• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A numerical study on the disturbance of explosive reactive armors to jet penetration

    2014-03-09 11:57:06XiangdongLIYanshiYANGShengtaoLV
    Defence Technology 2014年1期

    Xiang-dong LI*,Yan-shi YANG,Sheng-tao LV

    School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    1.Introduction

    Explosive reactive armors(ERA)have been widely used as add-on-armors against shaped charge jets and long rod armor piercing projectiles.The disturbance of explosive reactive armors on jet penetration was studied in this paper.Most ERA has a sandwich con fi guration consisting of a front plate,an interlayer explosive,and a rear plate.When the interlayer explosive is penetrated by a shaped-charge jet,it explodes,accelerating the front and rear plates to move outwards in their normal directions.The moving plates and detonation products interact continuously with the jet,signi fi cantly disturbing its motion.The jet may bend,break and scatter around its original axis,resulting in a signi fi cant reduction in the penetration into the primary target behind the reactive armor[1].To increase its disturbance on the jet,which frequently strikes the target at various impact angles,V-shaped sandwich reactive armors were introduced.In a V-shaped con fi guration,two sets of fl at ERAs,consisting of its own front plate,high interlayer explosive and rear plate,are placed at a speci fi c angle[2].

    A number of experimental and analytical studies have been made to investigate the disturbance mechanism of reactive armors on jet penetration.With the aid of X-ray photography,Wu and Huang measured the plate velocity of ERA detonated by a jet[3,4].Mayseless,Rototaev and Liu established the theoretical models which could predict the disturbance effect of ERA[5-8],respectively.Murr and Held have studied the effects of the thicknesses of sandwich plate and interlayer explosive on the ef ficiency of ERA[9,10].Held also investigated the in fluences of the boundary effect of an ERA[11]and the distance between ERA and the main target on the ef ficiency of ERA[12].Held found out that the reduction effect in penetration remains also more or less constant in the case of hitting the top or the bottom,where only the front and rear plates interact with the jets,in vertical directions.

    Numerical approaches have been applied for simulations of high speed impact events,including the formation and penetration of shaped charge jets,for more than forty years[13].With the advance of computer technologies,several commercial hydrocodes are available for the study of the shaped-charge jet formation and penetration into various types of targets[14].Shin and Lee numerically studied the detonation behaviour of double reactive cassettes by impacts of projectiles with various nose shapes[15].Ismail[16]investigated the interaction of shaped charge jet with ERA using the AUDODYN hydrocode,and the result showed that inclination NATO angle[9]and the striking point are critical parameters.These studies demonstrated that various projectile/ERA parameters can be investigated ef ficiently,and the predictions could be compared with experimental results for better understanding of the complex phenomenon/mechanisms involved.

    This paper presents a numerical study on the penetration process of a jet into an ERA with the focus on the disturbance effect of ERA on the jet.With the same set of geometry parameters and material constants,the jet formation and the disturbance interactions between the jet and the ERA target were successfully simulated using the finite element code LSDYNA[14].Numerical results of normal penetrations are compared with experimental results.The predicted plate velocities of both fl at and V-shaped ERAs are in agreement with X-ray photographic measurements.The predicted penetration depth of a steel target without ERA is close to the test results.The models which has been veri fi ed by test are then employed to study the penetration of the jet into both fl at and V-shaped ERA con fi gurations.Based on the numerically predicted results,the in fluences of the impact angle and V-shaped angle on jet performance are discussed.

    2.Numerical and material models

    2.1.Numerical model

    The numerical model consists of a shaped-charge,a liner,an ERA,and a main target.The investigated reactive armor includes fl at and V-shaped con fi gurations.The fl at reactive armor is constructed of the front plate,rear plate and interlayer explosive,while the V-shaped con fi guration consists of two fl at reactive armor units at a particular angle.The two confi gurations are shown in Fig.1.

    The shaped-charge is 56 mm in diameter and 73 mm in height.The liner(copper)is 54 mm in caliber diameter and 1 mm in thickness.The cone angle of the liner top is 60°,and the stand-off distance from the bottom of the shaped-charge to the ERA front plate is 80 mm.The thicknesses of front plate,interlayer explosive and rear plate of the sandwich layer are 3 mm,2 mm and 1 mm,respectively.

    The axis-symmetric modeling techniques are used in the numerical simulations because of the structural symmetry of model.The jet formation and penetration process is a large deformation process,therefore Eulerian element formulation is employed for the liner,explosive and air.While for ERA sandwich plates and the main target,Lagrangian element formulation is used to ensure the stability of the numerical process[14].It is noted that non-re fl ection contact condition is adopted for the shaped-charge explosive/air interface.

    2.2.Material models and properties

    2.2.1.Liner

    The responses of liner material at different pressure levels are described by both the Steinberg material model and the Gruneisen equation of state.

    The Steinberg model,which accounts for the combined effects of pressure,temperature and plastic ductility,is suitable for large deformation situations at high strain rate.In this model,the shear modulus G and the yield stress σyincrease with the increase in pressure while decrease with the temperature[14,17].Both G and σyapproach to zero when the material melts.G is expressed by

    Fig.1.The shaped charge,liner,ERA and main target.

    where G0,b,,,h,and f are material constants determined by experiment;p is pressure;V is relative volume;Ecis cold compression energy;Emis melting energy;Eiis speci fi c internal energy;R′=Rρ/A,R is the gas constant,ρ-density,and A-the Mole mass.

