• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單分散PtNi納米粒子特殊的紅外光學(xué)性能

    2014-02-18 12:06:34周新文杜娟娟孫世剛
    物理化學(xué)學(xué)報(bào) 2014年9期
    關(guān)鍵詞:福建廈門化學(xué)系化工學(xué)院

    周新文 杜娟娟 孫世剛

    (1三峽大學(xué)生物與制藥學(xué)院,湖北宜昌443002;2廈門大學(xué)固體表面物理化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,化學(xué)化工學(xué)院化學(xué)系,福建廈門361005)

    1 Introduction

    Platinum-nickel(PtNi)alloy nanoparticles have a potential application in high density data storage1and are used as anode catalysts and cathode catalysts in fuel cell.2For example,PtNi nanoparticles were frequently used as an anode catalyst for electrooxidation of methanol in direct methanol fuel cell(DMFC),3,4and as a cathode catalyst for electro-reduction of oxygen.5,6These electrocatalytic properties are highly dependent on the size,shape,and composition of the PtNi nanoparticles.Geometry of a nanomagnet has great impact on its magnetic properties resulting from the interplay among different types of magnetic energies.Then syntheses of PtNi nanoparticles with controllable mor-phology and composition are crucial for progress in this field of data storage,fuel cell and so on.

    Until now,rod-shaped superparamagnetic PtNi nanoalloy and PtNi/C nanoparticles have been synthesized through different methods.7,8Weller and coworkers9have reported the synthesis of NixPt1-xnanoparticles with tunable composition and size by a hot organometallic synthesis,but the method needs a high temperature and expensive poisonous reactants.PtNi hollow spheres prepared by a template-replacement route as catalysts for hydrogen generation from ammonia borane have been investigated by Chenet al.10This method consists of the removal of the template after the synthesis,which may destroy the structure of the products.Except for the above synthetical methods,glvanic displacement reaction is a special template method,in which one substance is served as a suitable sacrificial template and reacts with other appropriate metal ions according to their different standard reduction potentials,resulting in the controlled formation of nanomaterials.11-13Bai and coworkers12have reported the synthesis of Pt hollow nanospheres using Co nanoparticles as a sacrificial template.Co@Pt nanoalloy,14hollow superparamagnetic CoPt nanospheres,15and necklace-like noble-metal hollow nanoparticle chains(Au,Pd,Pt)16were also prepared using the similar method.The galvanic displacement reaction has also been used for the synthesis of PtNi nanoparticles with a hollow structure.17,18

    The adsorbed molecules on thesenanomaterials′surfaces yield anomalous IR features named the abnormal IR effects(AIRES),19enhanced IR absorption(EIRA),20and the Fano-like IR effects.21,22Further investigation has showed that nanostructured Ni,Co thin film and CoPt nanorods also display anomalous IR properties.23-25It is important to note that the study of anomalous IR properties of nanomaterials with different morphologies and composition is of great importance in revealing the fundamentals of nanomaterials.26

    In this paper,we report the synthesis of PtNi nanoparticles by galvanic displacement reaction.Electrocatalytic and IR optical properties are studied in detail.The results ofin situIR spectra show that the adsorbed CO on monodispersed PtNi nanoparticles exhibit characteristics of bipolar IR feature with a strong enhancement.

    2 Experimental

    2.1 Prepration of PtNi nanoparticles

    All chemicals used in this experiment were analytical grade and were used without further purification.The growth of the PtNi nanoparticles was carried out in a solution-phase system reported in the literature.17In brief,9.5 mg NiCl2,60 mL H2O,and 100 mg poly(vinylpyrrolidone)(PVP)were mixed in a three-necked flask equipped with a heat controller.The mixture was kept at 75°C with vigorous stirring.Then,25 mL of 0.01 mol?L-1freshly prepared NaBH4solution was added dropwise.The solution turned dark,indicating the formation of Ni.Once the NaBH4is completely dropped into the solution,20 mL of 4 mmol?L-1K2PtCl6was added dropwise.To avoid oxidation of the Ni nanoparticles,high-purity N2was bubbled into the solution during the whole procedure.The obtained black solution was stirred for 2 h at the constant temperature of 75°C and cooled to room temperature.The obtained PtNi nanoparticles were separated,washed thoroughly,and redispersed in Millipore H2O for following studies.

    Transmission electron microscopy(TEM)images were obtained on instruments of JEM-100CX-II electron microscopy.

    2.2 Electrochemical in situ FTIR spectroscopy

    Glassy carbon(GC)electrode,polycrystalline Pt(bulk Pt)electrode,and polycrystalline Au(bulk Au)electrode were polished mechanically using sandpaper and alumina powders of sizes 5 and 1 μm down to 0.3 μm to obtain a clean electrode surface.A prescribed quantity of suspension of PtNi nanomaterials was applied to the surfaces of GC and Au electrodes,upon which a drop of 0.5%(V/V)Nafion solution was dispersed to fix the nanomaterials on the surface.The electrodes thus prepared are denoted as PtNi/GC and PtNi/Au electrodes,respectively.The cyclic voltammetric(CV)studies were carried out with a CHI631C electrochemical work station(CH instruments,Inc.),at a potential scan rate 50 mV?s-1.Electrochemical experiments were carried out in a standard three-electrode cell at room temperature.The counter electrode was a Pt flake and reference electrode was a saturated calomel electrode(SCE).

    The IR optical properties of the PtNi nanomaterials were studied and CO was selected as a probe molecule.The multistep FTIR(MS-FTIR)procedure27was used in the present study.In brief,a series of single-beam spectra were collected first at sample potentials(ES),where adsorbed CO is stable,and a single-beam spectrum was collected finally at the reference potential(ER),at which adsorbed CO has been removed completely by electrooxidation.In ourin situFTIR measurements,the reference potential(ER)was setted as 1.2 V,the sample potentials were setted as-0.2,-0.1,0.0,0.1,0.2,and 0.3 V based on the results of CO oxidation on PtNi/GC electrode.The resulting spectra were calculated using the following equation:

    whereR(ES)andR(ER)are single-beam spectra of reflection collected at sample potentialESand reference potentialER,respectively.Each single-beam spectrum was recorded by collecting and co-adding 400 interferograms at a spectral resolution of 8 cm-1.In situFTIR spectroscopic measurements were carried out on a Nexus 870 FTIR spectrometer(Nicolet)equipped with an Ever-Glo IR source and a liquid nitrogen-cooled MCT-A detector.A CaF2disk was used as the IR window,and a thin layer of solution was formed by moving the electrode toward the CaF2window during FTIR measurements.

