• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structure

    2014-03-09 11:57:08HongwuSONGShihongZHANGMingCHENG
    Defence Technology 2014年1期

    Hong-wu SONG,Shi-hong ZHANG*,Ming CHENG

    Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    1.Introduction

    Titanium alloys,particularly dual-phase titanium alloys,have been widely used as advanced structural materials in aeronautic applications.Especially,the alloy with a nominal composition of Ti-6.5Al-1.5Zr-3.5Mo-0.3Si(named TC11 alloy),which has a composition similar to Russia alloy VT9,is a typical dual-phase alloy and has now been the most widely used titanium alloy in aerospace field in China to produce the compressor discs and blades.Due to the additions of beta isomorphous element Mo,neutral element Zr and beta eutectoid element Si into Ti-6Al base,TC11 alloy has a higher strength,better creep resistance and more excellent

    thermal stability,especially at elevated temperatures compared with conventional Ti-6Al-4V alloy[1,2].

    The lamellar microstructure associated with as-cast or betaprocessed dual-phase titanium alloys has been found to break up or globularize dynamically during deformation and statically during post deformation annealing in the alpha/beta phase field,which plays a key role in development of desired microstructure for final forming or service.Therefore,the globularization process has received considerable attention[3-7].

    Many studies have been focused on dynamic globularization of two phase titanium alloys.In early works,Kaybyshev,et al.[8-10]qualitatively studied the evolution of plate like microstructure during superplastic deformation,with strain rate being in the order of 10-3s-1in the two phase alpha/beta region of VT9 alloy.The dynamic globularization process was found to be governed by the alpha-beta transformation and the development of grain boundary sliding.Semiatin,et al.[5,11]observed that the dynamic globularization of Ti-6Al-4V alloy with colony alpha structure occurred at strain rate of lower than 0.01 s-1;and the strains of 0.75-1.0 and 2-2.5

    2214-9147/$-see front matter Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.http://dx.doi.org/10.1016/j.dt.2014.01.003 were required for ‘initiation’and competition of dynamic globularization,respectively.Later study[4,12,13]indicated that the dependence of dynamic globularization kinetics on test temperature and initial microstructure appeared to be complex.Recently submicron grain structure was achieved by warm deformation of Ti-6Al-4V alloy at low temperature(550°C)and low strain rate(0.001 s-1)as a result of dynamic globularization[14].It can be found that the former researches were focused on globularization behavior at low strain rate or warm temperature.However,most thermomechanical processing of dual-phase titanium alloys for ingot breakdown on hammer or hydraulic press in industry was carried out at high temperature and high strain rate(above 0.01 s-1).Although the most recently research by Park,et al.[15]indicated that the superplasticity of Ti-6Al-4V alloy with martensite microstructure can be enhanced by its dynamic globularization generated at high strain rate(0.1 s-1),and the quantitative analysis of dynamic globularization kinetics is still unclear under such conditions for alloys with colony alpha structure.

    In spite of the referenced studies,the modeling and quantitative prediction of the dynamic globularization of two phase titanium alloy parts during forging are still lacking.Few works on dynamic globularization prediction of titanium alloys were all based on the arti fi cial neutral network models[16,17].And as for the TC11 alloy,few researches have been conducted on dynamic globularization kinetics[18],but the model established was only for low strains[19].For better understanding of the microstructure control through dynamic globularization during cogging,the subtransus deformation behavior and dynamic globularization evolution were firstly studied and modeled.And then the microstructure evolution in cogging process of large size billet was simulated and predicted.

    2.Materials and experimental methods

    TC11 alloy used in this investigation chemical has the following composition(wt.%):Al 6.17,Mo 3.41,Zr 1.77,Si 0.285,Fe 0.054,C 0.014,N 0.01,H 0.0006,O 0.100,and the rest being Ti.The measured β transus temperature is about 1020°C.The received Φ10 mm wrought bars are heated to 1040°C and held for 30 min followed by furnace cooling.The initial microstructure of the heat-treated material is shown in Fig.1.

    Fig.1.SEM image of lamellar structure of TC11 alloy achieved by treating at 1040°C and holding for 30 min.

