• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy

    2014-02-15 04:56:38SIVARAJKANAGARAJANVBALASUBRAMANIAN
    Defence Technology 2014年1期

    P.SIVARAJ*,D.KANAGARAJANV.BALASUBRAMANIAN

    aDepartment of Manufacturing Engineering,Annamalai University,Annamalai Nagar,Tamil Nadu 608002,India

    bCentre for Materials Joining&Research,Department of Manufacturing Engineering,Annamalai University,Annamalai Nagar,Tamil Nadu 608002,India

    Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy

    P.SIVARAJa,*,D.KANAGARAJANa,V.BALASUBRAMANIANb

    aDepartment of Manufacturing Engineering,Annamalai University,Annamalai Nagar,Tamil Nadu 608002,India

    bCentre for Materials Joining&Research,Department of Manufacturing Engineering,Annamalai University,Annamalai Nagar,Tamil Nadu 608002,India

    This paper reports the effects of post weld heat treatments,namely artifcial ageing and solution treatment followed by artifcial ageing,on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy.The tensile properties,such as yield strength,tensile strength,elongation and notch tensile strength,are evaluated and correlated with the microhardness and microstructural features.The scanning electron microscope is used to characterie the fracture surfaces.The solution treatment followed by ageing heat treatment cycle is found to be marginally benefcial in improving the tensile properties of friction stir welds of AA7075-T651 aluminium alloy.

    AA7075 aluminium alloy;Post weld heat treatment;Friction stir welding;Tensile property

    1.Introduction

    The precipitation hardenable 7xxx-series (Al-Zn-Mg-(Cu))aluminium alloys have been used extensively in the aircraft structural components,military vehicle, earth moving equipments,bridges and other highly stressed defence applications[1].The main problems in fusion welding of 7xxx series alloys are:(i)hot cracking(solidifcation cracking)in the weld,and(ii)excessive micro-fssuring due to hot tearing in the partially melted zone(PMZ)of the heat affected zone(HAZ).AA7075 alloy possessing a substantial amount of copper(around 1.75 wt%)has a wide melting range with a low solidus temperature and is extremely sensitive to weld cracking during fusion welding[2].Friction stir welding (FSW)is a solid state metal joining technique that was developed and patented by The Welding Institute of Cambridge(TWI),UK,in 1991[3].FSW is well suited for joining aluminium alloys,especially those that are typically considered to be un-weldable,such as 2XXX and 7XXX series aluminium alloys.

    The benefts of FSW are(i)capability to weld diffcult-toweld aluminium alloys,(ii)fewer weld defects,and(iii)better dimensional stability of the welded structure and possibility to weld linear and contour welding.Although the weld material remains in the solid state throughout the joining process,it is exposed to a high temperature extrusion[2,3]and experiences high levels of deformation[4],leading to signifcant modifcation of the microstructure and mechanical properties[5] coupled with development of signifcant levels of residual stress[6].Recently few investigations[7-9]were carried out to improve the material properties of FSW joints by applying post weld heat treatments.Chaitanya et al.[7],studied theeffects of fve different post weld heat treatments on FSW joints of Al-Zn-Mg aluminium alloy AA7039 in order to understand their effects on microstructure and mechanical properties.The authors inferred that the naturally aged joints offered the highest mechanical properties while the solution treated joints offered the lowest mechanical properties.The naturally aged joints yielded the highest tensile strength (94.9%)and elongation(174.2%)effciencies while the artifcially aged joints yielded the highest yield strength effciency (96.7%).

    Table 1Chemical composition(wt%)of parent metal(AA7075-T651).

    Fig.1.Experimental details.

    Table 2Transverse tensile properties of parent metal and FSW joints.

    Hanetal.[8],investigatedtheeffectofthesolutiontreatment on the tensile properties and fracture toughness of aluminium alloy 7050.Their results showed that the volume fraction of the residual phase decreases with the increase in single-stage solution temperature,butthevolume fraction of the recrystallized grains and the size of the sub-grains increase.The enhanced solutiontreatedsamplesresultinanimproveddissolutionofthe residualphase,alowerrecrystallizedgrainsfractionandsmaller sub-grains,which leads to a higher strength and fracture toughness than that of the single-stage solution treated samples. Christian et al.[9],examined the microstructural and mechanical property evolutions of friction stir welded 7050-T7651 and 7075-T651Alalloysasafunctionofroomtemperature(natural) ageing for up to 67,920 h.During the range of ageing times studied,the transverse tensile strengths continuously increase, and are still increasing,with improvements of 24%and 29% measured for the 7050-T7651 and 7075-T651 Al alloy friction stir welds,respectively.Formation of a high volume fraction of GP(II)zones produced a majority of the strength improvement within the weld nugget and HAZ regions.

    From the literature review,it is understood that the post weld heat treatment can effciently modify the microstructure and improve the tensile properties of FSW joints.However, the published information on the effect of post weld heat treatment on the microstructure and mechanical properties of the friction stir welded joints of AA7075 is very scant. Therefore,this study aims to investigate the effect of various post weld heat treatment methods,namely the artifcial ageing and solution treatment followed by ageing,on the microstructure and mechanical properties of 12 mm thick friction stir welded joints of armour grade AA7075 alloy.