    3 Results and discussion

    TEM images in Fig.1 illustrate that large-scale monodispersed PtNi nanomaterials have been synthesized.The structural details are revealed in high-magnification TEM images.The PtNi nanomaterials are solid,spherical,and highly monodispersed with an average diameter of about 52.2 nm.

    Fig.1 TEM images and the size distribution of PtNi nanoparticles

    Fig.2 shows the cyclic voltammograms of adsorbed CO oxidation on the PtNi/GC electrode in 0.1 mol?L-1H2SO4solution.It can be seen that the hydrogen adsorption-desorption current is completely suppressed when the electrode surface is covered with CO.The onset potential of CO oxidation is measured at about 0.12 V,and the main oxidation current peak appears around 0.51 V.It is worthwhile to note that,under the same conditions,the onset potential of CO oxidation on PtNi/GC electrode has been shifted negatively by 300 mV in comparison with that on bulk Pt,and the peak potential(Ep)on PtNi/GC electrode has been shifted negatively by 75 mV referring to the value measured on bulk Pt.In the reverse scan,a reduction current peak of Pt oxide is recorded at 0.36 V.The results demonstrated that the PtNi nanomaterials exhibit better electrocatalytic properties for the CO oxidation in 0.1 mol?L-1H2SO4solution than bulk Pt does.

    Fig.3 shows the MS-FTIR spectrum of CO adsorbed on the PtNi/GC and bulk Pt electrodes in 0.1 mol?L-1H2SO4solution.The negative-going band around 2072 cm-1is assigned to IR absorption of linearly bonded CO(COL).Except for the band of COL,a positive-going band located near 2341 cm-1is ascribed to IR absorption of CO2species that are uniquely derived from the oxidation of adsorbed CO2(COad)atER,because no CO2and CO species presented initially in solution inside the thin layer between the electrode and IR window.It is necessary to note that the IR band of COadon a bulk Pt electrode always appears in the opposite direction to the CO2band under the same conditions,which is in accordance with the predication of Eq.(1),which shows that the adsorbed CO on bulk Pt electrode exhibits a normal IR adsorption.25From the results of Fig.3,we can see that the IR features of PtNi nanoparticles are different from those of COadon the bulk Pt electrode and shown a typical IR features of AIREs,19,25which have three distinct anomalous features:(1)the inversion of the direction of adsorbed CO;(2)the significant enhancement of IR absorption;and(3)the broadening of the width of adsorbed CO bands.

    Fig.2 Cyclic voltammograms of adsorbed CO oxidation on the PtNi/GC(solid line)and bulk Pt(dash line)electrodes in 0.1 mol?L-1H2SO4solution with a scan rate of 50 mV?s-1

    Fig.3 In situ FTIR spectra of CO adsorbed on NiPt/GC electrode in 0.1 mol?L-1H2SO4solution

    Fig.4 In situ single-beam spectra of reflection collected at ER

    In thein situFTIR spectroscopic measurements,we have emphasized that the adsorbed CO will be removed completely by electrooxidation at reference potential(ER=1.2 V).Fig.4 shows thein situsingle-beam spectra of reflection collected at reference potential.In Fig.4(line a),a bipolar band near 2100 cm-1is assigned to IR adsorption of COL,which means that the adsorbed CO was not electrooxidized completely at reference potential.So the results obtained from Fig.3,which were calculated from Eq.(1)using the line a in Fig.4 as theR(ER),is questionable.Then we continue collecting the single-beam spectra of reflection atER.At last,the bipolar band near 2100 cm-1was disappeared indicating that the adsorbed CO was electrooxidized completely(line b).Then we can obtain the final resulting spectra using the line b in Fig.4 as theR(ER-2)from Eq.(1)based on the above analyses.Fig.5 shows the finalin situFTIR spectra of CO adsorbed on NiPt/GC electrode in 0.1 mol?L-1H2SO4solution.TheERis 1.2 V,ESare indicated for each spectrum.The dash line is thein situFTIR spectra of CO adsorbed on bulk Pt electrode obtained under the same condition(ER=1.2 V,ES=0.0 V).For the PtNi/GC electrode,remarkably enhanced symmetric bipolar band with its positive peak near 2050 cm-1and negative band near 2100 cm-1is assigned to IR adsorption of COLadsorbates atESthat is varied from-0.2 to 0.3 V.It is worthwhile to point out that the bipolar band observed in the current studies shows opposite direction in the positive and negative peaks in comparison to our previous studies of nanostructured Co thin films24and shows uniform direction to our previous studies of nanostructured Pt thin films.26The obtained results demonstrate that the bipolar IR feature of the COadbands is a particular IR property of nanostructured materials.