    The microstructure shows a typical lamellar structure characterized by several alpha colonies in prior coarse β grains and a thick grain boundary alpha layer.The α and β lamellae are parallel toeach other inthe alpha colonies.The average β grain size isaround400-500μm,andtheaveragethicknessesoftheαandβ lamellae in colonies are about 1.5 μm and 0.35 μm,respectively.

    Cylindrical compressive specimens with 8 mm in diameter and 12 mm in height are machined from the heat-treated bars.Isothermal compression test is conducted on a Gleeble 3500 thermal simulator in the temperature range of 890-995°C and the strain rate range of 0.01-10 s-1.Graphite sheets are used as high temperature lubricant on both top and bottom sides of the specimens.Furthermore,the tantalum plates are used to avoid high temperature reaction and reduce heat transfer between the specimens and the anvils.During the tests,the specimens are heated to the given temperatures at a heating speed of 5°C/s,and held for 3 min to ensure a uniform distribution of temperature in the specimen.They are compressed to the given reduction and then fast cooled to room temperature.The deformation temperature is measured by thermocouples welded to the center region of the specimen surface.The load-stroke curves obtained from the compression tests are finally converted into true stress-true strain curves.

    The deformed specimens are sectioned parallel to the compression axis for microstructural analysis.The samples for optical metallographic examination are mechanically polished andetchedwithasolutionconsisting of10pctHF,20pctHNO3and 60 pct H2O.Because of the inhomogeneous deformation and non-uniform strain distribution in the compressed specimens,FEM is applied to calculate the local strains for microstructure observation.Since the beta phase transforms during cooling,the primary alpha phase,which governs the structure type of alloy,is mainly studied.Globularization behavior of the alpha lamella is then quanti fi ed using moderate magni fi cation optical photographs by a quantitative metallographic image analysissystemconsideringalphaphasewiththeaspect(length/width)ratio lower than 2 globularized phases.

    3.Materials modeling

    3.1.Flow behavior and constitutive model

    The stress-strain behaviors resulting from the uniaxial compression tests at the temperatures of 890°C-995°C and the strain rates of 0.01 s-1-10 s-1are presented in Fig.2.In all the flow curves,the flow stress increases first and then decreases with the increase in strain.It can be seen from Fig.2 that a peak flow stress appears at relatively low strain(around 0.05),and the different levels of flow softening exist and the flow curves exhibit a trend of steady state flow at strain over 0.9.Furthermore,the overall degree of flow softening is found to be comparable under all the test conditions.

    According to the above flow behavior including quick hardening and moderate softening,the constitutive model is established by combination of the physical-based hardening model and a phenomenological softening model as follows:

    Fig.2.Stress-strain curves obtained via compression tests(the dot line is temperature corrected by deformation heating).

    where σwhis the flow stress during quick hardening,σ*ssis the saturated stress without flow softening,σsis the steady state stress,and Xsoftis the flow softening fraction.

    The parameters σ0,β, εp,k,n are all material constants,which values can be obtained through non-linear fi tting method and are listed in Table 1.The ideal saturated stress σ*ssand steady state stress σsare found to be functions of temperature and strain rate which can be expressed as linear relationship with lnZ(Zener-Hollomon parameter),as shown in Fig.3:

    Table 1 Constant values of material.

    3.2.Dynamic globularization modeling

    Fig.3.The linear relation plot between σs-lnZ and -lnZ.

    The deformed microstructure is analyzed quantitatively to achieve the evolution of globularization fraction and the size of α phase with strain.The results show that the dynamic globularization kinetics is very sensitive to deformation temperature and strain rate,which can be related to the globularization mechanisms[20].It can be seen from Fig.4 that the globularization fraction of α phase fghas a linear relationship with strain in log-log pattern,indicating that the relation between globularization fraction and strain conforms to the Avarmi equation.And the size of globularized α phase D shows a liner relationship with lnZ(Zener-Holloman parameter),but the slope is highly depended on the strain rate,as shown in Fig.5.Now a kinetic model of lamellar dynamic globularization is established,in which the fraction fgand size D of dynamic globularized α phase are expressed as functions of deformation temperature,strain rate and strain,respectively,in the following models

    Fig.4.Linear relation between fgand ε at different deformation temperatures.

