• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of hydrodynamic characteristics of unmanned underwater vehicle moving close to the sea bottom

    2014-03-09 11:57:08XioxuDUHunWANGChengzhiHAOXinlingLISchoolofMrineSciencendTechnologyNorthwesternPolytechniclUniversityXi710072ChinKunmingReserchInstituteofPrecisionMchineryKunming650118Chin
    Defence Technology 2014年1期

    Xio-xu DU*,Hun WANGCheng-zhi HAO,Xin-ling LISchool of Mrine Science nd Technology,Northwestern Polytechnicl University,Xi’n 710072,Chin Kunming Reserch Institute of Precision Mchinery,Kunming 650118,Chin

    1.Introduction

    Deep-sea exploration sometimes needs unmanned underwater vehicle(UUV)sailing close to sea bottom[1].It has been found that a submarine sailing close to the sea bottom can effectively reduce the probability of being detected[2].All sorts of coupling flows,which have signi fi cant in fluence on the hydrodynamics,appear in the surrounding area of UUV and the sea bottom due to the boundary effect of sea bottom[3].The coupling flows may affect the security and stability of working,therefore,a research about the hydrodynamic characteristics of UUV moving close to the sea bottom seems particularly necessary.

    At present,the research on underwater sailing near the sea bottom is comparatively rare.Bystron and Anderson(1998)made a model test,and concluded that the vertical force and trimming moment show linear features obviously with the dimensionless change of distance between the hull and the sea bottom[4].Kuang Xiao-feng studied the attraction characteristics of submarine sailing close to the sea bottom[3].Zhu Xin-yao studied the hydrodynamic characteristics of UUV parking on the seabed[5].Zhu Ai-jun carried out experimental study about the relationship between the drag of underwater vehicles and the distance to the sea bottom[6].In the above literature,no comprehensive analysis of UUV moving close to sea bottom was made,and the model test lacked theoretical veri fi cation.In this paper,the hydrodynamic characteristics of UUV close to the sea bottom were studied,which we believe has signi fi cance on manipulation of UUV near the sea bottom.

    Currently,there are mainly three methods to calculate hydrodynamic parameters,including empirical formula,model test and numerical simulation[7].Empirical formula method is simple and quick,but it can’t re fl ect the difference among various models,so its calculation accuracy is not high.Model test costs too much and has a long cycle,so it is usually limited by budget and schedule.The numerical simulation method is mature,in particular,development of some large commercial simulation software makes the computational fl uid dynamics(CFD)method more and more widely used[5].The numerical simulation method needs lesser time and lower cost for a new design compared to the experimental study.It is advantageous for the optimized design and has the advantages of easy-tocontrol and good repeatability.In many cases,the numerical simulationcanreachthesameaccuracyasthatofmodeltest[8].

    In order to study the hydrodynamic characteristics of UUV moving close to the sea bottom,in this paper,the structured grid of the computational model is generated by Ansys ICEM.Then numerical simulation was carried out by CFX,and the relationship among drag,lift,pitching moment features and the distance to sea bottom,attack angle was studied.

    2.Mathematical model

    Tosolveviscous flowproblemsistosolvetheNavier-Stokes equations.In this paper,the Reynolds-averaged Navier-Stokes(RANS)equations and the shear stress transport(SST)model,namely RANS equation method,are used.The SST turbulence modelisintroducedtoconstituteaclosedequationforobtaining the turbulence elements in means[9].

    2.1.Basic control equation

    For steady incompressible flow,the control equations include equation of continuity and equation of motion.

    Equation of Continuity[10]

    Equation of Motion(N-S Equation)[11]

    where U is the velocity vector,ρ is the mass density of water,p is the pressure,g is the acceleration of gravity,and μ is the fl uid dynamic viscosity coefficient.

    2.2 SST k-ω model

    Shear stress transport model(short for SST k-ω model)combined the advantages of the k-ω model and the k-ε model,which make it have a wider application.SST k-ω model has the following advantages:1)This model can adapt various physical phenomenon where pressure gradient changes;2)It is applicable to viscous layer,and it can precisely simulate the phenomenon of boundary layer through the application of the near-wall function without using the viscous damping function which may distort easily.During calculating,the solving procedure can call different turbulence models automatically according to the size of the Reynolds number.Namely,it uses k-ω model at low Reynolds number region and the k-ε model at high Reynolds number region[12].Therefore,SST k-ω model has good adaptability in dealing with boundary layer problem with different Reynolds numbers.So we choose SST k-ω model as the turbulence model.

    2.3.Near-wall treatment

    As mentioned,the turbulence model which aimed at fully developed turbulence is established.It is effective under the condition of high Reynolds number while near the solid wall,the Reynolds number turns smaller because of the molecular viscosity,which engenders turbulent flow pulsation damping.As a result,the laminar flow is presented near the wall where turbulence development is not suf ficient.Typically we use a series of semi-empirical formula to combine the variables on the wall with the corresponding physical quantities of central area,instead of directly solving the problem in view of the apparently viscous area.That is the wall function method[13].