    The obtained IR feature is obviously different from the normal absorption on the bulk Pt electrode(Fig.5,dash line).The intensity,directions,and the broadening of the width of COLare different.This kind highly symmetric bipolar IR feature is also different from the Fano-like line shape,which is asymmetric and has been observed in transmission IR spectra of CO adsorbed on smooth iron ultrathin films supported on Mg(001)under ultrahigh-vacuum conditions by Pucci and co-workers.28The Fano-like line shape has also been observed in attenuated total reflectance(ATR)spectra of CO adsorbed on ultrathin film of Pt substrated on silicon under electrochemical conditions29and nanostructured Ni,23Co,24Pt,26and Ru film.30This kind Fano-like asymmetric spectrum was ascribed to the Fano effects,21and interpreted as the non-adiabatic interaction of adsorbate vibrations with electronic excitations by Pucci and co-workers.28

    In Fig.5,except for the adsorbed band of COL,a positive-going band located near 2341 cm-1is ascribed to IR absorption of CO2species.The intensity of CO2species adsorbed on PtNi/GC electrode is much more weak than that of bulk Pt electrode.The reasons can be explained as follows.It has been testified that the CO2species derived from COadoxidation can remain in the thin layer solution between the electrode and IR window for a relatively longer time due to large transporting resistance of the dispersion of CO2between the bulk solution and the thin layer.31In our case,the time remains atERon the PtNi/GC electrode is long enough to allow CO2to diffuse from the thin layer to the bulk solution.As a result,the intensity of CO2decreased,which can be seen from the different intensities of IR absorption band of CO2in Fig.5.Except for the band of COLand CO2,the absorption band around 1800-1900 cm-1in Fig.5 is the IR absorption of the existence of a relatively high level of gas water molecules in the beam path due to a poor purging of the spectrometer.

    Fig.5 Final in situ FTIR spectra of CO adsorbed on NiPt/GC electrode in 0.1 mol?L-1H2SO4solution

    Except for the directions of COL,we also noted that the intensity of the IR absorption of CO adsorbed on PtNi/GC electrode is significantly enhanced.It is convenient to define an enhancement factor to systematically study this IR property.The quantitative parameter of enhancement factor(ΔIR)is calculated using the following equation:26

    WhereACO(Pt)signifies the integrated intensity of COLband measured in the spectrun of bulk Pt electrode,i.e.,the spectrum(dash line)in Fig.5.ACO(PtNi)is the integrated intensity of COLband measured in the spectrum of PtNi/GC electrode.The surface relative roughness(Rr)measured in cyclic voltammetric studies is introduced in Eq.(2)to calibrate the difference of real surface area of PtNi nanoparticles.The enhancement factorΔIRhas been measured on PtNi/GC electrode to be 73.6.The value of the enhancement factor is much greater than others we obtained previously.19,20,23-26It is important to point out that the calculation of enhancement factorΔIRis glancing because it is hard to define the baseline of the bipolar IR feature of the COadbands exactly.But the adsorbed CO shows a strong enhancement,which will be approved clearly from the nextin situsingle beam spectra.

    Because the intensity of the IR absorption of CO adsorbed on PtNi/GC electrode is strong enough,we even can observe the optical properties in thein situsingle beam spectra.Fig.6 shows thein situsingle beam spectra of CO adsorbed on NiPt/GC electrode in 0.1 mol?L-1H2SO4solution atESthat is varied from-0.2 to 0.3 V.It can observe clearly that bipolar band with its positive peak near 2050 cm-1and negative band near 2100 cm-1is assigned to IR adsorption of COLadsorbates.In our previous work,13,19,23-27it is impossible to observe the peaks of adsorbed CO in thein situsingle beam spectra because of their weak enhancement.Then we have to obtain the resulting spectral equation(1)in the former studies.In Fig.6,we observe clearly that either the positive peak or the negative peak of the bipolar COadbands shifts positively and linearly with increasingESdue to Stark effect,19,26which indicated that the COLwas the adsorbed CO molecule,not the CO molecule dissolved in the solution.The Stark tuning rate can be then determined from the plot of the variation of wavenumbers withESin thein situsingle beam spectra in Fig.6.The results are shown in Fig.7.It is interesting to notice that the Stark tuning rate of the positive peak and that of the negative peak of the bipolar COLbands are not equal.The values of the Stark tuning rate were measured as 6.6 and 10.2 cm-1?V-1for the COLbipolar bands,respectively.The value of the Stark tuning rate is closely correlated with the nanostructured materials,24,26the concentration of electrolyte,32and solution molecule.33When theESis above 0.2 V,the variation of wavenumbers withESclearly deviated from the linear relationship and decreased slightly.This is obviously due to a partial oxidation of CO adsorbed on the PtNi nanoparticles,as also can be elucidated in CV curves(Fig.2).

    Fig.6 In situ single beam spectra of CO adsorbed on NiPt/GC electrode in 0.1 mol?L-1H2SO4solution

    It is known that the reflectivity of substrate may influence IR optical features.34Glassy carbon is a moderately reflecting substrate,while bulk Au electrode belongs to a high reflecting one.We also studied the IR properties of the PtNi/Au electrode under the same conditions as above.It can be seen that the IR bands of COLand CO2in Fig.8 are appeared in the same direction as those seen in Fig.6,indicating clearly that CO adsorbed on the PtNi/Au electrode also exhibits bipolar IR feature.The values of the Stark tuning rate were measured as 20.1 and 21.8 cm-1?V-1for the COLbipolar bands,respectively(Fig.9).The results demonstrate that the bipolar IR feature of COadis a particular IR property of PtNi nanoparticles,and that the influence of the substrate materials on the IR spectral features may be neglected in the present study.

    Fig.7 Plots of COLband centre versus E for CO adsorbed on NiPt/GC electrode obtained from the single beam spectra

    Fig.8 In situ single beam spectra of CO adsorbed on NiPt/Au electrode in 0.1 mol?L-1H2SO4solution

    Fig.9 Plots of COLband centre versus E for CO adsorbed on NiPt/Au electrode obtained from the single beam spectra

    A bipolar band of linearly chemisorbed CO with anomalous shape was reported in 1994 in potential-difference FTIR spectra of a basal plane graphite disc covered with Pt particles in a 1.0 mol?L-1H2SO4+1.0 mol?L-1aqueous methanol solution.35They explained the anomalous bipolar CO band by a potential-induced migration of chemisorbed CO molecules from terraces at the reference potential to edge or kink sites at the sample potentials.It was assumed that the CO stretching is higher for terraces than for edge or kink sites.Later,Ortizet al.36thought the explanation of the anomalous bipolar bands is simple and should be interpreted by the laws of reflectance,which means that the moderately reflecting substrate(GC)was the origin of the anomalous shape of the bipolar bands.Actually,it has been reported that the anomalous IR properties including surface enhanced IR absorption,Fano-like IR effects,and abnormal IR effects,are strongly correlated to the structure and size of nanomaterials.We have observed the transformation among the three anomalous IR properties from experimental results30,37and provided reasonable theoretical explanations38,39.The strong interaction between the nanoparticles,and the collective interaction between CO adsorbates and the nanoparticles may be the origins of the anomalous IR properties of low-dimensional nanomaterials.It is evident to understand the origins of the anomalous IR properties of lowdimensional nanomaterials,further studies involving not only experimental approaches but also theoretical analysis would be worthwhile.