    Fig.5.Linear relation between D and lnZ at different strain rates.

    where εcand n are materials constants dependent on strain rate shown in Table 2,and k is linear function of lnZ shown in Fig.6.

    Table 2 εcand n values at different strain rates.

    Fig.6.Linear relation between k and lnZ under different deformation conditions.

    4.Results and discussion

    In the cogging process,the size ofthe billetis Φ80× 140 mm.The billet is heated to 1040°C and held for half an hour,and then air-cooled to room temperature.The original microstructure of the material is lamellar structure after β treatment,shown in Fig.7.The grain size is about 300-400 μm,the thickness of grain boundary α lamella is about 3 μm,and the thickness of colony α lamella is about 2 μm.The original microstructure shows the features similar to the one used for compression test and materials modeling.

    The billet cogging process is shown in Fig.8.The cogging load is experimentally recorded at certain time.Fig.9 shows the variation of experimental and FE predicted cogging loads with time.Good agreement between the experimental and simulation results can be obviously seen from Fig.9,indicating that the established constitutive model is applicable in complicated forging process for TC11 alloy.

    Fig.7.Microstructure of TC11 alloy rod billet.

    Fig.8.Flowchart of one fi re stage cogging process.

    Fig.9.Comparison of load-time data between simulated and experimental results.

    The simulated fraction of dynamic globularization at the central section is shown in Fig.10.It can be seen that the globularization fraction is between 20%and 90%and significantly different at different positions,which can be more clearly seen from the simulated globularization evolutions at four typical positions(shown as 1-4),indicating non-uniform microstructure distribution.

    The microstructures at the positions corresponding to the four points shown in Fig.10 in the cogging experiments are shown in Fig.11.

    The comparison of globularization kinetics between simulation and experimental results is shown in Table 3.It can be seen from Table 3 that the simulated results fi t well with the experimental ones,indicating the feasibility of the proposed dynamic globularization kinetics model.Through further investigation,it can be found that both the fraction and size of globularized α phase obtained by simulation are all smaller than those obtained by experiments,and the strain path change during(cogging compared to uniaxial compression)can improve the dynamic globularization of titanium alloy,which is different from the results presented in Ref.[10].The effect of strain path change on glolurization kinetics and the mechanism need to be further studied.

    Fig.10.Evolution of simulated lamellar globularization fraction at different positions.

    Table 3 Comparison of simulated and experimental globularization results.

    5.Conclusions

    A constitutive model and a dynamic globularization model are established for TC11 alloy with lamellar structure during subtransus deformation.FEM simulation based on the established models gives good prediction of load and microstructure evolution for TC11 alloy during subtransus cogging,and can be applied for simulation and optimization of cogging or other subtransus hot working processes of TC11 alloy with lamellar structure to realize microstructure control.And the strain path change during subtransus deformation is found to improve the globularized kinetics of α phase,which also needs to be further studied.

    Fig.11.Microstructures at different positions in the cogged billet as shown in Fig.10(a).

    [1]Williams JC,Belov AF.Titanium and titanium alloys.New York:Plenum Press;1982.

    [2]Lutjering G.In fluence of processing on microstructure and mechanical properties of (αββ) titanium alloys. Mater Sci Eng 1998;243(1):32-45.

    [3]Weiss I,Froes FH,Eylon D,Welsch GE.Modi fi cation of alpha morphology in Ti-6Al-4V by thermomechanical processing.Metall Trans A 1986;17(11):1935-47.

    [4]Seshacharyulu T,Medeiros SC,Frazier WG,Prasad YVRK.Microstructural mechanismsduring hot working ofcommercialgrade Ti-6Al-4V with lamellar starting structure.Mater SciEng 2002;325(1):112-25.

    [5]Semiatin SL,Thomas JF,Dadras P.Processing-microstructure relationships for Ti-6Al-2Sn-4Zr-2Mo-0.1S. Metall Trans A 1983;14(11):2363-74.

    [6]Malcor JG,Motheillet F,Champin B.Mechanical and microstructural behavior of Ti-6A1-4 Valloy in the hot working range.In:International titanium conference 5,Germany;1985.pp.1495-502.