    2.Experimental work

    Rolled aluminium alloy plates of AA7075-T651 are used as the parent metal in this investigation.The composition of AA7075-T651 aluminium alloy is given in Table 1.The 12 mm thick plate is cut into 300×100 mm pieces and rigidly clamped to achieve a square butt edge confguration during friction stir welding.The joints are fabricated using a computer numerically controlled FSW machine,normal to the rolling direction of the plate.For the FSW tool used,the taper threaded pin profle of shoulder is 36 mm in diameter,the pin is 12 mm in diameter and 11.6 mm in length.The schematic diagram and the photograph of the FSW tool are shown in Fig.1a and b,respectively.The parameters are optimized using a series of trial runs to obtain a macro level defect free joint.The optimized parameters used for the fabrication of the joints are tool rotation speed of 250 rpm and welding speed of 25 mm/min Fig.1c shows the photograph of the FSW joint obtained using the optimized parameters.

    Fig.2.Hardness profle across the weld joint along the mid thickness.

    Fig.3.Optical micrographs of a.Parent material and Stir zones in b.As welded,c.Artifcially aged,d.Solution treated and artifcially aged conditions.

    To study the effect of post weld heat treatment(PWHT),the welded joints were subjected to two different heat treatment cycles,namely artifcial ageing(AA)and solution treatment followed by artifcial ageing(STA).The as-welded(AW) joints were not subjected to heat treatment after FSW.The AA treatment was carried out at 120°C for a soaking period of 24 h and the STA treatment was carried out by solutionizing at 480°C for a soaking period of 60 min followed by water quenching and ageing at 120°C for a soaking period of 24 h. The scheme of extraction of the specimen from the FSW weld joint is shown in Fig.1d.The notched and un-notched tensile specimens were prepared for all the conditions,namely(i) Parent Material(PM),(ii)AW joint,(iii)AA joint and(iv) STA joint,as shown in Fig.1e and f.

    The tensile test was conducted on 100 kN electro mechanical controlled universal testing machine as per the ASTM E8M-04 specifcation.The hardness measurement was done across the weld centre line by Vickers microhardness tester with load of 0.05 kg and a dwell time of 15 s.Metallographic specimens were prepared by standard metallographic technique and were etched with Keller’s reagent(150 ml H2O,3 ml HNO3and 6 ml HF).The etching solution was cooled to 0°C and the specimens were etched for about 20 s in order to reveal the grain structure of the different weld zones.The microstructural analysis was done using optical microscope.The fracture surfaces of the tensile specimens were analyzed using a scanning electron microscope.Transmission electron microscopy was used to characterize the precipitates and the dislocation cell structure evolved during the FSW and PWHT cycles.The electron dispersive X-ray(EDX)analysis was used to determine the composition of the precipitates evolved during FSW and PWHT cycles.

    3.Results

    3.1.Tensile properties

    The results of the transverse tensile test carried out for the FSW joints in AW,AA and STA conditions along with PM are presented in Table 2.In each condition,three specimens were tested and the average value is presented.The yield strength and tensile strength of the un-welded PM are 510 MPa and 563 MPa,respectively,with an elongation of 16%.However, the FSW joint exhibits lower tensile and yield strength of 315 MPa and 394 MPa,respectively,in comparison with PM in the as-welded(AW)condition.This suggests that FSW causes a huge reduction in tensile strength(30%)of AA7075-T651 aluminium alloy,and the similar results were reported elsewhere[10,11].The artifcial ageing treatment performed on the FSW joint further lowers the yield strength and tensile strength to 251 MPa and 314 MPa,respectively,resulting in reducing the joint effciency by 14%in comparison to AW joint.The AA treatment also causes an increase in elongation by 2%in comparison with the AW joint.The STA treatment increases the yield strength and tensile strength to 346 MPa and 445 MPa,respectively,resulting in increasing the joint effciency by 9%in comparison to AW joint.However,the STA treatment causes a decrease in elongation by 1%for the AW joint.The notch strength ratio(NSR),i.e.the ratio between tensile strength of notched specimen and tensile strength of unnotched specimen for all the joints,is greaterthan unity,which shows that the material is notch ductile in all the conditions.The failure location of smooth tensile specimen was observed at the advancing side of the themo-mechanically affected zone(AS-TMAZ)in all the three joints.

    Fig.4.TEM micrographs of a.Parent material and Stir zones in b.As welded,c.Artifcially aged,d.Solution treated and artifcially aged conditions.

    3.2.Hardness

    The hardness survey across the weld cross section was conducted along the mid thickness of the joint using a Vickers microhardness testing machine.The hardness profle is presented in Fig.2.The stir zone(SZ)of AW joint does not show any considerable hardness difference in comparison with the PM hardness.The hardness value for the AW joint shows a drop in the TMAZ region on both sides of the joint.The lowest hardness in AW joint was observed at AS-TMAZ.The AA treatment resulted in increase of hardness value in the stir zone region and decrease in TMAZ region.The STA joint recorded the highest hardness in all the regions of the weld in comparison with AW and AA joints.

    3.3.Microstructure

    The optical micrograph of parent material is shown in Fig.3a.The optical micrographs of stir zones of AW,AA and STA joints are shown in Fig.3a,b,c,respectively.The SZ region of AW joint(Fig.3b)reveals a fne and equiaxed grain structure due to the dynamic recrystalization during FSW.The stir zone of AA joint(Fig.3c)reveals no alteration in the size of fne equiaxed grains when subjected to the AA treatment. The stir zone of STA joint(Fig.3d)reveals the marginal increase in grain size due to STA treatment.