    4 Conclusions

    In summary,well monodispersed PtNi nanoparticles were synthesized by the galvanic displacement reaction and chemical reduction.The PtNi alloy nanoparticles are spherical and with an average diameter of about 52.2 nm,which have been approved by the results of TEM.Cyclic voltammetric results demonstrate that the PtNi nanomaterials display a better catalytic property than a bulk Pt for CO oxidation.It has been measured that the current peak potential of COadoxidation on PtNi/GC electrode is shifted negatively by 75 mV in comparison with the value measured on a bulk Pt electrode.In situelectrochemical FTIRs employing CO adsorption as probe reaction demonstrate that the PtNi nanomaterials exhibit characteristics of bipolar IR feature of the COadbands with an enhancement factor(ΔIR)as high as 73.6.The intensity of the IR absorption of CO adsorbed on PtNi nanoparticles is so strong that we can observe and study the asymmetrical bipolar IR spectrum in thein situsingle beam spectra clearly.The substrate materials do not affect significantly the anomalous IR features,as illustrated by the similar anomalous IR features observed for CO adsorbed on both PtNi/GC and PtNi/Au electrodes.These results described in this paper are of importance in controlled-synthesis of nanomaterials and understanding the fundamental of anomalous IR properties of low-dimensional nanomaterials.

    (1) Cheng,A.;Holt-Hindle,P.Chem.Rev.2010,110,3767.doi:10.1021/cr9003902

    (2) Ghosh,T.B.;Leonard,M.;Zhou,Q.;Disalvo,F.Chem.Mater.2010,22,2190.doi:10.1021/cm9018474

    (3) Liu,F.;Lee,J.Y.;Zhou,W.J.Small2006,2,121

    (4) Liu,F.;Lee,J.Y.;Zhou,W.J.J.Phys.Chem.B2004,108,17959.doi:10.1021/jp0472360

    (5) Jayasayee,K.;Van Veen,J.A.R.;E.Hensen,J.M.;de Bruijn,F.A.Electrochim.Acta2011,56,7235.doi:10.1016/j.electacta.2011.03.043

    (6) Hasche,F.;Oezaslan,M.;Strasser,P.J.Phys.Chem.C2012,159,25

    (7) Deivaraj,T.C.;Chen,W.;Lee,J.Y.J.Mater.Chem.2003,13,2555.doi:10.1039/b307040a

    (8)Mandal,M.;Kundu,S.;Sau,T.K.;Yusuf,S.M.;Pal,T.Chem.Mater.2003,15,3710.doi:10.1021/cm030246d

    (9) Ahrenstorf,K.;Albrecht,O.;Heller,H.;Kornowski,A.;G?rlitz,D.;Weller,H.Small2007,3,271

    (10) Cheng,F.;Ma,H.;Chen,J.Inorg.Chem.2007,46,788.doi:10.1021/ic061712e

    (11)Sun,Y.;Wiley,B.;Li,Z.;Xia,Y.J.Am.Chem.Soc.2004,126,9399.doi:10.1021/ja048789r

    (12) Liang,H.P.;Zhang,H.M.;Hu,J.S.;Guo,Y.G..;Wan,L.J.;Bai,C.L.Angew.Chem.Int.Edit.2004,43,1540.

    (13) Zhou,X.W.;Chen,Q.S.;Zhou,Z.Y.;Sun,S.G.J.Nanosci.Nanothch.2009,9,2392.doi:10.1166/jnn.2009.SE34

    (14) Park,J.I.;Cheon,J.J.Am.Chem.Soc.2001,123,5743.doi:10.1021/ja0156340

    (15)Vasquez,Y.;Sra,A.K.;Schaak,R.E.J.Am.Chem.Soc.2005,127,12504.doi:10.1021/ja054442s

    (16)Zeng,J.;Huang,J.;Lu,W.;Wang,X.;Wang,B.;Zhang,S.;Hou,J.Adv.Mater.2007,19,2172

    (17)Zhou,X.W.;Zhang,R.H.;Zhou,Z.Y.;Sun,S.G.J.Power Sources2011,196,5844.doi:10.1016/j.jpowsour.2011.02.088

    (18)Wang,J.X.;Ma,C.;Choi,Y.M.;Su,D.;Zhu,Y.M.;Liu,P.;Si,R.;Vukmirovic,M.B.;Zhang,Y.;Adzic,R.R.J.Am.Chem.Soc.2011,133,13551.doi:10.1021/ja204518x

    (19) Zhou,X.W.;Gan,Y.L.;Sun,S.G.Acta Phys.-Chim.Sin.2012,28,2071.[周新文,甘亞利,孫世剛.物理化學(xué)學(xué)報(bào),2012,28,2071.]doi:10.3866/PKU.WHXB201205031

    (20) Jiang,Y.X.;Sun,S.G.;Ding,N.Chem.Phys.Lett.2001,344,463.doi:10.1016/S0009-2614(01)00812-0

    (21) Fano,U.Phys.Rev.1961,124,1866.doi:10.1103/PhysRev.124.1866

    (22) Krauth,O.;Fahsold,G.;Pucci-Lehmann,A.J.Mol.Struct.1999,483,237

    (23)Wang,H.C.;Sun,S.G.;Yan,J.W.;Yang,H.Z.;Zhou,Z.Y.J.Phys.Chem.B2005,109,4309.doi:10.1021/jp046313o