    The method for near-wall consists of the standard wall function method and the enhanced wall method.The latter one is aimed at small gap flow or low viscosity and high velocity flow,where the physical measurement changes rapidly.A high quality grid is required and the first node near the wall should be located in the viscous sub-layer,which means y+≈1[14].

    where y is the height of the first layer grid,Ueis the velocity vector,Cfis the resistance coefficient.

    In this paper,we use the standard wall function method which has high computational ef ficiency and strong practicability.By adjusting the height of boundary layer gird,y+can be controlled between 30 and 60 in order to improve the accuracy of numerical calculation[15].

    3.Calculation model,working condition and grid generation

    3.1.Calculation model

    For numerical study on flow field around the UUV,a calculation domain is typically formed by constructing virtual boundary,and the RANS equations within the domain are solved.Therefore,a boundary condition needs to be given for the spatial domain.In this paper,the hexahedral calculation domain is used for simulation,as shown in Fig.1.

    The UUV which we studied has a length of 1850 mm,and its biggest diameter is 200 mm.The size of the calculation domain is 7.4 m×4 m×4 m.The distance between the head of UUV and velocity inlet(Fig.1)is 1.85 m,and the distance between tail and pressure outlet(Fig.1)is 3.7 m.The distance between the axis of UUV and the sea bottom is adjusted to represent the change of the distance between UUVand the sea bottom.

    Fig.1.Calculation model of UUV moving close to sea bottom.

    3.2.Working condition

    The hydrodynamic characteristics of UUV moving close to sea bottom at 2 kn-5 kn is mainly studied here.The working conditions of UUV are listed in Table 1.The relationship among drag,lift,pitching moment,distance to sea bottom,and attack angle is studied.

    Table 1 UUV working conditions(v=2 kn,v=5 kn).

    3.3.Grid generation

    The quality of grid directly affects the convergence,accuracy and feasibility of numerical simulation.Structured grid is easy to adjust its density,and has less memory demand.It has advantage of solving the problem about boundary layer.It can improve the accuracy and credibility of results for the numerical simulation[12].So the hexahedral structured grid is used in this paper.

    In this paper,SST k-ω model is used as the turbulence model,and the demand of grid is same as standard wall function.After calculation,0.4 mm is taken as the height of the first layer grid,the growth rate is 1.2.Finally,the whole domain are divided into 2.3 million meshes.The grid quality reaches more than 0.5,and the minimum distortion angle is 22°,it is a higher quality.Fig.2 shows the grid of UUV surrounding area when the distance between UUV and sea bottom is 1 m and the attack angle is-5°.

    Fig.2.Grid of UUV surrounding area.

    4.Calculation results and analysis

    4.1.Grid independence test

    In general,mesh density level largely affects the calculated error.Weneedtogetapropernumberofthegridthroughthegrid independence test.With the increase of the number of grid,the result changes in a range of allowable error,that is when we get the proper number[16].

    The grid independence test is performed using the 1.8 millions,2.3 millions and 3.15 millions grid number for case when the distance is 1 m,the attack angle is 0°and the velocity is 5 kn.The drag,lift and pitching moment coefficients are treated as the validation parameters.The whole numerical calculation can be finished in a quad-core,4 g memory con fi guration,as illustrated in Table 2.

    The value under condition of 2.3 millions grid number is treated as reference value,the errors of the other two cases are presented in Table 2.In the case of 1.8 millions grid number,the error is slightly larger and it may have the consequences of instability for the calculation of other conditions.In the case of 3.15 millions grid number,it needs a larger computer memory and calculation time,so it is not appropriate for the calculation of large numbers of conditions because it costs too much.In the case of 2.3 millions grid number,an appropriate computer memory is needed,and it has a satisfactory accuracy.As a result,the grid number of 2.3 millions is selected as the number of grid.

    Table 2 The grid independence test results.

    4.2.Drag characteristics

    In order to increase the universality of the conclusion,the distance(h)between UUV and the sea bottom is transformed into nondimensional parameter e,e=h/D,where D is the biggest diameter of UUV.

    4.2.1.In fluence of the distance

    Fig.3 shows the relation between the drag coefficient Cxand e at two kinds of velocity.

    Fig.3.Relation between Cxand e.

    Generally,the drag of UUV can be divided into two parts,pressure force and viscous force[17].

    It is shown in Fig.3 that the sea bottom has a larger effect on drag coefficient for e≤2.5.Normally the drag coefficient increases obviously with the decrease in e.The reason is that the pressure force increases obviously while the viscous force changes little with the decrease in e.For example,when U=5 kn,e=2.5,Fv=12.5 N,Fp=15.5 N(where Fvis the viscous force,Fpisthe pressure force),while U=5 kn,e=1.5,Fv=12.0N,Fp=18.2N.When e>2.5,thechange of e affects less on drag coefficient.