    The Gruneisen equation of state expresses the pressure of compressible materials as

    where ρ0is density of material;E is internal energy of initial unit volume material;C is interception at the vertical axis of the shock velocity versus particle velocity(us-up)curve;S1,S2,S3are the coefficients that determine the shape of us-upcurve;γ0is Gruneisen gamma;and a is the first order volume correction toγ0.

    In addition,the relative volume μ=1/V-1 describes the compression status.The particle velocity upis related to the shock velocity usby

    The pressure of the expanded material is described by

    Table 1 lists the material constants of copper used in this investigation.

    2.2.2.Metallic plates of ERA and main target

    The materials of front and rear plates of the sandwich ERA,and the main target plate are described by the Johnson-Cook model[14].John-Cook’s formulation of the flow stress is expressed by

    Table 1 Material constants of the liner and steel.

    where A,B,C,n and M are mapterial constants;εpis the effective plastic strain;andε˙*=ε˙/ε˙0is the effective plastic strain rate,ε˙0=1s-1;and is the relative temperature given by T*=(T-Troom)/(Tmelt-Troom).

    The strain at fracture is given by

    where D1,D2,D3,D4and D5are material constants;σ*=σpis the ratio of pressure d1ivided by the von-Mises equivalent stress,σ=[(3/2)sijsij]2.Note that sijis the deviator stress tensor.

    Fracture occurs when the damage parameter[14]D=reaches the value of 1.

    The materials of the sandwich plates and the main target are 45#steel.The material property constants described in Eqs.(6)and(7)are listed in Table 1.In addition,the values of D1,D2,D3,D4and D5are taken from Ref.[18].

    2.2.3.Shaped-charge explosive

    The shaped-charge explosive is RDX-8701,which is described by the“Mat_High_Explosive_Burn”material option in DYNA and the JWL equation of state.The explosive burning equation describes the explosive behavior before its detonation,and controls the release of chemical energy for simulating detonation.The JWL equation describes the pressure,volume and energy of the reaction product in the process of detonation,it de fines the pressure as[14]

    where A,B,R1,R2and ω are material constants;E is the initial internal energy;and V is the relative volume.Material constants in Eq.(8)are listed in Table 2,in which the detonation speed of explosive is also provided.

    2.2.4.Interlayer explosive of ERA

    The “ignition-and-growth-of-reaction-in-HE”equation of state is used for the interlayer explosive.This model is suitable to calculate the shock initiation and detonation wave propagation of solid high explosives.At a relatively low initial pressure(<2-3 GPa),the equation of state is used to calculate the behavior of the un-reacted high explosive with the material type 10 of DYNA[14].

    The equation of state de fines the pressure in the un-reacted explosive as

    and de fines the pressure in the reaction products as

    where r3= ωecvr and g= ωpcvp;r1,r2,r3,r5and r6are calibration constants;Veand Vpare the relative volume of the un-reacted and detonation product,respectively;Teand Tpare the temperature of the un-reacted explosive and the detonation product,respectively.

    As the chemical reaction converts un-reacted explosive to reaction products,these equations of state are used to calculate the mixture of un-reacted explosive and reaction products de fined by the fraction F(F=0 implies no reaction,F=1 implies complete reaction).The temperatures and pressures are assumed to be equal(Te=Tp,Pe=Pp),and the relative volumes are additive[14],i.e.,

    Table 2 Explosive material constants of the ERA and shaped-charge.

    Material constants described in Eqs.(9)and(10)are also listed in Table 2.

    3.Simulation of jet formation and motion of sandwich plates

    The penetration depth of the jet into the steel main target and the motion of the front and rear plates were predicted to study the disturbance mechanism of ERA on the jet.

    3.1.Jet formation and penetration capability

    The formation of the jet and its normal penetration into steel target without ERA are first analyzed and compared with available experimental results to verify the proposed approach.Fig.2 shows the distribution of the jet velocity along its axis(26 μs after charge detonation)and the geometrical shape of jet predicted.The velocity of jet tip is 6500 m/s,and the diameter of the tip is 4 mm.When the jet hits the target,its tip velocity is 6520 m/s.The penetration depth is 241.2 mm for a normalpenetration into asteeltarget(withoutERA).Compared with the test results[4,18]of 220 mm,it is seen that the present numerical prediction is close to the test results.

    3.2.Motion of sandwich plates

    A number of jet/ERA tests were performed to validate the numerical simulation results using shaped charge,liner,ERA,and target con fi gurations and parameters similar to those of the numerical model.The velocities of the front and rear plates after the reactive armor detonation were measured.An experiment set-up is shown in Fig.3.The reactive armor is detonated by normal penetration jet with respect to the main target.Fig.3(a)shows the fl at ERA con fi guration,and Fig.3(b)shows the V-shaped ERA con fi guration.Two fl ash X-ray tubes are arranged to get two X-ray images at different times,which can be used evaluated the velocity of the plates[4].

    Fig.2.Velocity pro fi le and shape of jet.

    X-ray and numerical simulation images of detonation reactive armors(by jet)at the time of 60 μs and 130 μs are shown in Fig.4 and Fig.5,respectively.As shown in the fi gures,after the reactive armor is initiated by the jet impact,the reaction product expands rapidly,which drive the front and rear plates move along their normal directions.