    (24) Chen,Q.S.;Sun,S.G.;Yan,J.W.;Li,J.T.;Zhou,Z.Y.Langmuir2006,22,10575.doi:10.1021/la0615037

    (25)Zhou,X.W.;Zhang,R.H.;Zeng,D.M.;Sun,S.G.J.Solid State Chem.2010,183,1340.doi:10.1016/j.jssc.2010.04.003

    (26) Gong,H.;Sun,S.G.;Li,J.T.;Chen,Y.J.;Chen,S.P.Electrochim.Acta2003,48,2933.doi:10.1016/S0013-4686(03)00358-X

    (27) Lin,W.F.;Sun,S.G.Electrochim.Acta1996,41,803.doi:10.1016/0013-4686(95)00331-2

    (28) Priebe,A.;Fahsold,G.;Pucci,A.Surf.Sci.2001,90,482

    (29) Zhu,Y.;Uchida,H.;Watanabe,M.Langmuir1999,15,8757.doi:10.1021/la990835r

    (30) Gong,H.;Sun,S.G.;Li,J.T.;Chen,Y.J.;Chen,S.P.Electrochim.Acta2003,48,2933.doi:10.1016/S0013-4686(03)00358-X

    (31) Lin,Y.;Sun,S.G.Electrochim.Acta1998,44,1153.doi:10.1016/S0013-4686(98)00218-7

    (32) Russell,J.W.;Severson,M.;Scanlon,K.;Overend,J.;Bewick,A.J.Phys.Chem.1983,87,293.doi:10.1021/j100225a024

    (33) Kunimatsu,K.;Seki,H.;Golden,W.G.;Golden,J.G.;Philpott,M.R.Surf.Sci.1985,158,596.doi:10.1016/0039-6028(85)90332-2

    (34) Pecharromán,C.;Cuesta,A.;Gutiérrez,C.J.Electroanal.Chem.2004,563,91.doi:10.1016/j.jelechem.2003.09.013

    (35) Christensen,P.A.;Hamnett,A.;Munk,J.;Troughton,G.L.J.Electroanal.Chem.1994,370,251.doi:10.1016/0022-0728(93)03168-O

    (36) Ortiz,R.;Cuesta,A.;Márquez,O.P.;Márquez,J.M.;Méndez,J.A.;Gutiérrez,C.J.Electroanal.Chem.1999,465,234.doi:10.1016/S0022-0728(99)00099-6

    (37) Bjerke,A.E.;Griffiths,P.R.;Theiss,W.Anal.Chem.1999,71,1967.doi:10.1021/ac981093u

    (38)Wu,C.X.;Lin,H.;Chen,Y.J.;Li,W.X.;Sun,S.G.J.Chem.Phys.2004,121,1553.doi:10.1063/1.1763135

    (39) Su,Z.F.;Sun,S.G.;Wu,C.X.;Cai,Z.P.J.Chem.Phys.2008,129,044707.doi:10.1063/1.2953441