    4.2.2.In fluence of attack angle

    Fig.4 shows the relation between the drag coefficient Cxand the attack angle α when UUV moves at 5 kn.

    It can be seen from Fig.4 that the drag coefficient is related to the attack angle,When the attack angle is 0°,the minimum drag coefficient is gotten.The reason is that the area,which faces to the flow,increases when the UUV sails with an attack angle.As a result,the viscous force and the pressure force increase.We can also found that the drag coefficients under the condition of positive and negative attack angles are also different,because of the existence of fin and rudder.

    Fig.4.Relation between Cxand α.

    4.3.Lift characteristics

    4.3.1.In fluence of distance

    In this paper,the vertical upward direction is de fined as the positive direction.Fig.5 shows the relation between the lift coefficient Cyand e at two kinds of velocity.

    Fig.5.Relation between Cyand e.

    It can be seen from Fig.5 that there exists attraction force from the sea bottom for e<5,and the attraction force increases rapidly with the decrease in e.The reason can be found in the velocity contour(Fig.6).The velocity distribution on the surface of UUV is not symmetrical any more due to the in fluence of the sea bottom,the velocity is higher on the lower surface.Then it can be concluded by Bernoulli equation that the pressure on lower surface decreases,and even is smaller than that at its corresponding location on the upward surface.This creates a result that UUV is subjected to a resultant force in the vertical direction,and the closer the distance from the sea bottom is,the bigger the attraction force is.

    Fig.6.The velocity contours of axial plane,U=5 kn,α =0°.

    4.3.2.In fluence of attack angle

    Fig.7 shows the relation between the lift coefficient Cyand the attack angle α when UUV moves at 5 kn.

    It can be seen from Fig.7 that the lift coefficient increases with the increase in attack angle.When α =0°,UUV is under the in fluence of attraction from sea bottom,so UUV is recommended to sail at a small positive attack angle in order to overcome the attraction.Then it can get away from the danger of touching with the bottom.On the other hand,if UUV sails at a negative attack angle,the attraction increases.It is not advantaged to the safe navigation.

    Fig.7.Relation between Cyand α.

    4.4.Pitching moment characteristics

    4.4.1.In fluence of distance

    Fig.8 shows the relation between the pitching moment coefficient Cmzand e at two kinds of velocity.

    It can be seen from Fig.8 that the variation law of pitching moment coefficient is similar to lift coefficient.The velocity contour(Fig.6)can still provide a good explanation for the variation law of pitching moment coefficient.Because the attraction force doesn’t concentrate on the centroid,the pitching moment of UUV will be produced,and the absolute value of pitching moment coefficient increases with the decrease in e.

    Fig.8.Relation between Cmzand e.

    4.4.2.In fluence of attack angle

    Fig.9 shows the relation between the pitching moment coefficient Cmzand attack angle α when the UUV moves at 5 kn.

    It can be seen from Fig.9 that the pitching moment coefficient increases gradually with the increase in attack angle.The reason is that the existence of attack angle makes a certain angle be between the surface of UUV and the flow.Flow impact on its vertical surface increases,leading to the increase of the pitching moment.

    Fig.9.Relation between Cmzand α

    5.Conclusions

    In this paper,the mathematical model of UUV moving close to sea bottom was established based on the incompressible viscous flow.The structured grid of the computational models at different distances from the sea bottom and different attack angles was generated by Ansys ICEM.Then the numerical simulation of flow field near sea bottom was carried out by CFX,and the following conclusions were drawn through the numerical simulation.

    1)For e≤2.5,the pressure force increases with the decrease in the distance from sea bottom,which causes the increase in drag coefficient.For e>2.5,the effect of the sea bottom can be ignored,and the maneuverability of UUV cannot be in fluenced.In addition,the drag coefficient increases with the increase in attack angle.

    2)For e≤5,the existence of the sea bottom makes the pressure distribution of UUVunsymmetrical any more,the attraction force from the sea bottom is formed,and the attraction force increases with the decrease in e.Therefore,an additional manipulation and control scheme is required when UUV moves close to the sea bottom.Because the lift coefficient increases with the increase in attack angle,we suggest that UUV keeps a certain positive attack angle when it moves close to the sea bottom.

    3)Because the attraction force doesn’t concentrate on the centroid,the pitching moment of UUV will be produced.According to the simulation result,the absolute value of pitching moment coefficient increases with the decrease in e,and increases with the increase in attack angle.