    Table 3 summarizes the average velocities of the reactive armor plates measured by the test and predicted by the numerical simulations.It is observed that a fairly good agreement between the experimental and numerical results is obtained.

    4.Disturbance of fl at ERA

    Fig.3.Measurement setup for plate velocity of ERA.

    The jet penetration into the fl at ERA and the main target at impact angles of 0°,40°,50°,55°,60°,and 68°are simulated to identify how the fl at ERA disturbs the penetration behavior of jet.For the cases with and without fl at ERA,the penetration depth versus with impact angle is contrasted.

    Fig.4.X-ray image and numerical results of fl at ERA.

    4.1.Normal penetration

    Fig.6 shows the numerical simulation results of the fl at ERA penetrated by jet.The reaction product drives the front and rear plates to move along opposite directions,as shown in Fig.6.The reaction product scatters symmetrically along the jet’s path.The front and rear plates move parallel along the direction of the jet’s path.Therefore,in this case,the transverse disturbance of the front and rear plates to the jet is quite limited.The residual penetration depth of the jet into the main target is 219.4 mm,and the penetration capability of jet reduced by 9.1%because of reactive armor protection.As the same with the Held’s research result,the disturbance of ERA to jet penetration is not very distinct in the vertical direction.

    4.2.Oblique penetration

    Fig.5.X-ray image and numerical results of V-shaped ERA.

    The typical interaction patterns of the jet penetrating into ERA and main target at an impact angle of 68°are shown in Fig.7.Compared with the normal penetration shown in Fig.6,the reactive armor disturbs the jet more signi fi cantly during oblique impact.When the explosive of ERA is detonated,the outward movements of the plates cut the jet directly,thus severely disturbing the penetration process.With the formation of more jet segments as a result of the continuous interaction,the residual penetration capability is reduced signi fi cantly.It can be seen from Fig.7 that,when the disturbed jet penetrate into the plate at a larger impact angle,its tip slides along the surface of the rear plate,resulting in bending,breaking,and scattering the jet(segments).Thus the depth of penetration into the main target is signi fi cantly reduced.

    Table 3 Experimental results and numerical predictions.

    Fig.6.Predicted results of demonstrated penetration process(normal impact).

    For the case of a jet penetrating into the fl at ERA,Fig.8 shows the penetrations of jet into main target at various impact angles.It is observed that the larger the impact angle is,the severer the disturbance of ERA to jet is,and the more the reduction of the penetration depth into the main target is.

    It can also be seen from Fig.8 that the slant penetration path of the jet in the main target is further de fl ected with the increase in impact angle,which is caused by the bend of jet.The diameter of the penetration hole,especially at the entrance,also becomes larger with the increase in impact angle because of the scattering of the jet segments.

    Fig.7.Predicted results of demonstrated penetration process(impact angle of 68°).

    Fig.8.Simulated penetration holes of jet at different impact angles.

    Fig.9 shows the predicted main target penetrations for the cases with and without fl at ERA at different impact angles.The penetration is measured normal to the surface of target.So in the case of that without fl at ERA,the penetration depth of main target is

    where L0is the length of crater;and α is the impact angle.

    It can be seen from Fig.9 that the greater the impact angle is,the shallower the penetration depth is.In addition,the penetration depth is reduced signi fi cantly when the impact angle is more than 45°.The penetration depth is reduced by 55%-75%in the range from 45°to 68°(impact angle)with respect to case without ERA.

    5.Disturbance of V-shaped ERA

    The process of jets penetrate into V-shaped ERA at the impact angles of 45°,50°,55°,60°and 68°are computed in order to investigate the effects of the impact angle and V-angle on the residual penetration depth.In the following subsections,the numerical results of the jet penetrating into 9°V-angled sandwich ERA at various impact angles and the results of penetration at 60°impact angle with V-angles of 0°,5°,9°,13°,17°and 21°are presented.

    5.1.Oblique penetration

    Fig.10 shows the penetration process for a V-angle of 9°and an impact angle of 60°.The entire penetration process can be qualitatively described.After the jet tip hits the reactive armor,it makes the interlayer explosive detonate.The reaction product drives the front and rear plates of the ERA upper unit to move outward in their normal directions,and then the interlayer explosive of the ERA lower unit is detonated due to the co-action of the jet and the detonation pressure and the rear plate of the upper unit.Detonated upper and lower elements of V-shaped con fi guration disturb the jet greatly.The jet bends,de fl ects and forms more broken segments,resulting in a larger entrance area on the target and reducing the penetration depth signi fi cantly.It is obvious that the protective ability of the V-shaped ERA is much better.Compared with the penetration of jet into the main target,the ability of jet penetration is greatly weakened.

    Fig.9.Penetration depths at different impact angles.

    Fig.10.Predicted results of demonstrated penetration process(impact angle of 60°).

    5.2.In fluence of impact angle

    Fig.11 shows the predicted results of main target penetration for the cases with and without 9°V-shaped ERA at various impact angles.It can be seen from Fig.11 that the penetration capability is reduced by 60%-90%for the range of impact angles studied.Fig.12 shows the penetration holes of the disturbed jet penetrating into the main target.It is shown that the penetration path is deviated,and the de fl ection increases with the increase in impact angle.The diameter of the hole,especially at the entrance,becomes larger with the increase in impact angle.Similar to the case of fl at ERA described in Section 4.2,the former and the latter are probably caused by the bend of jet and the decentralization of jet,respectively.