    The TEM micrograph of PM is shown in Fig.4a which reveals two types of precipitates which are coarse and fne in size.The coarse precipitates vary in size from 50 to 100 nm while the fne precipitates vary from 10 to 50 nm in size.SZ of AW joint(Fig.4b)reveals coarse Al7Cu2Fe particles in spherical and block morphology. The fner θ′(Mg(Zn,Al,Cu)2)precipitates in the stir zone completely dissolved in the matrix due to friction heat during FSW [12-14].SZ of AA joint(Fig.4c)reveals agglomerated precipitates varying in size from 100 to 200 nm.SZ of STA joint(Fig.4d)shows the dissolution of all the agglomerated coarse precipitates in the matrix except for few coarse precipitates.

    The optical micrographs of AS-TMAZ and RS-TMAZ in AW condition are shown in Fig.5a and Fig.5b,respectively. AS-TMAZ and RS-TMAZ reveal the highly distorted structures of the matrix with considerable elongation in the grains due to the strain imparted in this region during FSW.The optical micrographs of AS-TMAZ and RS-TMAZ in AA joint are shown in Fig.5c and d,respectively.AS-TMAZ and RSTMAZ show no alteration in the grain size due to the AA treatment.The optical micrographs of AS-TMAZ and RSTMAZ in STA joint are shown in Fig.5e and f.AS-TMAZ and RS-TMAZ show the partially annealed conditions of the highly deformed matrix and fner dark spots,which might be the fner precipitates precipitated during the STA treatment,in the region.

    Fig.5.Optical micrographs of TMAZ regions at various heat treated conditions.a.As welded AS-TMAZ,b.As welded RS-TMAZ,c.Artifcially aged AS-TMAZ, d.Artifcially aged RS-TMAZ,e.Solution treated and artifcially aged AS-TMAZ,f.Solution treated and artifcially aged RS-TMAZ.

    3.4.Fracture surfaces

    The scanned image of the fractured tensile specimens parallel to the loading direction and the fracture surfaces perpendicular to the loading direction is shown in Fig.6.In order to study the effect of post weld heat treatment on the fracture mode during tensile testing,SEM examination of the fracture surfaces was carried out.The SEM fractographs of the unnotched and notched tensile specimens for PM,AW,AA and STA conditions are shown in Fig.7.

    The fracture surface of the unnotched tensile specimen of PM(Fig.7a)consists of a large number of microscopic voids with different sizes which are surrounded by fne dimples.The large micro voids are associated with the coarse precipitates which are fractured during the tensile loading,and the smaller ones are associated with the fner precipitates.The fracture surface of PM unnotched tensile specimen also reveals featureless fat regions along with the regions of dimple fracture with secondary cracking.The fracture surface indicates that the fracture is partly intergranular and partly transgranular with mixed mode of failure.

    The unnotched tensile specimens of AW,AA and STA conditions are fractured in the AS-TMAZ region as seen from the photographs of the tensile specimen shown in Fig.6,with a scrambled‘S’like cross section.The fracture surface of unnotched tensile specimen in AW condition(Fig.7b)consists of micro voids and dimples with various sizes indicating ductile mode of failure.The micro voids with various sizes associated with brittle precipitates acts as the crack initiation sites during initial loading.The fracture surface of the AA condition(Fig.7c)consists of large number of dimples with much deeper voids compared to the AW joint(Fig.7b).The coarser precipitates available in the AA joint acts as the failure initiation sites during tensile loading,and the large precipitate-to-precipitate distance results in formation of deeper voids. Fig.7d shows the fracture surface of unnotched tensile specimen in STA condition.The fracture surface consists of much shallower and fne dimples in comparison to other joints without much elongation owing to the STA treatment which results in fner precipitates.

    Fig.6.Photographs of fractured tensile specimens parallel to the loading direction and normal to the loading direction.

    4.Discussion

    The AW joint has lower tensile strength than PM.SZ has higher hardness value than TMAZ regions due to the dynamic recrystallization phenomenon occurring in the region during FSW.The fne grains formed during the recrystallization compensates for the softening due to the precipitate dissolution in SZ during FSW(Fig.3c)are attributed to the hardness values of this region equivalent to PM[15].The failure of AW joint occurred in the AS-TMAZ region which has the lowest hardness value(96.6 HV).The reduced hardness in the ASTMAZ region is attributed to the coarsening of precipitates during the FSW process(Fig.3b).The fracture surface of the AW joint shows ductile mode of failure which is the evidence for the softening which occurs in the TMAZ region during FSW(Fig.7b).

    The AA treatment to the FSW joint deteriorated the tensile properties of the FSW joint with subsequent reduction in hardness values in the TMAZ region(93 HV).In contrast,the hardness in SZ increased slightly during the AA treatment.SZ which has undergone dissolution of fne precipitates during FSW has re-precipitated during the AA treatment,thereby resulting in increased hardness in this region.Therefore the fne intermediate ? precipitate,a transition phase and precursor to the equilibrium MgZn2phase,is the most important strengthening phase in age-hardenable Al-Zn-Mg alloys [16].The TEM image of the stir zone(Fig.4c)shows that the fne precipitates which undergo coarsening by agglomeration during AA treatment.The high dislocation density presented in AS-TMAZ acts as shorter diffusion path for the soluteatoms to agglomerate and coarsen the precipitates.As the result of coarsening and reduction in dislocation density,the hardness in TMAZ region decreased and the width of the soft zone also increased in comparison with the AW joint.The fracture surface of the AA treated joint shows highly ductile mode of failure with deeper elongated voids as the result of coarsening and softening in the AS-TMAZ region(Fig.7c).