    Acknowledgment

    This research was sponsored by National Natural Science Foundation of China(11302176)and Research Fund for the DoctoralProgram ofHigherEducation ofChina(20126102120021)

    [1]Yoerger Dana R,Jakuba Michael,Bradley Albert M.Techniques for deep sea near bottom survey using an autonomous underwater vehicle.Robotics ResearchIn Springer Tracts in Advanced Robotics,vol.28;2007.pp.416-29.

    [2]Lin CY,Zhu J.Numerical computation of added mass of submarine maneuveringwithsmallclearancetosea-bottom.ShipEng2003;25(1):26-9[in Chinese].

    [3]Kuang XF,Miao QM,Cheng MD.Hydrodynamic numerical study of submarine near the sea bottom.In:The ship hydrodynamic Conference Proceedings;2004.pp.140-5[in Chinese].

    [4]Bystron L,Anderson R.The submarine underwater maneuvering.submarine technology research and development.In:The 5th International Conference on Submarines Selection.China Ship Scienti fi c Research Center;2000.pp.132-43.

    [5]Zhu XY,Song BW,Wang P.Hydrodynamic characteristics analysis of UUV parking on seabed.Introd J China Ordnance 2012;33(8):934-43[in Chinese].

    [6]Zhu AJ,Ying LM,Zheng H.Resistance test method on underwater vessel operatingclosetothebottomorthesurface.JShipMech2012;16(4):368-74[in Chinese].

    [7]Zhang HX,Pan YC.Application CFD to compare submarine hull forms.J Ship Mech 2006;10(4):1-8[in Chinese].

    [8]Wu JG,Chen CY,Wang SX.Hydrodynamic characteristics of wings of hybrid-driven underwater glider in glide mode.J Tianjin Univ 2010;43(1):84-9[in Chinese].

    [9]Hu ZQ,Ling Y,Gu HT.On numerical computation of viscous hydrodynamics of unmanned underwater vehicle.Robot 2007;29(2):145-50[in Chinese].

    [10]Jing SR,Zhang MY.Fluid mechanics.Xi’an:Xi’an Jiaotong University Press;2001[in Chinese].

    [11]Anderson Jr John D.Computational fl uid dynamics.USA:McGraw-Hill Companies;1995.

    [12]PanG,ShiY,DuXX.Numericalsimulationofsink-stabilityforunmanner underwater lurk vehicle.J Shanghai Jiaot Univ 2012;46(9):1493-7[in Chinese].

    [13]Ji BB,Chen JP.ANSYS ICEM CFD detailed examples of meshing technology.Beijing:China:Water and Power Press;2012[in Chinese].

    [14]Chen L.Hydrodynamic interactions between two bodies.Harbin:Harbin Engineering University;2006[in Chinese].

    [15]ANSYS Inc.Document for ANSYS ICEM CFD 14.5.USA:ANSYS Inc;2012.

    [16]Zhao PF.CFD prediction of open water and cavitation characteristic of marine propelle.Dalian:Dalian University of Technology;2011[in Chinese].

    [17]Pan G,Du XX,Song BW.Torpedo mechanics.Xi’an:Shaanxi Normal University Publishing House Limited;2013[in Chinese].