    5.3.Effect of V-angle

    Fig.13 shows the predicted main target penetration at 60°fi xed impact angle for the cases without ERA and with V-shaped ERAs with various V-angles.For the case without ERA,the curve in Fig.13 is a straight line and represents the results of penetration at 60°impact angle.For the case with ERA,the penetration depth dose not vary monotonically with the increase in V-angle.In the process of jet penetration,the front and rear plates of ERA fl y away in the opposite direction.When the angle of V-shaped sandwich reactive armor con fi guration is small,there isn’t enough space for the rear plate to move,and the jet penetrates vertically into the main target with the increase in angle,the penetration depth increases.As the angle reaches a certain value,there is enough space for the rear plate to rotate and move,meanwhile the jet is greatly disturbed by the rear plate,which reduces the depth of penetration.It can be seen from Fig.13 that the maximum point is at a V-angle of about 13°.However,the variation of penetration depth with increase of V-angle is quite small.It is observed that the penetration depth is reduced by 85%-90%for all the studied V-angles.Therefore it is demonstrated that the reduction of the penetration depth is not sensitive to V-angles investigated in this paper.

    Fig.11.Comparison of the penetration results at different impact angles(V-angle of 9°).

    6.Conclusions

    The following conclusions are drawn from the present numerical study on the jet penetration into homogeneous target with and without reactive add-on armors.

    1)The proposed approach successfully simulated the significant disturbance and cutting effects of the moving front and rear plates on the jet.In addition,the parametric studies were performed to quantify the reduction of the penetration depth due to the jet bending,breaking,and jet(segment)scattering in the various conditions of jet/ERA/target.

    2)For fl at ERA con fi guration,no signi fi cant bending and cutting effects were observed for the normal impact,thus the disturbance of fl at reactive armor to jet penetration was not considerable.However,it was observed that,for

    Fig.12.Simulated penetration holes at different impact angles.

    oblique impact,the penetration depth was reduced by 55%~75%.

    3)For V-shaped ERA con fi guration,the impact angle had a great effect on the reduction of the penetration.However,for various V-angles and at a fi xed impact angle,the reduction of penetration depth was not sensitive to V-angles studied.

    Fig.13.Comparison of the penetration results at different V-angles(impact angle of 60°).

    [1]Held M,Mayseless M,Rototaev E.Explosive reactive armor.In:Proceedings of the 17th International Symposium on Ballistic.Midrand,South Africa;1998.pp.33-46.

    [2]HazellPJ.Advancesin explosive reactive armor.MilTechnol 2008;6:124-33.

    [3]Wu C,Jiang J.A study on the moving features of explosive reactive armor by numerical simulation and experiments.Acta Armamentarii 2002;23(1):35-8.

    [4]Huang Z,Li G,Chen H.Numerical simulation and experimental study on double explosive reactive armor. J Ballist 2005;17(4):40-3.

    [5]Mayseless M,Marmor E,Gov N,Kivity Y,Falcovitz J,Tzu D.In:Interaction of a shaped charge jet with reactive or passive cassettes.Proceedings of the 14th International Symposium on Ballistics.Quebec,Canada,vol.11;1993.pp.439-48.

    [6]Murr LE,Staudhammer KP,Meyers MA.Modeling and simulation of interaction process of shaped charge jet and explosive reactive armor.In:Metallurgical and materials Applications of shock-wave and high-Starin-rate Phenomena.Proceedings of the 1995 International Conference on Metallurgical and materials Applications of shockwave and high-strain-rate Phenomena(EXPLOMET ’95);1995.pp.511-8.

    [7]Liu H,Zhao G.Study on jet break up in explosive reactive armor(ERA)by normal penetration.Mech Eng 2007;29(4):63-6.

    [8]Zeng F,Li J.A further study of the disturbance mechanism on jets caused by reactive armors.J Beijing Inst Technol 1994;14:286-91.

    [9]Held M.Stopping power of ERA sandwiches as a function of explosive layerthicknessorplate velocities.Propellants,ExplosPyrotech 2006;31(3):234-8.

    [10]Held M.Dynamic plate thickness of ERA sandwiches against shaped charge jets.Propellants,Explos Pyrotech 2004;29(4):244-6.

    [11]Held M.Edge effects on ERA sandwiches.Propellants,Explos Pyrotech 2006;31(2):98-101.

    [12]Held M.Effectiveness of an ERA-sandwich with a large distance between sandwich and target. Propellants, Explos Pyrotech 2001;26(1):33-7.

    [13]Zukas JA.Introduction to hydrocodes.Studies in applied Mechanics 49.Elsevier;2004.

    [14]Livermore Software Technology Corporation.LS-DYNA keyword user’s manual.Version 970.Livermore;2003.pp.2042-63.1316-1319.

    [15]Shin Hyunho,Lee Woong.A numerical study on the detonation behaviour of double reactive cassettes by impacts of projectiles with different nose shapes.Int J Impact Eng 2003;28(4):349-62.

