M.R.;Liao,C.H.;Hong,J.H.;Lo,S.L.Appl.Catal.B2010,99,74.doi:10.1016/j.apcatb.2010.06.002

    (11) Bonsen,E.M.;Schroeter,S.;Jacobs,H.;Broekaert,J.A.C.Chemosphere1997,35,1431.doi:10.1016/S0045-6535(97)00216-6

    (12)Altomare,M.;Chiarello,G.L.;Costa,A.;Guarino,M.;Selli,E.;Chem.Eng.J.2012,191,394.doi:10.1016/j.cej.2012.03.037

    (13)Kominami,H.;Nishimune,H.;Ohta,Y.;Arakawa,Y.;Inaba,T.Appl.Catal.B2012,111,297.

    (14) Kolinko,P.A.;Kozlov,D.V.Appl.Catal.B2009,90,126.doi:10.1016/j.apcatb.2009.03.001

    (15) Boulinguiez,B.;Bouzaza,A.;Merabet,S.;Wolbert,D.J.Photochem.Photobiol.A2008,200,254.doi:10.1016/j.jphotochem.2008.08.005

    (16) Zhu,X.;Nanny,M.A.;Butler,E.C.Water Res.2008,42,2736.doi:10.1016/j.watres.2008.02.003

    (17) Shavisi,Y.;Sharifnia,S.;Hosseini,S.N.;Khadivi,M.A.J.Ind.Eng.Chem.2014,20,278.doi:10.1016/j.jiec.2013.03.037

    (18) Dong,Y.;Bai,Z.;Liu,R.;Zhu,T.Atmos.Environ.2007,41,3182.doi:10.1016/j.atmosenv.2006.08.056

    (19)Geng,Q.;Guo,Q.;Cao,C.;Zhang,Y.;Wang,L.Ind.Eng.Chem.Res.2008,47,4363.doi:10.1021/ie800274g

    (20) Gou,H.H.;Liao,C.H.;Liou,Y.H.;Hong,J.H.;Lo,S.L.Environ.Sci.Technol.2008,42,4507.doi:10.1021/es703211u

    (21) Altomare,M.;Selli,E.Catalysis Today2013,209,127.doi:10.1016/j.cattod.2012.12.001

    (22) Niedzielski,P.;Kurzyca,I.;Siepak,J.Anal.Chim.Acta2006,577,220.doi:10.1016/j.aca.2006.06.057

    (23) Lazarevic,Z.Z?.;Jovalekic,C.;Recnik,A.;Ivanovski,V.N.;Milutinovic,A.;Romcevic,M.;Pavlovic,M.B.;Cekic,B.;Romcevic,N.Z?.Mater.Res.Bull.2013,48,404.doi:10.1016/j.materresbull.2012.10.061

    (24) Klug,H.P.;Alexander,L.E.X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials,2nd ed.;Wiley:New York,1974.

    (25) Mouallem-Bahout,M.;Bertrand,S.;PeHa,O.J.Solid State Chem.2005,178,1080.doi:10.1016/j.jssc.2005.01.009

    (26) Hoigne,J.;Bader,H.Environ.Sci.Technol.1978,12,79.doi:10.1021/es60137a005

    (27) Liao,Q.;Sun,J.;Gao,L.Colloids Surf.A2009,345,95.doi:10.1016/j.colsurfa.2009.04.037

    (28) Romero,A.;Santos,A.;Vicente,F.J.Hazard.Mater.2009,162,785.doi:10.1016/j.jhazmat.2008.05.123

    (29) Ramirez,J.H.;Maldonado-Hódar,F.J.;Pérez-Cadenas,A.F.;Moreno-Castilla,C.;Costa,C.A.;Madeira,L.M.Appl.Catal.B2007,75,312.doi:10.1016/j.apcatb.2007.05.003

    (30)Lam,S.W.;Chiang,K.;Lim,T.M.;Amal,R.;Low,G.K.C.J.Catal.2005,234,292.doi:10.1016/j.jcat.2005.06.014