    猜你喜歡
    福建廈門化學(xué)系化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    開學(xué)第一課
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    福建廈門
    雕塑藝術(shù)在食品造型中的應(yīng)用研究
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    《化工學(xué)報(bào)》贊助單位
    午夜福利视频精品| 少妇裸体淫交视频免费看高清 | 国产黄色免费在线视频| 久久精品91无色码中文字幕| 一夜夜www| 满18在线观看网站| 丝袜人妻中文字幕| 亚洲色图 男人天堂 中文字幕| 久久99一区二区三区| 国产有黄有色有爽视频| 99精国产麻豆久久婷婷| 最近最新免费中文字幕在线| av福利片在线| 国产精品免费大片| 真人做人爱边吃奶动态| 老司机深夜福利视频在线观看| 丰满少妇做爰视频| 麻豆乱淫一区二区| 日韩欧美国产一区二区入口| 日韩欧美一区二区三区在线观看 | 亚洲伊人久久精品综合| 亚洲欧洲日产国产| 黑人欧美特级aaaaaa片| 亚洲国产欧美网| 久久精品亚洲熟妇少妇任你| 中文亚洲av片在线观看爽 | 青青草视频在线视频观看| 在线观看免费高清a一片| 久久99热这里只频精品6学生| 亚洲色图综合在线观看| 亚洲欧美精品综合一区二区三区| 男人舔女人的私密视频| 宅男免费午夜| 天天添夜夜摸| 久久免费观看电影| 日本撒尿小便嘘嘘汇集6| 午夜激情久久久久久久| 亚洲欧美一区二区三区久久| 纯流量卡能插随身wifi吗| 美女午夜性视频免费| 亚洲精品美女久久av网站| 肉色欧美久久久久久久蜜桃| 这个男人来自地球电影免费观看| 成人黄色视频免费在线看| 操美女的视频在线观看| 日日爽夜夜爽网站| 天堂俺去俺来也www色官网| 丁香六月天网| 宅男免费午夜| 色精品久久人妻99蜜桃| 777米奇影视久久| 看免费av毛片| 国产精品99久久99久久久不卡| 国产精品久久久久成人av| √禁漫天堂资源中文www| 久久亚洲精品不卡| 下体分泌物呈黄色| 欧美国产精品va在线观看不卡| 色综合欧美亚洲国产小说| 极品人妻少妇av视频| 国产精品成人在线| 免费观看av网站的网址| cao死你这个sao货| 欧美精品一区二区大全| 亚洲一码二码三码区别大吗| 69av精品久久久久久 | 国产成人精品久久二区二区91| 91精品三级在线观看| 亚洲伊人色综图| 黄色 视频免费看| 久久久久网色| 精品少妇内射三级| 亚洲国产av新网站| 亚洲国产欧美一区二区综合| 交换朋友夫妻互换小说| 亚洲男人天堂网一区| 日韩精品免费视频一区二区三区| 9191精品国产免费久久| 欧美国产精品一级二级三级| 亚洲熟女精品中文字幕| 久久人妻熟女aⅴ| 日韩欧美一区二区三区在线观看 | 欧美av亚洲av综合av国产av| 精品少妇内射三级| 王馨瑶露胸无遮挡在线观看| 久久人妻av系列| av又黄又爽大尺度在线免费看| 久久天躁狠狠躁夜夜2o2o| 亚洲免费av在线视频| 天堂中文最新版在线下载| 啦啦啦 在线观看视频| 日韩欧美一区二区三区在线观看 | 亚洲人成电影免费在线| 一边摸一边抽搐一进一小说 | 亚洲国产成人一精品久久久| 变态另类成人亚洲欧美熟女 | av有码第一页| 欧美老熟妇乱子伦牲交| 搡老岳熟女国产| 亚洲全国av大片| 成人av一区二区三区在线看| 在线观看免费视频日本深夜| 成年版毛片免费区| 免费在线观看日本一区| 国产精品一区二区在线不卡| 国产精品成人在线| 欧美亚洲 丝袜 人妻 在线| 精品国产乱码久久久久久男人| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三卡| 亚洲精品在线观看二区| 国产日韩欧美视频二区| 国产亚洲精品一区二区www | 精品一区二区三区av网在线观看 | 亚洲国产欧美一区二区综合| 欧美日韩成人在线一区二区| 男女下面插进去视频免费观看| 五月开心婷婷网| 欧美激情极品国产一区二区三区| 十八禁网站免费在线| 亚洲成av片中文字幕在线观看| 国产精品久久久久久精品古装| 久久久久久久久免费视频了| 高清av免费在线| 十分钟在线观看高清视频www| 成人黄色视频免费在线看| 在线看a的网站| 黄频高清免费视频| 国产三级黄色录像| 99在线人妻在线中文字幕 | 人妻久久中文字幕网| 99久久国产精品久久久| 日本av免费视频播放| 最近最新中文字幕大全免费视频| a级片在线免费高清观看视频| 天天躁夜夜躁狠狠躁躁| 免费一级毛片在线播放高清视频 | 老司机深夜福利视频在线观看| 在线天堂中文资源库| 美女国产高潮福利片在线看| 2018国产大陆天天弄谢| 成人手机av| 亚洲中文av在线| 亚洲国产看品久久| 丝袜在线中文字幕| 成年人午夜在线观看视频| 99热国产这里只有精品6| 天天操日日干夜夜撸| 亚洲精品美女久久av网站| www.999成人在线观看| 日本五十路高清| 亚洲精品在线美女| 久久精品亚洲精品国产色婷小说| 老司机福利观看| 男女边摸边吃奶| 91成年电影在线观看| 久久亚洲精品不卡| 中文字幕制服av| 每晚都被弄得嗷嗷叫到高潮| 亚洲 欧美一区二区三区| 一本色道久久久久久精品综合| 久久人妻熟女aⅴ| 亚洲久久久国产精品| 欧美亚洲日本最大视频资源| 老司机亚洲免费影院| 咕卡用的链子| 亚洲国产欧美在线一区| 亚洲国产av影院在线观看| 人成视频在线观看免费观看| 成人亚洲精品一区在线观看| 亚洲美女黄片视频| 丰满迷人的少妇在线观看| 免费观看a级毛片全部| 国产欧美亚洲国产| 亚洲精品中文字幕在线视频| 成年人午夜在线观看视频| 99精品在免费线老司机午夜| 99久久国产精品久久久| 黄频高清免费视频| 久久国产精品男人的天堂亚洲| 久久精品亚洲精品国产色婷小说| 色视频在线一区二区三区| 亚洲成国产人片在线观看| 亚洲av国产av综合av卡| av视频免费观看在线观看| 老熟妇仑乱视频hdxx| 中文字幕av电影在线播放| 大码成人一级视频| 国产97色在线日韩免费| 国产免费福利视频在线观看| 考比视频在线观看| 女人高潮潮喷娇喘18禁视频| 成年版毛片免费区| 757午夜福利合集在线观看| 99九九在线精品视频| 