    The tensile test results showed that the STA treatment has marginally improved the tensile strength(445 MPa)of the FSW joint with a drastic improvement in hardness values across the FSW joint(refer Fig.2),and the similar results were observed by Barcellona et al.,[17,18].The solutionizing process during the STA treatment caused the dissolution of precipitates in the matrix.The artifcial ageing process in the STA treatmentcaused the re-precipitation offnerθ′(Mg(Zn,Al,Cu)2)in the stir zone(Fig.4d)with coarse Al7Cu2Fe precipitates.The distorted AS-TMAZ with high dislocation density underwent partial annealing during the STA treatment.The annealing effect reduced the strain induced in TMAZ region during FSW with reduction in dislocation density.Hence,the failure of STA joints was observed in AS-TMAZ region.The hardness profle of the STA joint shows that STA treatment increases the hardness of the joint drastically.The STA joint almost had a mean hardness value across all the regions of the joint with lowest hardness in AS-TMAZ region.The increase in hardness value resulted in marginal increase in tensile strength of the STA joint.The fracture surface of the STA joint show the much fner and shallow un-elongated dimples due to the fne precipitates which formed during the STA treatment(Fig.7d).

    5.Conclusions

    1)Friction stir welding for 12 mm thick rolled plates of precipitation hardened,high strength armour grade AA7075-T651 aluminium alloys was succeeded without any defects using single pass welding procedure.

    2)The tensile properties of friction stir welded AA7075-T651 alloy were deteriorated because of precipitate dissolution due to frictional heating.

    3)The artifcial ageing treatment(120°C,24 h)applied in this investigation further reduced the tensile properties of friction stir welded AA7075-T651 aluminium alloy joints.

    4)The solution treatment followed by artifcial ageing cycle (480°C for 1 h+120°C for 24 h)is formed to be benefcial to increase the tensile properties and hardness of friction stir welded AA7075 aluminium alloy joints.

    Acknowledgements

    The frst two authors were thankful to Center for Materials Joining and Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University for providing the necessary facilities to carry out this investigation.

    [1]Feng AH,Chen DL,Ma ZY.Microstructure and cyclic deformation behaviour of a friction-stir-welded 7075 Al alloy.Metall Mater Trans A 2010;41:957-71.

    [2]Madhusudhan Reddy G,Gokhale AA,Prasad Rao K.Weld microstructure refnement in a 1441 grade aluminium-lithium alloy.J Mater Sci 1997;32:4117-26.

    [3]Genevois C,Deschamps A,Denquin A,Doisneau-coottignies B.Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds.Acta Mater 2005;53:2447-58.

    [4]Scialpi A,De Filippis LAC,Cavaliere P.Infuence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy.Mater Des 2007;28:1124-9.

    [5]Moreira PMGP,Santos T,Tavares SMO,Richter Trummer V,Vilac?a P,de Castro PMST.Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6.Mater Des 2009;30:80-187.

    [6]Sutton MA,Reynolds AP,Wang DQ,Hubbard A.Study of residual stresses and microstructure in 2024-T3 aluminum friction stir butt welds. ASME J Eng Mater Technol 2002;124:215-22.

    [7]Sharma C,Dwivedi DK,Kumar P.Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al-Zn-Mg alloy AA7039.Mater Des 2013;43:134-43.

    [8]Han NM,Zhang XM,Liu SD,He DG,Zhang R.Effect of solution treatment on the strength and fracture toughness of aluminium alloy 7050.J Alloys Compd 2011;509:4138-45.

    [9]Fuller CB,Mahoney MW,Calabrese M,Micona L.Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds.Mater Sci Eng A 2010;527:2233-40.

    [10]Balasubramanian V,Ravisankar V,Madhusudhan Reddy G.Infuences of pulsed current welding and post weld aging treatment on fatigue crack growth behaviour of AA7075 aluminium alloy joints.Int J Fatig 2008;30:405-16.

    [11]Rajakumar S,Muralidharan C,Balasubramanian V.Infuence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints.Mater Des 2011;32:535-49.

    [12]Dixit M,Mishra RS,Sankaran KK.Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys.Mat Sci Eng A 2008;478:163-72.

    [13]Malarvizhi S,Balasubramanian V.Fatigue crack growth resistance of gas tungsten arc,electron beam and friction stir welded joints of AA2219 aluminium alloy.Mater Des 2011;32:1205-14.

    [14]Su JQ,Nelson TW,Mishra R,Mahoney M.Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater 2003;51:713-29.

    [15]Elangovan K,Balasubramanian V.Infuences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints.Mater Charact 2007;59:1168-77.

    [16]Srivatsan TS,Anand S,Sriram S,Vasudevan VK.The high-cycle fatigue and fracture behavior of aluminum alloy 7055.Mater Sci Eng A 2000;281:292-304.

    [17]Barcellona A,Buffa G,Fratini L,Palmeri D.On microstructural phenomena occurring in friction stir welding of aluminium alloys.J Mater Process Technol 2006;177:340-3.