    [16]Ismail MM,Rayad AM,Alwany H,Alshenawy TA.Optimization of performance of explosive reactive armors.In:Proceedings of the 21st International Symposium on Ballistics.Adelaide,Australia,vol.1;2004.pp.227-32.

    [17]Toda S,Kibe S.Analysis of jet formation and penetration by conicalshaped charge with the Inhibitor.IntJ ImpactEng 1999;23(1):443-54.

    [18]Dong X.Study on the disturbance mechanism of jets caused by reactive armors.Master degree thesis.Nanjing:Nanjing University of Science and Technology;2008.

    国产片特级美女逼逼视频| 成年av动漫网址| 一级毛片黄色毛片免费观看视频| 99久久精品一区二区三区| 精品一区二区三卡| 大片免费播放器 马上看| 国产精品一区二区在线不卡| 免费大片黄手机在线观看| 如何舔出高潮| 亚洲国产最新在线播放| 又粗又硬又长又爽又黄的视频| 国产永久视频网站| 精品亚洲成国产av| 最近中文字幕2019免费版| 久久99热6这里只有精品| 国产成人免费观看mmmm| 插逼视频在线观看| 妹子高潮喷水视频| 丰满乱子伦码专区| 日韩在线高清观看一区二区三区| 欧美亚洲日本最大视频资源| 9色porny在线观看| 中文乱码字字幕精品一区二区三区| 亚洲综合色网址| 天天操日日干夜夜撸| 亚洲无线观看免费| 天美传媒精品一区二区| 久久久亚洲精品成人影院| 精品亚洲成a人片在线观看| 下体分泌物呈黄色| 国产欧美另类精品又又久久亚洲欧美| 亚洲婷婷狠狠爱综合网| 午夜日本视频在线| 精品人妻在线不人妻| 老熟女久久久| 日韩大片免费观看网站| 午夜福利视频在线观看免费| 夫妻午夜视频| av播播在线观看一区| 999精品在线视频| 国产男人的电影天堂91| 日韩精品有码人妻一区| 最新中文字幕久久久久| 菩萨蛮人人尽说江南好唐韦庄| 看非洲黑人一级黄片| 两个人的视频大全免费| 如何舔出高潮| 亚洲五月色婷婷综合| 精品久久国产蜜桃| 国产精品一区二区在线观看99| 下体分泌物呈黄色| 久久久久国产网址| 欧美亚洲 丝袜 人妻 在线| 18禁在线无遮挡免费观看视频| 国产免费福利视频在线观看| 亚洲精品aⅴ在线观看| 一二三四中文在线观看免费高清| 卡戴珊不雅视频在线播放| 又黄又爽又刺激的免费视频.| videossex国产| 黑人高潮一二区| 国产精品国产三级专区第一集| av有码第一页| a级片在线免费高清观看视频| 免费久久久久久久精品成人欧美视频 | 97超碰精品成人国产| 国产黄片视频在线免费观看| 国产精品秋霞免费鲁丝片| 观看av在线不卡| 久久久欧美国产精品| 亚洲美女黄色视频免费看| 一级毛片 在线播放| 成人亚洲欧美一区二区av| 老司机影院成人| 国产欧美另类精品又又久久亚洲欧美| 午夜福利在线观看免费完整高清在| 久久久a久久爽久久v久久| 男人爽女人下面视频在线观看| 亚洲综合色网址| 国产精品一区二区在线观看99| 欧美97在线视频| 91精品国产国语对白视频| 久久99精品国语久久久| 国产探花极品一区二区| 在线观看人妻少妇| 国产精品女同一区二区软件| 色94色欧美一区二区| 亚洲av不卡在线观看| 国产高清有码在线观看视频| 少妇人妻 视频| 91精品一卡2卡3卡4卡| 欧美成人精品欧美一级黄| 男男h啪啪无遮挡| 大话2 男鬼变身卡| 国产精品久久久久久av不卡| 少妇人妻精品综合一区二区| 综合色丁香网| 国产黄片视频在线免费观看| 色视频在线一区二区三区| 少妇人妻 视频| 三级国产精品欧美在线观看| 丝瓜视频免费看黄片| 精品少妇内射三级| 国产精品秋霞免费鲁丝片| 欧美最新免费一区二区三区| 久热久热在线精品观看| 黄片播放在线免费| 国产黄频视频在线观看| 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 日本-黄色视频高清免费观看| 国产乱人偷精品视频| 男人爽女人下面视频在线观看| 色哟哟·www| 亚洲精品,欧美精品| 少妇高潮的动态图| 久久精品国产a三级三级三级| 亚洲精品av麻豆狂野| 久久久国产一区二区| 亚洲精品日韩av片在线观看| 母亲3免费完整高清在线观看 | 亚洲成人av在线免费| 赤兔流量卡办理| 成年av动漫网址| 