    (31) Bacardit,J.;Sto1tzner,J.;Chamarro,E.Eng.Chem.Res.2007,46,7615.doi:10.1021/ie070154o

    (32) Machulek,A.,Jr.;Moraes,J.E.F.;Carolina,Vautier-Giongo.;Silverio,C.A.;Friedrich,L.C.;Nascimento,C.A.O.;Gonzalez,M.C.;Quina,F.H.Environ.Sci.Technol.2007,41,8459.doi:10.1021/es071884q

    (33) Li,M.;Feng,C.;Zhang,Z.;Zhao,R.;Lei,X.;Chen,R.;Sugiura,N.Electrochim.Acta2009,55,159.doi:10.1016/j.electacta.2009.08.027

    (34) Zhu,X.;Castleberry,S.R.;Nanny,M.A.;Butler,E.C.Environ.Sci.Technol.2005,39,3784.doi:10.1021/es0485715

    (35) Lee,J.;Park,H.;Choi,W.Environ.Sci.Technol.2002,36,5462.doi:10.1021/es025930s

    (36) Velasco,L.F.;Fonseca,I.M.;Parra,J.B.;Lima,J.;Ania,C.O.Carbon2012,50,249.doi:10.1016/j.carbon.2011.08.042

    (37) Leary,R.;Westwood,A.Carbon2011,49,741.doi:10.1016/j.carbon.2010.10.010

    (38) Liu,S.Q.;Xiao,B.;Feng,L.R.;Zhou,S.S.;Chen,Z.G.;Liu,C.B.;Chen,F.;Wu,Z.Y.;Xu N.;Oh,W.C.;Meng,Z.D.Carbon2013,64,197.doi:10.1016/j.carbon.2013.07.052

    (39)Guo,S.;Zhang,G.K.;Guo,Y.D.;Yu,J.C.Carbon2013,60,437.doi:10.1016/j.carbon.2013.04.058