    [18]zhou CJ,Liang Z,Jie YS,Long DS.Effects of precipitates on fatigue crack growth rate of AA 7055 aluminum alloy.Trans Non Ferr Met Soc China 2010;20:2209-14.

    Received 17 December 2013;revised 10 January 2014;accepted 20 January 2014 Available online 29 January 2014

    *Corresponding author.Tel.:+91(0)4144239734.

    E-mail address:cemajorsiva@gmail.com(P.SIVARAJ).

    Peer review under responsibility of China Ordnance Society.

    Production and hosting by Elsevier

    2214-9147/$-see front matter Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.dt.2014.01.004

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    国产一区二区三区av在线| 国产无遮挡羞羞视频在线观看| 国产亚洲一区二区精品| 日韩一区二区视频免费看| 五月开心婷婷网| 一级,二级,三级黄色视频| 国产成人免费观看mmmm| 日韩欧美精品免费久久| 美女视频免费永久观看网站| 欧美黑人欧美精品刺激| 日本av免费视频播放| 激情五月婷婷亚洲| 99热全是精品| 午夜福利,免费看| 国产男女超爽视频在线观看| 性少妇av在线| 久久 成人 亚洲| 妹子高潮喷水视频| 男女床上黄色一级片免费看| 免费观看a级毛片全部| 国产人伦9x9x在线观看| 日韩中文字幕欧美一区二区 | 亚洲成人国产一区在线观看 | 国产亚洲午夜精品一区二区久久| 水蜜桃什么品种好| 久久久欧美国产精品| 国产女主播在线喷水免费视频网站| 最近最新中文字幕免费大全7| 五月天丁香电影| 九九爱精品视频在线观看| 中文字幕人妻丝袜一区二区 | 成年av动漫网址| 在线天堂中文资源库| 香蕉国产在线看| 国产日韩一区二区三区精品不卡| 亚洲精品国产区一区二| 亚洲,欧美,日韩| 大香蕉久久成人网| av国产精品久久久久影院| 精品国产超薄肉色丝袜足j| 国产又色又爽无遮挡免| 免费高清在线观看视频在线观看| 亚洲精品国产色婷婷电影| 黄色视频在线播放观看不卡| 亚洲视频免费观看视频| 欧美精品一区二区免费开放| 久久97久久精品| 老汉色∧v一级毛片| 亚洲成av片中文字幕在线观看| 免费人妻精品一区二区三区视频| 啦啦啦中文免费视频观看日本| 啦啦啦啦在线视频资源| 大香蕉久久网| 女人精品久久久久毛片| 啦啦啦视频在线资源免费观看| 晚上一个人看的免费电影| 捣出白浆h1v1| 亚洲伊人久久精品综合| 午夜福利影视在线免费观看| 80岁老熟妇乱子伦牲交| 国产精品一国产av| 日韩成人av中文字幕在线观看| 国产老妇伦熟女老妇高清| 黑人巨大精品欧美一区二区蜜桃| 99re6热这里在线精品视频| 久久99精品国语久久久| 久久综合国产亚洲精品| 男人舔女人的私密视频| 波野结衣二区三区在线| 99久久精品国产亚洲精品| 国产免费一区二区三区四区乱码| 精品人妻一区二区三区麻豆| 久久久久久久久久久久大奶| 伦理电影免费视频| 久久精品久久久久久久性| 国产伦理片在线播放av一区| 成人手机av| av天堂久久9| 亚洲熟女毛片儿| 欧美变态另类bdsm刘玥| 波多野结衣一区麻豆| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线| 国产男女超爽视频在线观看| √禁漫天堂资源中文www| 国产精品免费视频内射| 日韩,欧美,国产一区二区三区| 免费观看a级毛片全部| 人人妻人人添人人爽欧美一区卜| a级毛片黄视频| 晚上一个人看的免费电影| 美女午夜性视频免费| 久久精品熟女亚洲av麻豆精品| 日韩视频在线欧美| av视频免费观看在线观看| 成人亚洲精品一区在线观看| 18禁裸乳无遮挡动漫免费视频| 热99国产精品久久久久久7| 国产亚洲av片在线观看秒播厂| 尾随美女入室| 国产精品av久久久久免费| 中文天堂在线官网| 两性夫妻黄色片| 亚洲欧美成人综合另类久久久| 国产精品人妻久久久影院| 中国国产av一级| 久久青草综合色| 日本欧美国产在线视频| 妹子高潮喷水视频| av在线app专区| 不卡视频在线观看欧美| 婷婷色麻豆天堂久久| 波多野结衣一区麻豆| 亚洲av男天堂| 久久久久久久久免费视频了| 欧美 日韩 精品 国产| 大香蕉久久网| 爱豆传媒免费全集在线观看| 国产亚洲av高清不卡| 两个人免费观看高清视频| 亚洲精品自拍成人| 青青草视频在线视频观看| 中文字幕制服av| 国产一卡二卡三卡精品 | 成人亚洲精品一区在线观看| 黄片小视频在线播放| 看十八女毛片水多多多| 男的添女的下面高潮视频| 一边亲一边摸免费视频| 男男h啪啪无遮挡| 人妻人人澡人人爽人人| 男人舔女人的私密视频| 色94色欧美一区二区| 国产麻豆69| 久久韩国三级中文字幕| 精品国产超薄肉色丝袜足j| 蜜桃在线观看..