国产精品国产三级国产专区5o| 最后的刺客免费高清国语| 午夜久久久在线观看| 日韩欧美精品免费久久| 成年人午夜在线观看视频| 99九九线精品视频在线观看视频| 国产成人免费观看mmmm| 国产精品成人在线| 国产成人精品久久久久久| 大香蕉久久网| 亚洲国产毛片av蜜桃av| 女的被弄到高潮叫床怎么办| 免费观看性生交大片5| 一级a做视频免费观看| 国产 一区精品| 热99久久久久精品小说推荐| 久久久久久久国产电影| 亚洲欧美一区二区三区国产| 欧美日韩国产mv在线观看视频| 多毛熟女@视频| 亚洲欧洲国产日韩| 十分钟在线观看高清视频www| 桃花免费在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 人妻系列 视频| 熟女人妻精品中文字幕| 日本av手机在线免费观看| 少妇人妻久久综合中文| 亚洲伊人久久精品综合| 日本vs欧美在线观看视频| 亚洲图色成人| 日韩大片免费观看网站| 免费观看av网站的网址| 色5月婷婷丁香| a级毛片黄视频| 国产片特级美女逼逼视频| 免费大片18禁| 亚洲精品日韩av片在线观看| 亚洲欧美一区二区三区黑人 | 视频中文字幕在线观看| h视频一区二区三区| 亚洲精品一二三| 国产毛片在线视频| 看免费成人av毛片| 最近中文字幕高清免费大全6| 超色免费av| 男女啪啪激烈高潮av片| 午夜av观看不卡| 精品一区二区免费观看| 久久久久久久久大av| 只有这里有精品99| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久精品精品| a 毛片基地| 成人二区视频| 三级国产精品片| 国产免费一区二区三区四区乱码| 国产成人aa在线观看| 日韩 亚洲 欧美在线| 女的被弄到高潮叫床怎么办| 成人免费观看视频高清| 久久这里有精品视频免费| 亚洲三级黄色毛片| 51国产日韩欧美| 18禁动态无遮挡网站| 蜜桃国产av成人99| 啦啦啦视频在线资源免费观看| 91成人精品电影| 伦理电影免费视频| 一区二区三区精品91| 国产成人精品久久久久久| 少妇被粗大的猛进出69影院 | av电影中文网址| 久久午夜福利片| 欧美日韩国产mv在线观看视频| 18禁在线无遮挡免费观看视频| 99久久精品一区二区三区| 91久久精品国产一区二区三区| 欧美精品国产亚洲| 人人妻人人添人人爽欧美一区卜| 九九爱精品视频在线观看| 欧美变态另类bdsm刘玥| 亚洲精品中文字幕在线视频| 欧美xxxx性猛交bbbb| av不卡在线播放| 亚洲婷婷狠狠爱综合网| 亚洲成人手机| 只有这里有精品99| 国产熟女欧美一区二区| 97超碰精品成人国产| av线在线观看网站| 国产高清有码在线观看视频| 国国产精品蜜臀av免费| 五月玫瑰六月丁香| 99久久中文字幕三级久久日本| 永久网站在线| 国产精品一国产av| 97超视频在线观看视频| 又大又黄又爽视频免费| 成人手机av| 国产女主播在线喷水免费视频网站| 寂寞人妻少妇视频99o| 国产亚洲午夜精品一区二区久久| 久久99精品国语久久久| 美女主播在线视频| 中文欧美无线码| 观看av在线不卡| 男女边摸边吃奶| 日韩av在线免费看完整版不卡| 高清黄色对白视频在线免费看| 精品人妻熟女毛片av久久网站| a级片在线免费高清观看视频| 国产探花极品一区二区| 免费大片黄手机在线观看| 在线精品无人区一区二区三| 久久婷婷青草| 91精品三级在线观看| 久久国产精品男人的天堂亚洲 | 日本色播在线视频| av网站免费在线观看视频| 在现免费观看毛片| 满18在线观看网站| 黄色一级大片看看| 婷婷成人精品国产| xxxhd国产人妻xxx| 美女xxoo啪啪120秒动态图| 少妇的逼好多水| 在线观看三级黄色| 中文字幕久久专区| 99国产精品免费福利视频| 免费av不卡在线播放| 人妻一区二区av| 一区二区日韩欧美中文字幕 | 欧美精品亚洲一区二区| 热re99久久精品国产66热6| 99热这里只有精品一区| av黄色大香蕉| 秋霞伦理黄片| 久久久精品免费免费高清| 精品亚洲成国产av| 十八禁高潮呻吟视频| 国产深夜福利视频在线观看| 亚洲美女搞黄在线观看| 极品少妇高潮喷水抽搐| 久久久国产欧美日韩av| 亚洲不卡免费看| 日日啪夜夜爽| 久久久久久人妻| 精品卡一卡二卡四卡免费| 亚洲精品国产av成人精品| 欧美 亚洲 国产 日韩一| 午夜精品国产一区二区电影| 国产av一区二区精品久久| 国产男女超爽视频在线观看| 亚洲精品自拍成人| 五月玫瑰六月丁香| 91精品伊人久久大香线蕉| 久久精品夜色国产| 免费黄频网站在线观看国产| 成人免费观看视频高清| 美女主播在线视频| 国产成人av激情在线播放 | 老司机影院成人| 亚洲精品,欧美精品| 免费播放大片免费观看视频在线观看| 国产视频首页在线观看| 在线 av 