    丝袜脚勾引网站| 国产亚洲91精品色在线| 国产欧美亚洲国产| 欧美成人午夜免费资源| 精品久久久久久久末码| 18禁在线无遮挡免费观看视频| 爱豆传媒免费全集在线观看| 我的女老师完整版在线观看| 国产亚洲最大av| 免费看日本二区| 午夜精品国产一区二区电影| 国产免费又黄又爽又色| 免费看光身美女| 高清午夜精品一区二区三区| 国产乱人视频| av播播在线观看一区| 只有这里有精品99| 在线看a的网站| 国产成人freesex在线| av免费在线看不卡| 亚洲自偷自拍三级| 美女国产视频在线观看| 亚洲激情五月婷婷啪啪| 久久99热6这里只有精品| 精品久久久精品久久久| 校园人妻丝袜中文字幕| 丰满迷人的少妇在线观看| 日本av手机在线免费观看| 久久久色成人| 日韩 亚洲 欧美在线| 亚洲人与动物交配视频| 狠狠精品人妻久久久久久综合| 人妻 亚洲 视频| 久久久久久久久久久丰满| 80岁老熟妇乱子伦牲交| 99久久精品一区二区三区| 亚洲在久久综合| 久久精品人妻少妇| av又黄又爽大尺度在线免费看| av在线播放精品| 在线免费观看不下载黄p国产| 一个人免费看片子| 伊人久久国产一区二区| 久热这里只有精品99| 日韩国内少妇激情av| 精品国产露脸久久av麻豆| 久久久久久九九精品二区国产| 99久久精品热视频| xxx大片免费视频| 多毛熟女@视频| 啦啦啦视频在线资源免费观看| 少妇 在线观看| 亚洲精品国产av蜜桃| 五月天丁香电影| 久久久精品94久久精品| 日韩av免费高清视频| 国产免费福利视频在线观看| 亚洲精品日韩av片在线观看| 精品久久久久久久久亚洲| 免费不卡的大黄色大毛片视频在线观看| 一区二区三区四区激情视频| 免费黄色在线免费观看| 欧美极品一区二区三区四区| 亚洲图色成人| 在线观看免费日韩欧美大片 | 日本黄色片子视频| 日本欧美国产在线视频| 国产成人免费无遮挡视频| 亚洲精品国产成人久久av| 色婷婷av一区二区三区视频| 中文欧美无线码| 亚洲激情五月婷婷啪啪| 日本免费在线观看一区| 欧美+日韩+精品| 精品一品国产午夜福利视频| 久久精品国产a三级三级三级| 韩国av在线不卡| 男人和女人高潮做爰伦理| 啦啦啦视频在线资源免费观看| 国产高清国产精品国产三级 | 久久久久久久久久成人| 91精品一卡2卡3卡4卡| 性色avwww在线观看| 女性被躁到高潮视频| 熟妇人妻不卡中文字幕| 日韩电影二区| 99re6热这里在线精品视频| 老司机影院毛片| 亚洲精品视频女| 日韩中字成人| 亚洲精品乱久久久久久| 国产91av在线免费观看| 国产精品国产三级国产专区5o| 国产精品久久久久成人av| 国产成人a∨麻豆精品| 欧美性感艳星| 黑人猛操日本美女一级片| 在线观看免费高清a一片| 日本一二三区视频观看| 日韩欧美精品免费久久| 五月玫瑰六月丁香| 久久99热这里只有精品18| 亚洲欧美日韩无卡精品| 22中文网久久字幕| 成年美女黄网站色视频大全免费 | 亚洲av男天堂| 少妇丰满av| 日本午夜av视频| 国产精品99久久99久久久不卡 | 十八禁网站网址无遮挡 | 秋霞伦理黄片| 99热这里只有是精品50| 精品亚洲乱码少妇综合久久| 在线亚洲精品国产二区图片欧美 | 蜜臀久久99精品久久宅男| 寂寞人妻少妇视频99o| 美女脱内裤让男人舔精品视频| 伦理电影大哥的女人| 亚洲在久久综合| 欧美+日韩+精品| 色5月婷婷丁香| 91精品一卡2卡3卡4卡| 久久毛片免费看一区二区三区| 亚洲三级黄色毛片| 久久久a久久爽久久v久久| av在线老鸭窝| 久久精品国产鲁丝片午夜精品| 99热这里只有精品一区| 极品教师在线视频| 男人狂女人下面高潮的视频| 婷婷色av中文字幕| 国产精品伦人一区二区| 国产视频内射| a级毛色黄片| 成年免费大片在线观看| 亚洲精品成人av观看孕妇| 久久久久国产精品人妻一区二区| av女优亚洲男人天堂| 精品一区二区三区视频在线| 亚洲va在线va天堂va国产| 性色avwww在线观看| 一级毛片我不卡| 能在线免费看毛片的网站| 嫩草影院入口| 精品久久久久久久末码| 国产免费一区二区三区四区乱码| 久久韩国三级中文字幕| 91精品伊人久久大香线蕉| 少妇猛男粗大的猛烈进出视频| 国产成人免费无遮挡视频| 一二三四中文在线观看免费高清| 久久97久久精品| 久久6这里有精品| 91久久精品国产一区二区成人| 免费观看性生交大片5| 国产高清有码在线观看视频| 高清不卡的av网站| 