| 一级,二级,三级黄色视频| 少妇被粗大猛烈的视频| 国产免费视频播放在线视频| 亚洲成人一二三区av| 啦啦啦 在线观看视频| 亚洲色图 男人天堂 中文字幕| 黄片播放在线免费| 国产黄色视频一区二区在线观看| 中文字幕制服av| 久热这里只有精品99| 欧美精品人与动牲交sv欧美| 欧美日韩亚洲国产一区二区在线观看 | 中文乱码字字幕精品一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲欧洲国产日韩| 欧美中文综合在线视频| 国产精品久久久久久精品电影小说| 精品国产一区二区三区四区第35| 天堂中文最新版在线下载| 亚洲伊人久久精品综合| 热re99久久国产66热| 侵犯人妻中文字幕一二三四区| 精品一区二区三卡| 成人亚洲欧美一区二区av| 老司机深夜福利视频在线观看 | 99精国产麻豆久久婷婷| 美女大奶头黄色视频| 国产精品亚洲av一区麻豆 | 啦啦啦 在线观看视频| 又大又爽又粗| 又粗又硬又长又爽又黄的视频| 中文字幕av电影在线播放| 久热爱精品视频在线9| 亚洲第一av免费看| 久久国产精品大桥未久av| 日本wwww免费看| 国产成人a∨麻豆精品| 女的被弄到高潮叫床怎么办| 91精品三级在线观看| 日本午夜av视频| 9色porny在线观看| 侵犯人妻中文字幕一二三四区| 日本欧美视频一区| 亚洲成人av在线免费| av免费观看日本| 丰满迷人的少妇在线观看| 水蜜桃什么品种好| 国产xxxxx性猛交| 丝袜美腿诱惑在线| 操出白浆在线播放| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的| 午夜免费观看性视频| 满18在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 欧美乱码精品一区二区三区| 亚洲av成人不卡在线观看播放网 | 97人妻天天添夜夜摸| 欧美黄色片欧美黄色片| 日韩伦理黄色片| 夜夜骑夜夜射夜夜干| 久热这里只有精品99| 国产极品天堂在线| svipshipincom国产片| 高清欧美精品videossex| 老熟女久久久| 欧美最新免费一区二区三区| 精品一区二区三区四区五区乱码 | 欧美日韩综合久久久久久| 中文字幕人妻丝袜一区二区 | 亚洲欧美中文字幕日韩二区| av视频免费观看在线观看| 欧美日韩视频精品一区| 国产成人a∨麻豆精品| 无遮挡黄片免费观看| 国产在线免费精品| 亚洲av成人精品一二三区| 男男h啪啪无遮挡| 精品亚洲成a人片在线观看| 欧美激情高清一区二区三区 | 久久精品熟女亚洲av麻豆精品| 久久精品亚洲av国产电影网| 99久久综合免费| 欧美在线黄色| 久久精品国产亚洲av高清一级| 国产成人啪精品午夜网站| 99热全是精品| 高清视频免费观看一区二区| 亚洲天堂av无毛| 久久久久久久精品精品| 国产一级毛片在线| 国产一卡二卡三卡精品 | 国产一区二区 视频在线| 97人妻天天添夜夜摸| avwww免费| 天天躁夜夜躁狠狠久久av| 国产精品欧美亚洲77777| 99久久综合免费| 2018国产大陆天天弄谢| 少妇 在线观看| 97精品久久久久久久久久精品| 老汉色∧v一级毛片| 欧美 亚洲 国产 日韩一| 久久婷婷青草| 日韩大码丰满熟妇| 制服人妻中文乱码| 九色亚洲精品在线播放| 欧美日本中文国产一区发布| 看非洲黑人一级黄片| 国产日韩一区二区三区精品不卡| 一二三四在线观看免费中文在| 久久毛片免费看一区二区三区| 国产精品无大码| 中文字幕av电影在线播放| 日日啪夜夜爽| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕色久视频| 久久久久精品性色| 国产av一区二区精品久久| 色精品久久人妻99蜜桃| 青春草亚洲视频在线观看| 另类精品久久| 国产一区二区激情短视频 | 亚洲欧美色中文字幕在线| 久久久久久久久久久久大奶| 精品一区在线观看国产| 美女视频免费永久观看网站| 老司机影院毛片| 18禁裸乳无遮挡动漫免费视频| 久久精品久久久久久久性| 日本欧美国产在线视频| 亚洲国产精品国产精品| 久久毛片免费看一区二区三区| 国产精品 国内视频| 爱豆传媒免费全集在线观看| 99久久99久久久精品蜜桃| 免费黄网站久久成人精品| 人体艺术视频欧美日本| 日韩精品有码人妻一区| 在线观看免费高清a一片| 国产精品免费视频内射| 精品人妻在线不人妻| 