    猜你喜歡
    鐵酸雜化物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    鐵酸鋅配碳選擇性還原的熱力學(xué)分析和試驗(yàn)研究
    鐵酸鋅制備工藝研究進(jìn)展
    濕法冶金(2019年6期)2019-02-16 19:18:04
    α-細(xì)辛腦脂質(zhì)聚合物雜化納米粒的制備及表征
    常壓碳熱還原鐵酸鋅的分解機(jī)理及動(dòng)力學(xué)
    Chemical Concepts from Density Functional Theory
    元素雜化阻燃丙烯酸樹(shù)脂的研究進(jìn)展
    化學(xué)教學(xué)中的分子雜化軌道學(xué)習(xí)
    元素雜化阻燃聚苯乙烯的研究進(jìn)展
    亚洲国产精品国产精品| 女的被弄到高潮叫床怎么办| 亚洲人成网站在线观看播放| 99国产综合亚洲精品| 欧美日韩成人在线一区二区| 亚洲精品自拍成人| 黑人高潮一二区| 日韩成人av中文字幕在线观看| av女优亚洲男人天堂| 日日啪夜夜爽| 亚洲久久久国产精品| 成人毛片a级毛片在线播放| 日本av免费视频播放| 成人影院久久| 国产视频内射| 久久久精品免费免费高清| 制服丝袜香蕉在线| 亚洲内射少妇av| 中文字幕精品免费在线观看视频 | 不卡视频在线观看欧美| 3wmmmm亚洲av在线观看| 久久精品久久精品一区二区三区| 纯流量卡能插随身wifi吗| 99国产精品免费福利视频| 亚洲精品自拍成人| 在线观看美女被高潮喷水网站| 免费黄色在线免费观看| 久久精品熟女亚洲av麻豆精品| 肉色欧美久久久久久久蜜桃| 99热网站在线观看| 99久久精品国产国产毛片| 自线自在国产av| 九草在线视频观看| 亚洲精品日韩av片在线观看| 美女xxoo啪啪120秒动态图| 国产黄色视频一区二区在线观看| 亚洲精华国产精华液的使用体验| 日本av免费视频播放| 美女xxoo啪啪120秒动态图| 韩国av在线不卡| 赤兔流量卡办理| av网站免费在线观看视频| 啦啦啦在线观看免费高清www| 亚洲欧美清纯卡通| 免费少妇av软件| 天堂中文最新版在线下载| 最近最新中文字幕免费大全7| 成人无遮挡网站| 欧美 日韩 精品 国产| 国产精品99久久久久久久久| av免费观看日本| 精品少妇久久久久久888优播| 啦啦啦啦在线视频资源| 国产白丝娇喘喷水9色精品| 婷婷色综合大香蕉| 高清不卡的av网站| 日日啪夜夜爽| 欧美日韩综合久久久久久| 七月丁香在线播放| a 毛片基地| h视频一区二区三区| 两个人的视频大全免费| 国产精品免费大片| 国产黄色视频一区二区在线观看| 99re6热这里在线精品视频| av播播在线观看一区| 丰满迷人的少妇在线观看| 建设人人有责人人尽责人人享有的| av视频免费观看在线观看| 亚洲激情五月婷婷啪啪| 久久久久久久精品精品| 精品亚洲成a人片在线观看| 插逼视频在线观看| 日韩av免费高清视频| 亚洲国产色片| 国产成人午夜福利电影在线观看| 国产黄色免费在线视频| 免费观看无遮挡的男女| 国产亚洲av片在线观看秒播厂| 高清午夜精品一区二区三区| 日韩av免费高清视频| 九色亚洲精品在线播放| 国产成人一区二区在线| 亚洲怡红院男人天堂| 午夜91福利影院| 精品99又大又爽又粗少妇毛片| av有码第一页| 美女国产视频在线观看| 中文乱码字字幕精品一区二区三区| 日韩电影二区| 中文欧美无线码| 黄色怎么调成土黄色| 成人二区视频| 色网站视频免费| 十分钟在线观看高清视频www| 丰满少妇做爰视频| 大又大粗又爽又黄少妇毛片口| 中文天堂在线官网| 