中文字幕| 日本91视频免费播放| 女人久久www免费人成看片| 欧美精品一区二区大全| 女性生殖器流出的白浆| 狂野欧美白嫩少妇大欣赏| 男人爽女人下面视频在线观看| 日韩免费高清中文字幕av| 国产片特级美女逼逼视频| 美女国产高潮福利片在线看| 亚洲欧美日韩另类电影网站| a级毛色黄片| 18禁动态无遮挡网站| 老女人水多毛片| 欧美激情 高清一区二区三区| 亚洲精华国产精华液的使用体验| 亚洲性久久影院| 国产精品一区二区三区四区免费观看| 国产免费福利视频在线观看| 国产av码专区亚洲av| av网站免费在线观看视频| 69精品国产乱码久久久| 婷婷色麻豆天堂久久| 中文欧美无线码| 亚洲精品日韩av片在线观看| 十分钟在线观看高清视频www| 日韩不卡一区二区三区视频在线| 精品久久久久久久久亚洲| 久久精品久久久久久噜噜老黄| 搡女人真爽免费视频火全软件| 免费播放大片免费观看视频在线观看| 成人国产麻豆网| 我的女老师完整版在线观看| 久久久久久久久久人人人人人人| 亚洲av二区三区四区| 国产有黄有色有爽视频| 欧美xxⅹ黑人| 欧美精品人与动牲交sv欧美| 人体艺术视频欧美日本| 国产欧美亚洲国产| 久久久国产精品麻豆| 久久国产精品大桥未久av| 视频在线观看一区二区三区| 男人操女人黄网站| 免费av不卡在线播放| 国产伦理片在线播放av一区| 国产毛片在线视频| 麻豆成人av视频| 久久久国产精品麻豆| 高清黄色对白视频在线免费看| 纵有疾风起免费观看全集完整版| 视频在线观看一区二区三区| 少妇被粗大猛烈的视频| 激情五月婷婷亚洲| 王馨瑶露胸无遮挡在线观看| 色婷婷久久久亚洲欧美| 欧美 日韩 精品 国产| 丝瓜视频免费看黄片| av线在线观看网站| 欧美激情 高清一区二区三区| 国产精品久久久久久久电影| 国产极品天堂在线| 观看av在线不卡| 观看av在线不卡| 3wmmmm亚洲av在线观看| av国产精品久久久久影院| 欧美 日韩 精品 国产| 欧美成人午夜免费资源| 免费大片18禁| 亚洲国产av新网站| 七月丁香在线播放| 国产片内射在线| 天美传媒精品一区二区| videossex国产| 亚洲国产精品成人久久小说| 婷婷成人精品国产| av专区在线播放| 伊人久久精品亚洲午夜| 黑丝袜美女国产一区| 99精国产麻豆久久婷婷| 蜜臀久久99精品久久宅男| 亚洲欧美成人综合另类久久久| 啦啦啦在线观看免费高清www| 精品久久久久久久久亚洲| 亚洲美女视频黄频| 国产男女内射视频| 色吧在线观看| 中文精品一卡2卡3卡4更新| 九色成人免费人妻av| 国产精品欧美亚洲77777| 美女内射精品一级片tv| 人妻系列 视频| videos熟女内射| 嘟嘟电影网在线观看| 亚洲国产精品国产精品| kizo精华| 夜夜看夜夜爽夜夜摸| 欧美日韩视频精品一区| 日本猛色少妇xxxxx猛交久久| av卡一久久| 蜜桃国产av成人99| 日韩视频在线欧美| 欧美激情极品国产一区二区三区 | 色哟哟·www| 国产视频首页在线观看| 蜜桃久久精品国产亚洲av| 两个人免费观看高清视频| 久久国产精品大桥未久av| 美女脱内裤让男人舔精品视频| 2022亚洲国产成人精品| 亚洲精品乱久久久久久| 国产精品一区二区在线不卡| 欧美日韩国产mv在线观看视频| 亚洲成人一二三区av| 涩涩av久久男人的天堂| 亚洲丝袜综合中文字幕| 欧美精品一区二区免费开放| 久久久国产精品麻豆| 亚洲av中文av极速乱| 亚洲美女视频黄频| 亚洲精品国产色婷婷电影| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久精品电影小说| 18禁观看日本| 99国产精品免费福利视频| 亚洲av日韩在线播放| 亚洲一区二区三区欧美精品| 亚洲一级一片aⅴ在线观看| 高清av免费在线| 久久97久久精品| 狂野欧美激情性bbbbbb| 国产在线一区二区三区精| 久久久久久久久久成人| 少妇被粗大猛烈的视频| 曰老女人黄片| 亚洲无线观看免费| 一个人看视频在线观看www免费| 免费高清在线观看视频在线观看| 日本爱情动作片www.在线观看| 久久精品国产鲁丝片午夜精品| 99久久精品国产国产毛片| 亚洲欧美日韩另类电影网站| 亚洲国产精品999| 精品久久久久久久久亚洲| 大片免费播放器 马上看| 亚洲人成网站在线观看播放| 免费观看a级毛片全部| 成年人午夜在线观看视频| av有码第一页| 免费播放大片免费观看视频在线观看| 中文乱码字字幕精品一区二区三区| 欧美日本中文国产一区发布| 国产一区亚洲一区在线观看| 日本黄色片子视频| 在线天堂最新版资源| 久久ye,这里只有精品| 午夜激情福利司机影院| 色视频在线一区二区三区| 免费黄网站久久成人精品| 午夜福利在线观看免费完整高清在| 黑人猛操日本美女一级片| 久久久久久人妻| 亚洲av中文av极速乱| 