首页视频小说图片口味搜索| 久9热在线精品视频| 人人妻人人澡人人看| 最近最新中文字幕大全免费视频| 成人亚洲精品一区在线观看| 亚洲美女黄片视频| 午夜精品国产一区二区电影| 日日摸夜夜添夜夜添小说| 黄色a级毛片大全视频| 精品欧美一区二区三区在线| 国产精品欧美亚洲77777| 久久ye,这里只有精品| 国产亚洲精品一区二区www | 亚洲国产看品久久| 91精品三级在线观看| 一个人免费在线观看的高清视频| 欧美激情极品国产一区二区三区| 18禁美女被吸乳视频| 香蕉国产在线看| 日本vs欧美在线观看视频| 99热国产这里只有精品6| 精品午夜福利视频在线观看一区 | 成年女人毛片免费观看观看9 | 黄色视频,在线免费观看| 成在线人永久免费视频| av网站免费在线观看视频| 最黄视频免费看| 国产精品美女特级片免费视频播放器 | 最近最新免费中文字幕在线| 国产一区二区在线观看av| 午夜福利视频精品| 亚洲精品国产区一区二| 人妻一区二区av| 亚洲人成电影观看| 欧美另类亚洲清纯唯美| 美女福利国产在线| 精品卡一卡二卡四卡免费| 少妇粗大呻吟视频| 巨乳人妻的诱惑在线观看| 18禁国产床啪视频网站| 天堂动漫精品| 精品国产乱码久久久久久男人| 精品乱码久久久久久99久播| 国产精品 国内视频| 日韩视频一区二区在线观看| 亚洲精华国产精华精| 久久午夜亚洲精品久久| 成人国产av品久久久| 99热网站在线观看| 国产精品欧美亚洲77777| 香蕉久久夜色| 一级a爱视频在线免费观看| 日韩欧美国产一区二区入口| 日韩欧美一区视频在线观看| 久久精品人人爽人人爽视色| 国产精品自产拍在线观看55亚洲 | 天天操日日干夜夜撸| 久久中文字幕一级| 黄片大片在线免费观看| 亚洲精品乱久久久久久| 久久国产精品人妻蜜桃| 国产高清videossex| 成人永久免费在线观看视频| 国产精品一区二区精品视频观看| 动漫黄色视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区在线观看日韩 | 欧美中文日本在线观看视频| 91老司机精品| 久久久久免费精品人妻一区二区| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩东京热| 国产极品精品免费视频能看的| 国产一级毛片七仙女欲春2| 国产视频一区二区在线看| 婷婷精品国产亚洲av在线| 日韩欧美三级三区| 99久久无色码亚洲精品果冻| aaaaa片日本免费| 天堂影院成人在线观看| 中文字幕高清在线视频| 激情在线观看视频在线高清| 神马国产精品三级电影在线观看| 99re在线观看精品视频| 变态另类丝袜制服| 一个人观看的视频www高清免费观看 | 欧美黄色片欧美黄色片| 国产黄色小视频在线观看| 一边摸一边抽搐一进一小说| 精品欧美国产一区二区三| 国产视频内射| 亚洲欧洲精品一区二区精品久久久| 99热精品在线国产| 欧美高清成人免费视频www| 亚洲电影在线观看av| 欧美av亚洲av综合av国产av| 色综合站精品国产| 无人区码免费观看不卡| 精品99又大又爽又粗少妇毛片 | 最近最新中文字幕大全免费视频| 欧美成人一区二区免费高清观看 | 又紧又爽又黄一区二区| 欧美日本亚洲视频在线播放| 麻豆国产97在线/欧美| 日韩高清综合在线| 国产精品永久免费网站| 一区二区三区国产精品乱码| 手机成人av网站| 99久久精品热视频| 亚洲av美国av| 嫩草影院精品99| 黄片大片在线免费观看| 国产v大片淫在线免费观看| 人人妻人人看人人澡| 一区二区三区激情视频| 97人妻精品一区二区三区麻豆| 久久精品人妻少妇| 久久婷婷人人爽人人干人人爱| 99精品欧美一区二区三区四区| 久久亚洲真实| 一级作爱视频免费观看| 欧美另类亚洲清纯唯美| 两性午夜刺激爽爽歪歪视频在线观看| 动漫黄色视频在线观看| 男女午夜视频在线观看| 亚洲熟妇中文字幕五十中出| 男女之事视频高清在线观看| 麻豆国产av国片精品| 亚洲精品乱码久久久v下载方式 | 国产v大片淫在线免费观看| 黑人操中国人逼视频| 99久久久亚洲精品蜜臀av| 日韩欧美三级三区| 国产亚洲精品久久久com| 国产视频内射| 狂野欧美激情性xxxx| 一级毛片精品| 麻豆久久精品国产亚洲av| 美女黄网站色视频| 日本 欧美在线| 亚洲成人久久爱视频| 国产高清三级在线| 国产黄片美女视频| 免费电影在线观看免费观看| 亚洲精品中文字幕一二三四区| 亚洲精华国产精华精| 精品午夜福利视频在线观看一区| 真人做人爱边吃奶动态| 老汉色∧v一级毛片| 亚洲 国产 在线| 精品国产三级普通话版| 中文字幕熟女人妻在线| 一级作爱视频免费观看| 啦啦啦韩国在线观看视频| 一二三四在线观看免费中文在| 伊人久久大香线蕉亚洲五| 国产av不卡久久| 给我免费播放毛片高清在线观看| 欧美黄色淫秽网站| 国产亚洲精品一区二区www| 日本五十路高清| 一个人免费在线观看的高清视频| 高清毛片免费观看视频网站| 国产精品永久免费网站| 变态另类成人亚洲欧美熟女| 国产免费av片在线观看野外av| 亚洲精品中文字幕一二三四区| 三级毛片av免费| 免费观看精品视频网站| 免费av不卡在线播放| 国产不卡一卡二| 夜夜爽天天搞| 可以在线观看的亚洲视频| 日本一本二区三区精品| 亚洲成人久久性| 久久久久久国产a免费观看| 成年免费大片在线观看| 亚洲国产精品合色在线| 久久精品aⅴ一区二区三区四区| 精品国产乱码久久久久久男人| 久久午夜亚洲精品久久| 亚洲人成网站高清观看| 黄色成人免费大全| 免费av毛片视频| 欧美色视频一区免费| 久久久久久久久中文| 亚洲国产精品sss在线观看| 国产高清有码在线观看视频| 精品午夜福利视频在线观看一区| 欧美乱码精品一区二区三区| 精品电影一区二区在线| 国产午夜精品久久久久久| 国产视频内射| 亚洲最大成人中文| www日本黄色视频网| 叶爱在线成人免费视频播放| 国产成人影院久久av| 蜜桃久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 亚洲av免费在线观看| 在线观看日韩欧美| 亚洲 欧美一区二区三区| 大型黄色视频在线免费观看| 狠狠狠狠99中文字幕| 欧美极品一区二区三区四区| 久久精品91蜜桃| 叶爱在线成人免费视频播放| 欧美色欧美亚洲另类二区| 曰老女人黄片| 国产一区二区激情短视频| 97超级碰碰碰精品色视频在线观看| 熟妇人妻久久中文字幕3abv| 精品久久久久久,| а√天堂www在线а√下载| 蜜桃久久精品国产亚洲av| 中文亚洲av片在线观看爽| av欧美777| 桃红色精品国产亚洲av| 欧美一级a爱片免费观看看| 97碰自拍视频| 亚洲国产精品成人综合色| 国产又黄又爽又无遮挡在线| 亚洲中文字幕日韩| 久久久久久国产a免费观看| 老司机午夜福利在线观看视频| 黄色日韩在线| 九色成人免费人妻av| 中文字幕精品亚洲无线码一区| 国产精品野战在线观看| 伊人久久大香线蕉亚洲五| 久久中文字幕一级| 法律面前人人平等表现在哪些方面| 在线观看66精品国产| 国产精品九九99| xxxwww97欧美| 国产精品1区2区在线观看.