色视频在线一区二区三区| 久久久精品区二区三区| 国产在线免费精品| 精品久久蜜臀av无| 日韩一区二区三区影片| 十八禁网站网址无遮挡| 日韩三级伦理在线观看| 丰满饥渴人妻一区二区三| 91精品三级在线观看| 欧美人与性动交α欧美精品济南到 | 亚洲五月色婷婷综合| 国产不卡av网站在线观看| 中文欧美无线码| 国精品久久久久久国模美| 内地一区二区视频在线| 亚洲av日韩在线播放| 国国产精品蜜臀av免费| 久久人人爽人人片av| 久久av网站| 一区在线观看完整版| 在线观看免费高清a一片| 精品人妻一区二区三区麻豆| 日韩一本色道免费dvd| 中文字幕最新亚洲高清| 亚洲精品乱码久久久v下载方式| 波野结衣二区三区在线| 国产精品三级大全| 欧美日韩亚洲高清精品| 午夜福利在线观看免费完整高清在| 午夜久久久在线观看| 国产精品国产三级国产专区5o| 在线精品无人区一区二区三| 26uuu在线亚洲综合色| 亚洲婷婷狠狠爱综合网| 日韩一区二区视频免费看| 18在线观看网站| 黄色怎么调成土黄色| 亚洲精品一区蜜桃| 男女边摸边吃奶| 黄色怎么调成土黄色| 丝瓜视频免费看黄片| 国产成人精品在线电影| 大话2 男鬼变身卡| 观看美女的网站| 亚洲国产精品国产精品| 欧美日韩成人在线一区二区| 一本大道久久a久久精品| 午夜影院在线不卡| 国产精品偷伦视频观看了| 美女福利国产在线| 午夜免费男女啪啪视频观看| 日韩制服骚丝袜av| 欧美xxxx性猛交bbbb| 人人妻人人爽人人添夜夜欢视频| 97超视频在线观看视频| 国产乱来视频区| 免费大片黄手机在线观看| 亚洲综合色惰| 国产乱来视频区| 看十八女毛片水多多多| 九色成人免费人妻av| 韩国高清视频一区二区三区| 亚洲第一区二区三区不卡| 97在线视频观看| 国产精品久久久久久精品古装| 亚洲人成77777在线视频| 午夜激情久久久久久久| 国产爽快片一区二区三区| 日本免费在线观看一区| 亚洲精品久久午夜乱码| 一级毛片aaaaaa免费看小| 街头女战士在线观看网站| 美女福利国产在线| 亚洲精品一二三| 久久精品国产自在天天线| 亚洲av免费高清在线观看| 熟女av电影| 亚洲伊人久久精品综合| 少妇熟女欧美另类| 国产成人精品久久久久久| 国国产精品蜜臀av免费| 亚洲美女搞黄在线观看| 大香蕉久久成人网| 男男h啪啪无遮挡| 欧美97在线视频| 欧美精品一区二区免费开放| 午夜91福利影院| 成人午夜精彩视频在线观看| 久久久久精品久久久久真实原创| 国产精品嫩草影院av在线观看| 久久亚洲国产成人精品v| 日本wwww免费看| 国产成人aa在线观看| www.av在线官网国产| 精品午夜福利在线看| a级毛色黄片| 国产av精品麻豆| 国产片内射在线| 国产深夜福利视频在线观看| 中文欧美无线码| 高清欧美精品videossex| 午夜福利,免费看| 一级毛片 在线播放| 韩国av在线不卡| 欧美日韩综合久久久久久| 日韩强制内射视频| 国产色婷婷99| 美女国产视频在线观看| 久久精品国产亚洲网站| 两个人的视频大全免费| 日日摸夜夜添夜夜爱| 成人综合一区亚洲| 美女国产视频在线观看| 亚洲国产成人一精品久久久| 国产精品 国内视频| 国产成人免费无遮挡视频| 久久久久久久亚洲中文字幕| 少妇丰满av| 亚洲欧美中文字幕日韩二区| 欧美日韩综合久久久久久| 国产日韩一区二区三区精品不卡 | 美女主播在线视频| 国内精品宾馆在线| 国产成人精品在线电影| 久久99热这里只频精品6学生| 午夜影院在线不卡| 日韩精品有码人妻一区| 亚洲精品成人av观看孕妇| 夫妻性生交免费视频一级片| 黄片播放在线免费| 国产精品麻豆人妻色哟哟久久| 亚洲精品自拍成人| 