99久久综合免费| 久久这里有精品视频免费| 国产精品秋霞免费鲁丝片| 熟女人妻精品中文字幕| 久久久久久久久久成人| 日韩中文字幕视频在线看片| 国产黄色视频一区二区在线观看| 99国产精品免费福利视频| 18禁裸乳无遮挡动漫免费视频| 熟女人妻精品中文字幕| 免费人成在线观看视频色| 国产黄频视频在线观看| a级毛片黄视频| 五月开心婷婷网| 国产亚洲最大av| 亚洲精品一区蜜桃| 街头女战士在线观看网站| 美女cb高潮喷水在线观看| 国产在线视频一区二区| 又粗又硬又长又爽又黄的视频| 999精品在线视频| 我的老师免费观看完整版| 最近中文字幕高清免费大全6| 久久久久久久亚洲中文字幕| 国产精品一国产av| 久久久久精品性色| 精品国产露脸久久av麻豆| 亚洲欧美日韩卡通动漫| 国产亚洲av片在线观看秒播厂| 汤姆久久久久久久影院中文字幕| 美女福利国产在线| 久久久欧美国产精品| 我的女老师完整版在线观看| 91精品国产九色| 高清黄色对白视频在线免费看| 精品少妇久久久久久888优播| 国产免费又黄又爽又色| 一区在线观看完整版| 国内精品宾馆在线| 国产伦理片在线播放av一区| 日本-黄色视频高清免费观看| 我的女老师完整版在线观看| 麻豆乱淫一区二区| 久久久久久久精品精品| 91成人精品电影| 91aial.com中文字幕在线观看| 日韩免费高清中文字幕av| 亚洲性久久影院| 黑人高潮一二区| 亚洲av综合色区一区| 国产成人精品久久久久久| 91在线精品国自产拍蜜月| 天天影视国产精品| 精品久久久久久久久亚洲| av女优亚洲男人天堂| 美女脱内裤让男人舔精品视频| 在线观看国产h片| 亚洲欧美色中文字幕在线| 最近最新中文字幕免费大全7| 国产深夜福利视频在线观看| 欧美日韩视频精品一区| 一边摸一边做爽爽视频免费| 日本免费在线观看一区| 嫩草影院入口| 日韩,欧美,国产一区二区三区| 人人妻人人添人人爽欧美一区卜| 亚洲精华国产精华液的使用体验| 国产精品三级大全| av在线老鸭窝| 婷婷色综合大香蕉| 99热全是精品| 我的老师免费观看完整版| 18禁在线无遮挡免费观看视频| 久久鲁丝午夜福利片| 久久午夜综合久久蜜桃| 在线观看一区二区三区激情| 国产一区二区在线观看av| 人妻系列 视频| 91久久精品电影网| 亚洲国产最新在线播放| 人妻一区二区av| 日韩av免费高清视频| 涩涩av久久男人的天堂| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 久久精品久久久久久久性| 2022亚洲国产成人精品| 日韩 亚洲 欧美在线| 亚洲精品aⅴ在线观看| 中文乱码字字幕精品一区二区三区| 午夜福利在线观看免费完整高清在| av电影中文网址| 色网站视频免费| 国产av国产精品国产| 国产成人午夜福利电影在线观看| 99久久精品一区二区三区| 最近最新中文字幕免费大全7| 久久精品国产a三级三级三级| 少妇被粗大猛烈的视频| 国产日韩欧美视频二区| 婷婷色麻豆天堂久久| 美女内射精品一级片tv| 久久久国产精品麻豆| 毛片一级片免费看久久久久| 欧美变态另类bdsm刘玥| 一级a做视频免费观看| 赤兔流量卡办理| 日韩三级伦理在线观看| 蜜桃国产av成人99| 大香蕉久久成人网| 国产69精品久久久久777片| 日韩人妻高清精品专区| 人妻少妇偷人精品九色| 欧美三级亚洲精品| 亚洲av免费高清在线观看| 免费观看在线日韩| 亚洲av免费高清在线观看| 成年美女黄网站色视频大全免费 | 国产精品久久久久久久久免| 日韩中字成人| 久久久久久久国产电影| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| 日本色播在线视频| 亚洲精品456在线播放app| 视频在线观看一区二区三区| 亚洲精品第二区| 国产极品天堂在线| 欧美xxxx性猛交bbbb| 母亲3免费完整高清在线观看 | 久久99热6这里只有精品| 这个男人来自地球电影免费观看 | a级毛片黄视频| 国产女主播在线喷水免费视频网站| 欧美 亚洲 国产 日韩一| 天堂中文最新版在线下载| 久久久久网色| 22中文网久久字幕| 九色亚洲精品在线播放| 亚洲精品日韩在线中文字幕| 人妻系列 视频| 日本与韩国留学比较| 国产乱来视频区| 免费人妻精品一区二区三区视频| 另类精品久久| 国产熟女午夜一区二区三区 | 亚洲一区二区三区欧美精品| 51国产日韩欧美| 婷婷色麻豆天堂久久| 天堂俺去俺来也www色官网| 男女边摸边吃奶| 麻豆乱淫一区二区| 街头女战士在线观看网站| 热re99久久精品国产66热6| 免费人妻精品一区二区三区视频| 亚洲精品成人av观看孕妇| 一级,二级,三级黄色视频| 99热这里只有是精品在线观看| 成人手机av| 久久久久久久大尺度免费视频| 欧美人与性动交α欧美精品济南到 |