| 97超视频在线观看视频| 日本一二三区视频观看| av女优亚洲男人天堂 | 日韩免费av在线播放| 午夜亚洲福利在线播放| 观看免费一级毛片| 91字幕亚洲| 俄罗斯特黄特色一大片| 国产精品久久电影中文字幕| 色哟哟哟哟哟哟| 日本免费a在线| 亚洲欧洲精品一区二区精品久久久| 亚洲 欧美 日韩 在线 免费| 琪琪午夜伦伦电影理论片6080| 国产成人一区二区三区免费视频网站| 国产精品亚洲美女久久久| 99久久精品热视频| 别揉我奶头~嗯~啊~动态视频| 国产伦精品一区二区三区四那| 久久欧美精品欧美久久欧美| 最近最新中文字幕大全免费视频| 国产综合懂色| 日韩欧美国产一区二区入口| 国产精品久久久久久人妻精品电影| 国产激情久久老熟女| 亚洲精品在线美女| 精品国产乱码久久久久久男人| 日本黄色片子视频| 亚洲欧美精品综合一区二区三区| 国产精品一及| x7x7x7水蜜桃| av福利片在线观看| 日韩欧美免费精品| netflix在线观看网站| 69av精品久久久久久| 免费看日本二区| 免费在线观看影片大全网站| 极品教师在线免费播放| 丰满人妻熟妇乱又伦精品不卡| 国产精品98久久久久久宅男小说| 啦啦啦免费观看视频1| 亚洲色图 男人天堂 中文字幕| 亚洲av成人一区二区三| 一a级毛片在线观看| 日韩有码中文字幕| 国语自产精品视频在线第100页| 岛国视频午夜一区免费看| 成人鲁丝片一二三区免费| 日本成人三级电影网站| 成在线人永久免费视频| 国产av一区在线观看免费| 国产精品综合久久久久久久免费| av在线天堂中文字幕| xxx96com| 亚洲国产精品999在线| 欧美色视频一区免费| 欧美激情久久久久久爽电影| 床上黄色一级片| 欧洲精品卡2卡3卡4卡5卡区| 人人妻,人人澡人人爽秒播| 国产精品久久视频播放| 99久久99久久久精品蜜桃| 九九久久精品国产亚洲av麻豆 | 久久精品国产99精品国产亚洲性色| av福利片在线观看| or卡值多少钱| 亚洲在线自拍视频| 少妇丰满av| 99久久精品国产亚洲精品| 小说图片视频综合网站| 叶爱在线成人免费视频播放| 淫妇啪啪啪对白视频| 少妇丰满av| 精品一区二区三区四区五区乱码| 激情在线观看视频在线高清| 国产伦人伦偷精品视频| 人人妻人人看人人澡| 九九热线精品视视频播放| 99热精品在线国产| 国产精品,欧美在线| 免费在线观看亚洲国产| 一区二区三区激情视频| 18禁美女被吸乳视频| 成人精品一区二区免费| 国产精品,欧美在线| 日本三级黄在线观看| 男女下面进入的视频免费午夜| 别揉我奶头~嗯~啊~动态视频| 亚洲av五月六月丁香网| 叶爱在线成人免费视频播放| 99热精品在线国产| 在线免费观看的www视频| 国产精品 欧美亚洲| 国产精品久久久av美女十八| 国产日本99.免费观看| 国产三级中文精品| 99精品久久久久人妻精品| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 国产熟女xx| 91av网站免费观看| netflix在线观看网站| 欧美一区二区国产精品久久精品| 国产激情久久老熟女| 亚洲真实伦在线观看| 在线观看日韩欧美| 日韩中文字幕欧美一区二区| 岛国在线免费视频观看| netflix在线观看网站| 久久久国产精品麻豆| 淫妇啪啪啪对白视频| 丰满的人妻完整版| 狂野欧美激情性xxxx| 亚洲乱码一区二区免费版| 欧美日韩福利视频一区二区| 日本黄色视频三级网站网址| 嫩草影院入口| 搡老熟女国产l中国老女人| 国产精品一区二区三区四区久久| 中出人妻视频一区二区| 国产野战对白在线观看| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 国产精品 国内视频| 免费av不卡在线播放| 亚洲aⅴ乱码一区二区在线播放| 成人欧美大片| 国产高清视频在线观看网站| 国产又黄又爽又无遮挡在线| 黄色女人牲交| 国产高清videossex| 久久亚洲精品不卡| 91麻豆av在线| 午夜影院日韩av| 夜夜夜夜夜久久久久| 久久久久亚洲av毛片大全| 久久这里只有精品19| 嫩草影视91久久| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| 免费在线观看成人毛片| 日本五十路高清| 久久久国产成人精品二区| av中文乱码字幕在线| 欧美中文日本在线观看视频| 午夜影院日韩av| 欧美黄色淫秽网站| 2021天堂中文幕一二区在线观| 男人的好看免费观看在线视频| 一级黄色大片毛片| 观看美女的网站| 国产精品乱码一区二三区的特点| 久久久精品欧美日韩精品| 色综合婷婷激情| 久久久久久久午夜电影| 国产1区2区3区精品| 成年女人永久免费观看视频| 国产av麻豆久久久久久久| 99在线人妻在线中文字幕| 人妻丰满熟妇av一区二区三区| 精品国产美女av久久久久小说| 91麻豆av在线| 巨乳人妻的诱惑在线观看| 欧美成人免费av一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 少妇的丰满在线观看| www日本黄色视频网| 欧美另类亚洲清纯唯美| 亚洲片人在线观看| 亚洲天堂国产精品一区在线| 天堂√8在线中文| 中文字幕av在线有码专区| 舔av片在线| 免费在线观看视频国产中文字幕亚洲| 听说在线观看完整版免费高清| 亚洲av中文字字幕乱码综合| 成年女人永久免费观看视频| 日韩欧美在线乱码| 久久中文字幕人妻熟女| 757午夜福利合集在线观看| 天天躁日日操中文字幕| 日本黄色视频三级网站网址| 精品欧美国产一区二区三| 人人妻,人人澡人人爽秒播|