精品一区二区三区视频在线| 一级毛片黄色毛片免费观看视频| 黄色怎么调成土黄色| 男女无遮挡免费网站观看| 国产极品粉嫩免费观看在线 | 欧美三级亚洲精品| 99久久综合免费| 久久毛片免费看一区二区三区| 精品久久久久久电影网| 欧美成人精品欧美一级黄| 国产免费福利视频在线观看| 大片免费播放器 马上看| 日韩在线高清观看一区二区三区| 一边亲一边摸免费视频| videos熟女内射| 久久99精品国语久久久| 亚洲欧美中文字幕日韩二区| 天堂中文最新版在线下载| 久久精品久久精品一区二区三区| 午夜视频国产福利| 自拍欧美九色日韩亚洲蝌蚪91| 欧美 日韩 精品 国产| a级毛片在线看网站| 丰满少妇做爰视频| 性高湖久久久久久久久免费观看| 观看美女的网站| h视频一区二区三区| 日本vs欧美在线观看视频| 另类精品久久| 91午夜精品亚洲一区二区三区| 日韩欧美精品免费久久| 女性生殖器流出的白浆| 亚洲色图综合在线观看| 亚洲,欧美,日韩| 免费久久久久久久精品成人欧美视频 | 国产 精品1| 国产成人精品在线电影| 久久 成人 亚洲| 热99久久久久精品小说推荐| 女人精品久久久久毛片| 亚洲国产精品国产精品| 亚洲欧美成人综合另类久久久| 狂野欧美白嫩少妇大欣赏| 欧美日韩综合久久久久久| 91在线精品国自产拍蜜月| 亚洲精品久久成人aⅴ小说 | 99久久人妻综合| 国产黄频视频在线观看| 人妻系列 视频| 国产免费福利视频在线观看| 春色校园在线视频观看| 免费大片黄手机在线观看| av一本久久久久| 亚洲欧美色中文字幕在线| 亚洲av成人精品一二三区| a级毛色黄片| 亚洲av欧美aⅴ国产| 最近手机中文字幕大全| 久久女婷五月综合色啪小说| 久久韩国三级中文字幕| av有码第一页| 久久国产亚洲av麻豆专区| 蜜桃在线观看..| 亚洲国产欧美在线一区| 日本91视频免费播放| 精品久久久久久久久亚洲| 国产精品国产三级国产专区5o| 永久免费av网站大全| 精品国产国语对白av| 欧美激情国产日韩精品一区| 欧美日韩视频高清一区二区三区二| 午夜免费观看性视频| av免费在线看不卡| 蜜桃久久精品国产亚洲av| 亚洲精品视频女| 免费观看的影片在线观看| 国产精品一区二区在线观看99| 天堂8中文在线网| 秋霞伦理黄片| 2018国产大陆天天弄谢| 黄色欧美视频在线观看| 中文精品一卡2卡3卡4更新| 99久久人妻综合| 国产精品一国产av| 秋霞在线观看毛片| 男女边摸边吃奶| 曰老女人黄片| 国产成人精品久久久久久| 午夜老司机福利剧场| 精品酒店卫生间| 99九九线精品视频在线观看视频| 国产毛片在线视频| 国产精品一区二区在线不卡| 国产午夜精品一二区理论片| 免费av中文字幕在线| 精品视频人人做人人爽| 久久久国产一区二区| 久久久国产欧美日韩av| 日韩三级伦理在线观看| 黄色欧美视频在线观看| 少妇的逼好多水| 免费黄频网站在线观看国产| 一本—道久久a久久精品蜜桃钙片| 成年av动漫网址| 婷婷色综合大香蕉| 中文字幕免费在线视频6| 亚洲美女黄色视频免费看| 韩国av在线不卡| 男女边摸边吃奶| 精品人妻熟女av久视频| 母亲3免费完整高清在线观看 | 国产精品免费大片| 久久久精品免费免费高清| 国产亚洲欧美精品永久| 美女中出高潮动态图| 18禁裸乳无遮挡动漫免费视频| 亚洲图色成人| 美女国产视频在线观看| av在线老鸭窝| 亚洲国产欧美在线一区| 一级毛片aaaaaa免费看小| 国产男人的电影天堂91| 久久久久久久亚洲中文字幕| 又粗又硬又长又爽又黄的视频| 午夜影院在线不卡| 亚洲内射少妇av| 精品视频人人做人人爽| a级毛片免费高清观看在线播放| 日韩精品免费视频一区二区三区 | 