一二三四中文在线观看免费高清| 国产成人a∨麻豆精品| 王馨瑶露胸无遮挡在线观看| 欧美成人a在线观看| 六月丁香七月| 国语对白做爰xxxⅹ性视频网站| av国产久精品久网站免费入址| 18禁裸乳无遮挡免费网站照片| 高清欧美精品videossex| 一本一本综合久久| 成年人午夜在线观看视频| 精品一区二区三区视频在线| 国产黄色视频一区二区在线观看| 久久久久国产精品人妻一区二区| 久久精品国产亚洲网站| 天堂俺去俺来也www色官网| 美女高潮的动态| 18禁动态无遮挡网站| 亚洲精品一区蜜桃| 亚洲av成人精品一区久久| 日韩视频在线欧美| 亚洲人成网站在线观看播放| 国产伦精品一区二区三区四那| 18+在线观看网站| 高清黄色对白视频在线免费看 | 高清毛片免费看| 极品教师在线视频| 久久久久久久久久久丰满| 亚洲国产毛片av蜜桃av| 成人综合一区亚洲| 国产伦精品一区二区三区四那| 欧美日本视频| 人妻制服诱惑在线中文字幕| 免费av不卡在线播放| 欧美日韩一区二区视频在线观看视频在线| 精品熟女少妇av免费看| 久久久久久九九精品二区国产| 国产亚洲5aaaaa淫片| 最黄视频免费看| 日本vs欧美在线观看视频 | 国产成人91sexporn| 国产成人精品婷婷| 国产精品一区二区在线不卡| 久久青草综合色| 性色avwww在线观看| 亚洲国产精品成人久久小说| 国产乱来视频区| 妹子高潮喷水视频| 九九爱精品视频在线观看| 久久久久久久亚洲中文字幕| 午夜视频国产福利| 成人高潮视频无遮挡免费网站| 美女脱内裤让男人舔精品视频| 纵有疾风起免费观看全集完整版| 汤姆久久久久久久影院中文字幕| 欧美日韩精品成人综合77777| 精品一区二区免费观看| 欧美精品国产亚洲| 我要看日韩黄色一级片| 男男h啪啪无遮挡| 男人爽女人下面视频在线观看| 亚洲精品成人av观看孕妇| 久久久久久久国产电影| 久久久a久久爽久久v久久| 另类亚洲欧美激情| 看免费成人av毛片| 欧美日韩一区二区视频在线观看视频在线| 日韩一本色道免费dvd| 欧美日韩精品成人综合77777| 亚州av有码| 美女xxoo啪啪120秒动态图| 卡戴珊不雅视频在线播放| 2021少妇久久久久久久久久久| 少妇人妻精品综合一区二区| 中文字幕免费在线视频6| 亚洲三级黄色毛片| 国产探花极品一区二区| 亚洲电影在线观看av| 欧美亚洲 丝袜 人妻 在线| 久久久久精品久久久久真实原创| 777米奇影视久久| 视频中文字幕在线观看| 一级毛片我不卡| 国产精品一二三区在线看| 久久久久久久久久久丰满| 赤兔流量卡办理| 国产黄片美女视频| 天天躁夜夜躁狠狠久久av| 免费播放大片免费观看视频在线观看| 亚洲av福利一区| 啦啦啦中文免费视频观看日本| av国产久精品久网站免费入址| 国产精品女同一区二区软件| 丰满少妇做爰视频| 秋霞在线观看毛片| 精品亚洲成国产av| 国产伦在线观看视频一区| 精品熟女少妇av免费看| 只有这里有精品99| 国产精品精品国产色婷婷| 麻豆乱淫一区二区| 色视频www国产| 精品一区二区三区视频在线| 亚洲人成网站高清观看| 大陆偷拍与自拍| 街头女战士在线观看网站| 美女xxoo啪啪120秒动态图| 少妇 在线观看| 在线播放无遮挡| 亚洲精品视频女| 久久人人爽av亚洲精品天堂 | 国产男女超爽视频在线观看| 美女主播在线视频| 少妇猛男粗大的猛烈进出视频| 久久精品国产a三级三级三级| 女性生殖器流出的白浆| 国产伦精品一区二区三区视频9| 久久6这里有精品| 久久精品国产亚洲av天美| 色网站视频免费| 国产欧美另类精品又又久久亚洲欧美| 国内精品宾馆在线| 美女中出高潮动态图| 国产黄色免费在线视频| 欧美日韩视频高清一区二区三区二| 高清毛片免费看| 久久人妻熟女aⅴ| 97在线视频观看| av又黄又爽大尺度在线免费看| 久久 成人 亚洲| 欧美 日韩 精品 国产| 老司机影院毛片| 中文精品一卡2卡3卡4更新| 久久久久精品性色| a级一级毛片免费在线观看| 蜜臀久久99精品久久宅男| 成人漫画全彩无遮挡| 一级黄片播放器| 伊人久久精品亚洲午夜| 久久精品国产a三级三级三级| 欧美+日韩+精品| 国产一区二区在线观看日韩| 久久午夜福利片| 国产色婷婷99| av网站免费在线观看视频| av一本久久久久| 免费看av在线观看网站| 亚洲在久久综合| www.色视频.com| 日韩亚洲欧美综合| 熟女电影av网| 亚洲欧美清纯卡通| av.