欧美亚洲 丝袜 人妻 在线| 搡老乐熟女国产| 青春草国产在线视频| 亚洲男人天堂网一区| 69精品国产乱码久久久| 日韩成人av中文字幕在线观看| 国产一级毛片在线| 国产伦理片在线播放av一区| 视频在线观看一区二区三区| 国产精品女同一区二区软件| 99热全是精品| 深夜精品福利| 精品福利永久在线观看| √禁漫天堂资源中文www| 国产精品一区二区精品视频观看| 美女中出高潮动态图| 国产伦人伦偷精品视频| 国产一区亚洲一区在线观看| 97人妻天天添夜夜摸| a级片在线免费高清观看视频| 天天躁夜夜躁狠狠久久av| 久久久久精品国产欧美久久久 | 午夜福利乱码中文字幕| 亚洲欧美精品自产自拍| 777米奇影视久久| 日本欧美国产在线视频| 蜜桃在线观看..| 亚洲精品自拍成人| 91老司机精品| 久久人人97超碰香蕉20202| 最近中文字幕2019免费版| 国产男女内射视频| 久久久久久免费高清国产稀缺| 看十八女毛片水多多多| 中文字幕色久视频| 青春草国产在线视频| 午夜福利在线免费观看网站| 又粗又硬又长又爽又黄的视频| 在线观看www视频免费| 色94色欧美一区二区| 午夜久久久在线观看| 老汉色∧v一级毛片| 亚洲人成77777在线视频| 美女扒开内裤让男人捅视频| 国产亚洲一区二区精品| 欧美最新免费一区二区三区| 黑人猛操日本美女一级片| 九九爱精品视频在线观看| 午夜福利网站1000一区二区三区| 我的亚洲天堂| 在线观看人妻少妇| 最新的欧美精品一区二区| 校园人妻丝袜中文字幕| avwww免费| 日本色播在线视频| 男女高潮啪啪啪动态图| xxx大片免费视频| 国产成人av激情在线播放| 国产成人免费无遮挡视频| 99久久人妻综合| 天天操日日干夜夜撸| av天堂久久9| 欧美 日韩 精品 国产| 90打野战视频偷拍视频| 国产精品三级大全| 欧美日韩亚洲高清精品| 欧美日韩一区二区视频在线观看视频在线| 国产视频首页在线观看| av线在线观看网站| 欧美精品一区二区大全| 黄色毛片三级朝国网站| 免费少妇av软件| 如日韩欧美国产精品一区二区三区| 久久精品国产综合久久久| 国产精品久久久人人做人人爽| av免费观看日本| 老司机影院成人| 亚洲国产日韩一区二区| 成年女人毛片免费观看观看9 | 日韩人妻精品一区2区三区| 在线观看免费高清a一片| 日韩欧美一区视频在线观看| 日韩av免费高清视频| 国产日韩欧美在线精品| 午夜久久久在线观看| 欧美在线黄色| 黑人猛操日本美女一级片| 一区二区日韩欧美中文字幕| 国产人伦9x9x在线观看| 欧美人与善性xxx| 久久人人爽av亚洲精品天堂| 日本黄色日本黄色录像| 嫩草影院入口| 肉色欧美久久久久久久蜜桃| 日本欧美国产在线视频| 电影成人av| 欧美日韩精品网址| 久久久亚洲精品成人影院| 久久久久国产精品人妻一区二区| 又大又爽又粗| 丰满饥渴人妻一区二区三| 亚洲一区二区三区欧美精品| 韩国高清视频一区二区三区| 最黄视频免费看| 蜜桃国产av成人99| 亚洲熟女精品中文字幕| 女的被弄到高潮叫床怎么办| 日韩一卡2卡3卡4卡2021年| 99久久人妻综合| 七月丁香在线播放| 在线观看一区二区三区激情| 国产精品欧美亚洲77777| 国产av一区二区精品久久| 亚洲欧洲精品一区二区精品久久久 | 成人亚洲精品一区在线观看| 咕卡用的链子| 永久免费av网站大全| 黄色视频在线播放观看不卡| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 丝袜人妻中文字幕| 久久精品久久久久久久性| 男人操女人黄网站| 99久久人妻综合| 成人国产av品久久久| 菩萨蛮人人尽说江南好唐韦庄| 高清在线视频一区二区三区| 午夜老司机福利片| 少妇人妻精品综合一区二区| 亚洲成人av在线免费| 成人影院久久| 日韩制服丝袜自拍偷拍| 肉色欧美久久久久久久蜜桃| 国产精品女同一区二区软件| 久久精品亚洲熟妇少妇任你| 人人妻人人爽人人添夜夜欢视频| 在线观看三级黄色| 国产亚洲一区二区精品| 一边摸一边抽搐一进一出视频| 国产男女超爽视频在线观看| 色综合欧美亚洲国产小说| 少妇精品久久久久久久| 少妇人妻 视频| 国产欧美日韩一区二区三区在线| 成人黄色视频免费在线看| 国产精品一区二区精品视频观看| 国产精品一区二区在线观看99| 9色porny在线观看| 天天影视国产精品| 在线观看免费午夜福利视频| 欧美精品亚洲一区二区| 久久女婷五月综合色啪小说| 观看美女的网站| 黄片小视频在线播放| 日本猛色少妇xxxxx猛交久久| 精品国产国语对白av| 免费在线观看完整版高清| 日本猛色少妇xxxxx猛交久久| 一个人免费看片子| 视频区图区小说| 亚洲精品中文字幕在线视频| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区精品视频观看| 国产成人精品久久二区二区91 | 国产 一区精品| 精品久久蜜臀av无| 国产黄色视频一区二区在线观看| 人体艺术视频欧美日本| 久久青草综合色| 亚洲,欧美精品.