黄色怎么调成土黄色| 国产精品99久久久久久久久| 国精品久久久久久国模美| 一个人看视频在线观看www免费| 成人18禁高潮啪啪吃奶动态图 | 国产国拍精品亚洲av在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品国产三级国产av玫瑰| 日日啪夜夜爽| 亚洲精品色激情综合| tube8黄色片| 日韩大片免费观看网站| 中文字幕久久专区| 国产精品三级大全| 国产精品不卡视频一区二区| 在线观看国产h片| 亚洲人成网站在线观看播放| 国产精品女同一区二区软件| 国产欧美亚洲国产| 18禁在线无遮挡免费观看视频| 国产免费现黄频在线看| videossex国产| 精品国产一区二区三区久久久樱花| 精品久久久精品久久久| 天堂中文最新版在线下载| 日本欧美国产在线视频| 亚洲av欧美aⅴ国产| 国产精品99久久99久久久不卡 | 久久久久久人妻| 日韩伦理黄色片| 嘟嘟电影网在线观看| 日本av免费视频播放| 香蕉精品网在线| 26uuu在线亚洲综合色| 亚洲不卡免费看| 99热网站在线观看| 成人综合一区亚洲| 国产视频首页在线观看| 人妻一区二区av| 人人妻人人添人人爽欧美一区卜| 一个人看视频在线观看www免费| av在线播放精品| 成人免费观看视频高清| av电影中文网址| 久久人妻熟女aⅴ| 国产老妇伦熟女老妇高清| 永久免费av网站大全| 国产黄色视频一区二区在线观看| av播播在线观看一区| 如何舔出高潮| 亚洲国产av影院在线观看| 丁香六月天网| 一级片'在线观看视频| 99久久精品一区二区三区| 欧美另类一区| 91精品三级在线观看| 啦啦啦视频在线资源免费观看| 色94色欧美一区二区| 亚洲国产最新在线播放| 高清黄色对白视频在线免费看| 曰老女人黄片| 成人手机av| 中文字幕亚洲精品专区| 我的女老师完整版在线观看| 亚洲av成人精品一区久久| 又粗又硬又长又爽又黄的视频| 日韩欧美一区视频在线观看| 国产日韩一区二区三区精品不卡 | 搡老乐熟女国产| 国产伦理片在线播放av一区| av国产精品久久久久影院| 国产白丝娇喘喷水9色精品| 精品久久久精品久久久| 伊人亚洲综合成人网| 国产精品一二三区在线看| 美女主播在线视频| 在线观看人妻少妇| 一级毛片电影观看| 久久鲁丝午夜福利片| 久久午夜福利片| 男女免费视频国产| 国产精品一二三区在线看| 久久精品国产自在天天线| 伊人久久国产一区二区| 有码 亚洲区| 国产精品不卡视频一区二区| 在线观看免费高清a一片| 国产有黄有色有爽视频| 人妻少妇偷人精品九色| 国产精品成人在线| 亚洲美女搞黄在线观看| 又粗又硬又长又爽又黄的视频| 国产不卡av网站在线观看| 免费观看性生交大片5| 国产男女超爽视频在线观看| 中文乱码字字幕精品一区二区三区| 这个男人来自地球电影免费观看 | 国产男人的电影天堂91| 欧美激情 高清一区二区三区| av国产精品久久久久影院| 人妻制服诱惑在线中文字幕| 搡老乐熟女国产| 精品人妻熟女毛片av久久网站| 一区二区三区免费毛片| 美女大奶头黄色视频| 午夜激情福利司机影院| 欧美日韩精品成人综合77777| 亚洲少妇的诱惑av| 亚州av有码| 久久毛片免费看一区二区三区| 亚洲精品久久午夜乱码| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美一区二区三区国产| 精品久久久久久久久亚洲| 老女人水多毛片| 有码 亚洲区| 亚洲在久久综合| 最后的刺客免费高清国语| 纵有疾风起免费观看全集完整版| 超碰97精品在线观看| 亚洲美女视频黄频| 男人添女人高潮全过程视频| 视频中文字幕在线观看| 在线天堂最新版资源| 免费黄色在线免费观看| 成人国产麻豆网| 青春草视频在线免费观看| 久久久久人妻精品一区果冻| .