在线天堂| 国产成人a∨麻豆精品| 国产探花极品一区二区| 亚洲精品久久午夜乱码| 久久精品国产亚洲av涩爱| 国产精品欧美亚洲77777| 国产免费又黄又爽又色| 欧美精品国产亚洲| 精品视频人人做人人爽| 大片电影免费在线观看免费| 大又大粗又爽又黄少妇毛片口| 十分钟在线观看高清视频www | 国产亚洲一区二区精品| 久久99蜜桃精品久久| 51国产日韩欧美| 我的老师免费观看完整版| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| 丰满少妇做爰视频| 国产熟女欧美一区二区| 春色校园在线视频观看| 天堂中文最新版在线下载| 一区二区三区免费毛片| 免费av不卡在线播放| 国产免费视频播放在线视频| 成人亚洲精品一区在线观看 | 人人妻人人看人人澡| 国产亚洲午夜精品一区二区久久| 国产av一区二区精品久久 | 精品亚洲成a人片在线观看 | 成人午夜精彩视频在线观看| 国国产精品蜜臀av免费| 成人一区二区视频在线观看| 多毛熟女@视频| 美女中出高潮动态图| 国产精品人妻久久久影院| 丝袜喷水一区| 又粗又硬又长又爽又黄的视频| 国产一区有黄有色的免费视频| 我的女老师完整版在线观看| av在线app专区| 少妇人妻久久综合中文| 最近最新中文字幕大全电影3| 国产伦精品一区二区三区视频9| 久久久久久久国产电影| 国产伦精品一区二区三区视频9| 久热久热在线精品观看| 欧美xxⅹ黑人| 久久99热这里只有精品18| 免费观看a级毛片全部| 美女福利国产在线 | kizo精华| 26uuu在线亚洲综合色| 在现免费观看毛片| 日日摸夜夜添夜夜添av毛片| 观看av在线不卡| 春色校园在线视频观看| 男人添女人高潮全过程视频| 精品人妻视频免费看| 午夜福利影视在线免费观看| 久久亚洲国产成人精品v| 亚洲国产av新网站| 国产成人aa在线观看| 久久鲁丝午夜福利片| 成人国产av品久久久| 91在线精品国自产拍蜜月| 十八禁网站网址无遮挡 | 久久久久久久国产电影| 99热国产这里只有精品6| 美女视频免费永久观看网站| 最新中文字幕久久久久| 国产乱人偷精品视频| 亚洲av男天堂| 亚洲人成网站高清观看| 国产亚洲午夜精品一区二区久久| 亚洲精华国产精华液的使用体验| 午夜免费鲁丝| 亚洲av二区三区四区| 毛片一级片免费看久久久久| 在线天堂最新版资源| 日本一二三区视频观看| av网站免费在线观看视频| 狂野欧美激情性bbbbbb| 亚洲欧美精品专区久久| 国产精品蜜桃在线观看| 亚洲美女视频黄频| 国产一区有黄有色的免费视频| 在线观看三级黄色| 亚洲人成网站在线观看播放| 观看美女的网站| 黄色一级大片看看| videossex国产| 99精国产麻豆久久婷婷| 毛片女人毛片| 亚洲精品亚洲一区二区| 亚洲精品中文字幕在线视频 | www.色视频.com| 免费黄频网站在线观看国产| 国产精品免费大片| 日日摸夜夜添夜夜添av毛片| 日日摸夜夜添夜夜爱| 欧美最新免费一区二区三区| 一本一本综合久久| 久久久午夜欧美精品| 久久久久网色| 岛国毛片在线播放| 日日撸夜夜添| 草草在线视频免费看| 欧美成人一区二区免费高清观看| 少妇的逼水好多| 我的女老师完整版在线观看| 啦啦啦啦在线视频资源| 精品国产一区二区三区久久久樱花 | 亚洲欧美一区二区三区黑人 | 18禁裸乳无遮挡动漫免费视频| 国产亚洲一区二区精品| 我的老师免费观看完整版| 亚洲成人手机| 欧美+日韩+精品| 免费av中文字幕在线| 国产大屁股一区二区在线视频| 久久久久精品久久久久真实原创| 韩国高清视频一区二区三区| 1000部很黄的大片| 成人无遮挡网站| 国产精品一区二区性色av| 狂野欧美白嫩少妇大欣赏| 黄片无遮挡物在线观看| 国产在线一区二区三区精| 亚洲自偷自拍三级| 亚洲精品一二三| 国产高清有码在线观看视频| 国产精品久久久久久久电影| 日韩 亚洲 欧美在线| 亚洲美女黄色视频免费看| 国产爽快片一区二区三区| 成人国产av品久久久| 热re99久久精品国产66热6| 精品国产乱码久久久久久小说| 日本色播在线视频| 韩国高清视频一区二区三区| 草草在线视频免费看| 亚洲av成人精品一区久久| 97在线视频观看| 久久精品国产亚洲av涩爱| 六月丁香七月| 欧美精品人与动牲交sv欧美| 国产精品伦人一区二区| 99热网站在线观看| 日韩欧美一区视频在线观看 | 91精品国产九色| 精品久久久久久电影网| 久久精品熟女亚洲av麻豆精品| 