| 黑人猛操日本美女一级片| av在线老鸭窝| 最黄视频免费看| 97精品久久久久久久久久精品| 狠狠婷婷综合久久久久久88av| 两个人看的免费小视频| 一区二区日韩欧美中文字幕| 69精品国产乱码久久久| 久久精品亚洲熟妇少妇任你| 国产精品二区激情视频| 最新在线观看一区二区三区 | 国产一区亚洲一区在线观看| 亚洲精品国产区一区二| 久久99一区二区三区| 久久97久久精品| 日韩 欧美 亚洲 中文字幕| 亚洲av男天堂| 97人妻天天添夜夜摸| 欧美日韩综合久久久久久| 久久 成人 亚洲| 天天影视国产精品| 久久久久视频综合| 国产一区有黄有色的免费视频| 大香蕉久久成人网| 婷婷色综合www| 99精国产麻豆久久婷婷| 观看美女的网站| 欧美黑人精品巨大| 色吧在线观看| 悠悠久久av| 亚洲精品自拍成人| 制服人妻中文乱码| 国产亚洲av片在线观看秒播厂| 成人手机av| 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 亚洲国产欧美网| 久久女婷五月综合色啪小说| 黄色怎么调成土黄色| 黄片小视频在线播放| 成年女人毛片免费观看观看9 | 欧美日韩视频精品一区| 国产乱来视频区| 亚洲av中文av极速乱| 亚洲五月色婷婷综合| 久久久久久久久久久久大奶| 老司机亚洲免费影院| 男女免费视频国产| 国产免费一区二区三区四区乱码| 国产成人精品福利久久| 国精品久久久久久国模美| 欧美黄色片欧美黄色片| 亚洲av电影在线观看一区二区三区| 久久久欧美国产精品| 欧美少妇被猛烈插入视频| 久久婷婷青草| 亚洲欧洲日产国产| 一区二区日韩欧美中文字幕| 男女国产视频网站| 亚洲人成网站在线观看播放| 国产高清国产精品国产三级| 黄片小视频在线播放| 综合色丁香网| 老汉色av国产亚洲站长工具| 观看美女的网站| 国产在线视频一区二区| 久久97久久精品| 性高湖久久久久久久久免费观看| 久久国产亚洲av麻豆专区| 啦啦啦 在线观看视频| 国产免费视频播放在线视频| 国产精品一区二区在线观看99| netflix在线观看网站| 丝袜美腿诱惑在线| 女性被躁到高潮视频| 欧美精品人与动牲交sv欧美| 国产黄色视频一区二区在线观看| 久久久亚洲精品成人影院| 韩国av在线不卡| 亚洲美女黄色视频免费看| 欧美 日韩 精品 国产| 少妇人妻 视频| 国产日韩欧美亚洲二区| 在线观看三级黄色| 人妻 亚洲 视频| 国产视频首页在线观看| 亚洲,欧美,日韩| 卡戴珊不雅视频在线播放| 欧美最新免费一区二区三区| 午夜福利影视在线免费观看| 女人久久www免费人成看片| 婷婷色麻豆天堂久久| 性色av一级| 男女边摸边吃奶| 亚洲国产欧美日韩在线播放| 亚洲美女黄色视频免费看| 天天躁夜夜躁狠狠躁躁| 色吧在线观看| 巨乳人妻的诱惑在线观看| 国产男人的电影天堂91| 日韩欧美一区视频在线观看| 最近最新中文字幕免费大全7| 精品亚洲乱码少妇综合久久| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品第一综合不卡| 少妇被粗大猛烈的视频| 十八禁高潮呻吟视频| 国产精品人妻久久久影院| 久久久久久久大尺度免费视频| 国产在线一区二区三区精| 美女高潮到喷水免费观看| 91精品伊人久久大香线蕉| 午夜福利在线免费观看网站| 亚洲综合精品二区| 在线看a的网站| 久久人人爽人人片av| 波多野结衣一区麻豆| 男人舔女人的私密视频| 十分钟在线观看高清视频www| 久久久国产欧美日韩av| 在线观看三级黄色| 精品一区二区三卡| 国产男人的电影天堂91| avwww免费| 亚洲精品国产一区二区精华液| 婷婷色av中文字幕| 久久精品久久久久久噜噜老黄| 伊人久久大香线蕉亚洲五| 又大又黄又爽视频免费| 亚洲专区中文字幕在线 | 亚洲国产欧美网| 欧美激情高清一区二区三区 | 狠狠婷婷综合久久久久久88av| 国产片特级美女逼逼视频| 亚洲一区二区三区欧美精品| 天堂俺去俺来也www色官网| 国产一区亚洲一区在线观看| 精品酒店卫生间| 亚洲五月色婷婷综合| 国产成人欧美在线观看 | 欧美人与善性xxx| 一二三四中文在线观看免费高清| 久久精品人人爽人人爽视色| netflix在线观看网站| 欧美日韩亚洲综合一区二区三区_| 夜夜骑夜夜射夜夜干| 91国产中文字幕| 久久精品熟女亚洲av麻豆精品| 国产免费一区二区三区四区乱码| 91国产中文字幕| 日韩精品免费视频一区二区三区| 9191精品国产免费久久| 欧美日韩视频精品一区| 两个人免费观看高清视频| 99久久综合免费| 黄片无遮挡物在线观看| 亚洲精品久久成人aⅴ小说| 女人爽到高潮嗷嗷叫在线视频| 日本午夜av视频| 国产又色又爽无遮挡免| 免费日韩欧美在线观看| bbb黄色大片| 一本一本久久a久久精品综合妖精| 久久久久精品性色| 国产成人免费观看mmmm| 欧美激情极品国产一区二区三区|