国产精品久久| 老司机影院成人| 免费高清在线观看视频在线观看| 国产在线一区二区三区精| 精品久久久久久久久av| 久久精品国产亚洲av天美| 国产成人精品婷婷| 一个人看视频在线观看www免费| 一区二区三区乱码不卡18| 母亲3免费完整高清在线观看 | 国产精品成人在线| 飞空精品影院首页| 看非洲黑人一级黄片| 熟妇人妻不卡中文字幕| 大片电影免费在线观看免费| 欧美老熟妇乱子伦牲交| 99九九在线精品视频| 天天操日日干夜夜撸| 久热久热在线精品观看| 国产男人的电影天堂91| 国产成人freesex在线| 99久久精品国产国产毛片| 只有这里有精品99| 国产亚洲精品第一综合不卡 | 久久精品久久久久久久性| 又大又黄又爽视频免费| av专区在线播放| 久久99热这里只频精品6学生| 久久人妻熟女aⅴ| 丰满饥渴人妻一区二区三| 亚洲av.av天堂| kizo精华| 亚洲国产最新在线播放| 超色免费av| 新久久久久国产一级毛片| 国产亚洲最大av| 免费av不卡在线播放| 国产 精品1| 国产极品粉嫩免费观看在线 | 97超视频在线观看视频| 亚洲性久久影院| 一区二区三区乱码不卡18| 国产极品天堂在线| 亚洲国产精品国产精品| 久久午夜综合久久蜜桃| 在线天堂最新版资源| 韩国高清视频一区二区三区| 国产精品国产三级国产av玫瑰| 国产伦理片在线播放av一区| 春色校园在线视频观看| 国产精品一国产av| 夜夜爽夜夜爽视频| 亚洲,一卡二卡三卡| 满18在线观看网站| 亚洲国产成人一精品久久久| 午夜久久久在线观看| 国产白丝娇喘喷水9色精品| 国产精品一区www在线观看| 亚洲欧洲国产日韩| 人妻 亚洲 视频| 久久国产亚洲av麻豆专区| 久久热精品热| 欧美成人午夜免费资源| 激情五月婷婷亚洲| 最近中文字幕2019免费版| 国产精品国产三级国产专区5o| 99久久中文字幕三级久久日本| 日韩在线高清观看一区二区三区| 午夜福利影视在线免费观看| 中文欧美无线码| 亚洲第一av免费看| av国产精品久久久久影院| 男的添女的下面高潮视频| 亚洲美女搞黄在线观看| 成人影院久久| av.在线天堂| 如何舔出高潮| 夫妻午夜视频| 人体艺术视频欧美日本| 性色av一级| 又粗又硬又长又爽又黄的视频| 国产精品一区二区三区四区免费观看| av女优亚洲男人天堂| 少妇被粗大猛烈的视频| 80岁老熟妇乱子伦牲交| 一级毛片我不卡| 国产精品一国产av| h视频一区二区三区| 王馨瑶露胸无遮挡在线观看| 91国产中文字幕| 欧美97在线视频| av卡一久久| 久久久午夜欧美精品| 精品人妻一区二区三区麻豆| 色视频在线一区二区三区| 欧美精品一区二区大全| 久久精品国产a三级三级三级| 成人漫画全彩无遮挡| 亚洲av日韩在线播放| 九九爱精品视频在线观看| 久久ye,这里只有精品| 久久人妻熟女aⅴ| 中文字幕免费在线视频6| 伦理电影免费视频| 夜夜看夜夜爽夜夜摸| 18禁动态无遮挡网站| 多毛熟女@视频| 亚洲人成77777在线视频| 热re99久久精品国产66热6| 一级片'在线观看视频| 亚洲av二区三区四区| 国产精品一二三区在线看| 欧美精品国产亚洲| 国产成人精品在线电影| 另类精品久久| √禁漫天堂资源中文www| 亚洲人成77777在线视频| 亚洲成人一二三区av| 夫妻午夜视频| 狠狠婷婷综合久久久久久88av| 国产欧美日韩一区二区三区在线 | 国产男女超爽视频在线观看| 超碰97精品在线观看| 男女边吃奶边做爰视频| 国产熟女欧美一区二区| 国产精品久久久久久久久免| 亚洲欧洲日产国产| 九九在线视频观看精品|