日韩强制内射视频| 少妇高潮的动态图| 久久久色成人| 国产精品无大码| 久久久久久久久久久丰满| 久久人人爽人人爽人人片va| 亚洲,欧美,日韩| 王馨瑶露胸无遮挡在线观看| 中文天堂在线官网| 香蕉精品网在线| 我的女老师完整版在线观看| 午夜免费男女啪啪视频观看| 91精品国产国语对白视频| 永久网站在线| 久久精品久久久久久久性| 九九久久精品国产亚洲av麻豆| 成人综合一区亚洲| 黄色怎么调成土黄色| 国产av精品麻豆| 国产精品99久久99久久久不卡 | 久久久午夜欧美精品| 在线亚洲精品国产二区图片欧美 | 国产伦精品一区二区三区视频9| 久久国产精品男人的天堂亚洲 | 人体艺术视频欧美日本| 国产黄色视频一区二区在线观看| 国产一区二区在线观看日韩| 欧美一级a爱片免费观看看| 中国国产av一级| 亚洲中文av在线| 亚洲av免费高清在线观看| 国产亚洲5aaaaa淫片| av线在线观看网站| 免费av中文字幕在线| 岛国毛片在线播放| 国产淫片久久久久久久久| 亚洲欧美日韩无卡精品| 国产高清三级在线| 久久人人爽av亚洲精品天堂 | 亚洲欧美日韩另类电影网站 | 亚洲成人一二三区av| 亚洲av.av天堂| 国产午夜精品一二区理论片| 六月丁香七月| 男女边摸边吃奶| 亚洲av不卡在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 美女主播在线视频| 久久av网站| 欧美xxxx黑人xx丫x性爽| av网站免费在线观看视频| 欧美 日韩 精品 国产| 国产一区亚洲一区在线观看| 人妻一区二区av| 性色avwww在线观看| 日日啪夜夜撸| 新久久久久国产一级毛片| 亚洲国产欧美人成| 亚洲av二区三区四区| 国产美女午夜福利| 亚洲美女视频黄频| 亚洲人成网站在线观看播放| 国产免费一区二区三区四区乱码| 男人舔奶头视频| 久久久久久久久久久丰满| 激情五月婷婷亚洲| av福利片在线观看| 日韩一区二区三区影片| 日日撸夜夜添| 亚洲国产精品999| 国产在视频线精品| 蜜臀久久99精品久久宅男| 中文字幕免费在线视频6| 日本猛色少妇xxxxx猛交久久| 97超碰精品成人国产| 色综合色国产| 国产精品99久久99久久久不卡 | 亚洲精品aⅴ在线观看| 如何舔出高潮| 国产精品免费大片| 亚洲色图av天堂| 亚洲国产色片| 亚洲av成人精品一二三区| 国产在线男女| 王馨瑶露胸无遮挡在线观看| 蜜臀久久99精品久久宅男| 中文字幕人妻熟人妻熟丝袜美| 国产高清国产精品国产三级 | 久久人人爽人人片av| 99热网站在线观看| 国产毛片在线视频| 亚洲av免费高清在线观看| 精华霜和精华液先用哪个| 免费人成在线观看视频色| 久久国产亚洲av麻豆专区| 亚洲精品aⅴ在线观看| 精品99又大又爽又粗少妇毛片| 一级a做视频免费观看| 国产白丝娇喘喷水9色精品| 久久久久国产精品人妻一区二区| 精品一区二区免费观看| 国产成人一区二区在线| 毛片女人毛片| 亚洲aⅴ乱码一区二区在线播放| 大陆偷拍与自拍| 啦啦啦啦在线视频资源| 中文精品一卡2卡3卡4更新| 色综合色国产| 一级黄片播放器| 国产精品国产三级国产av玫瑰| 国产探花极品一区二区| 国产精品一区www在线观看| 亚洲国产av新网站| 尾随美女入室| 亚洲va在线va天堂va国产| 国产真实伦视频高清在线观看| 成人美女网站在线观看视频| 啦啦啦中文免费视频观看日本| 国内少妇人妻偷人精品xxx网站| 直男gayav资源| 我要看日韩黄色一级片| 亚洲欧美一区二区三区黑人 | 久久国产精品大桥未久av | 日韩国内少妇激情av| 国产精品一区www在线观看| 精品一区二区免费观看| 麻豆成人av视频| 国产淫片久久久久久久久| 国产伦精品一区二区三区视频9| 欧美老熟妇乱子伦牲交| 热99国产精品久久久久久7| 国产一区二区在线观看日韩| 午夜免费男女啪啪视频观看| 日本一二三区视频观看| 看非洲黑人一级黄片| 精品一品国产午夜福利视频| av国产久精品久网站免费入址| 亚洲美女黄色视频免费看| 成人一区二区视频在线观看| 国模一区二区三区四区视频| 久久国产乱子免费精品| a级一级毛片免费在线观看| 一本久久精品| 哪个播放器可以免费观看大片| 国产av一区二区精品久久 | 五月开心婷婷网| 青春草国产在线视频| 国产亚洲91精品色在线| 老司机影院毛片| 久热久热在线精品观看| 亚洲精品国产成人久久av| 欧美xxⅹ黑人| 国产深夜福利视频在线观看|