    [7]Semiatin SL,Seetharaman V,Weiss I.Hot working of titanium alloys-an overview.Adv Sci Technol Titanium Alloy Process;1997:4-72.

    [8]Kaybyshev OA,Lutfullin RY,Salishchev GA.In fluence of superplastic deformation conditions on transformation of platelike microstructure in titanium alloy VT9.Phys Metals Metallogr 1988;66(6):109-17.

    [9]Seshacharyulu T,Medeiros SC,Morgan JT.Hot deformation and microstructural damage mechanisms in extra-low interstitial(ELI)grade Ti-6Al-4V.Mater Sci Eng 2000;279(1-2):289-99.

    [10]Salishchev GA,Valiakhmetov OR,Galekev RM.Formation of submicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties. J Mater Sci 1993;28(11):2898-902.

    [11]Semiatin SL,Seetharaman V,Ghosh AK.Plastic flow,microstructure evolution,and defect formation during primary hot working of titanium and titanium aluminide alloys with lamellar colony microstructures.Philosophical Transactions Royal Soc Lond Ser 1999;357(1756):1487-512.

    [12]Semiatin SL,Seetharaman V,Weiss I.Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure.Mater Sci Eng 1999;263(2):257-71.

    [13]Beiler TR,Semiatin SL.The origins of heterogeneous deformation during primary hot working of Ti-6Al-4V. Int J Plasticity 2002;18(9):1165-89.

    [14]Zherebtsov SV,Salishchev GA,Galeyev RM,Valiakhmetov OR,Mironov SY,Semiatin SL.Production of submicrocrystalline structure in large-scale Ti-6Al-4V billet by warm severe deformation processing.Scr Mater 2004;51(12):1147-51.

    [15]Park CH,Ko YG,Park JW,Lee CS.Enhanced superplasticity utilizing dynamic globularization ofTi-6Al-4V alloy.MaterSciEng 2008;496(1-2):150-8.

    [16]Wang KX,Zeng WD,Zhao YQ,Xue B,Tian F.ANN model for prediction of dynamic globularization in TC17 titanium alloy.Chin J Nonferrous Metals 2010;20(1):s468-72.

    [17]JeoungHK,ReddyNS,JongTT,JaeKH,ChongSL,ParkNK.Microstructure prediction of two-phase titanium alloy during hot forging using arti fi cial neural networks and FE simulation.Metals Mater Int 2009;15(3):427-37.

    [18]Chen HQ,Lin HZ,Guo L,Cao CX.Hot deformation behavior and microstructure evolution of Ti-6.5Al-1.5Zr-3.5Mo-0.3Si with equiaxed α+β starting structure.Mater Sci Forum 2007;546-549:1383-8.

    [19]Song HW.Research on subtransus deformation mechanisms of TC11 alloy with a lamellar structure and its application.PHD dissertation.China:Chinese Academy of Sciences;July,2009.

    [20]Song HW,Zhang SH,Cheng M.Dynamic globularization kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure.J Alloys Compd 2009;480(2):922-7.

    免费在线观看黄色视频的| 午夜福利乱码中文字幕| 亚洲精品第二区| 丝袜美足系列| av一本久久久久| 国产成人免费观看mmmm| 免费高清在线观看视频在线观看| 中文字幕人妻丝袜制服| 美女高潮喷水抽搐中文字幕| 国产淫语在线视频| 丝瓜视频免费看黄片| 欧美性长视频在线观看| 久久ye,这里只有精品| 自拍欧美九色日韩亚洲蝌蚪91| 一区在线观看完整版| 亚洲欧美一区二区三区黑人| 91成年电影在线观看| 人妻一区二区av| h视频一区二区三区| 亚洲伊人色综图| 黄色 视频免费看| 侵犯人妻中文字幕一二三四区| av电影中文网址| 国产99久久九九免费精品| 夫妻午夜视频| 老司机午夜福利在线观看视频 | 两个人免费观看高清视频| 日本欧美视频一区| 午夜免费成人在线视频| 国产精品久久久久久精品古装| 欧美激情久久久久久爽电影 | 国产福利在线免费观看视频| 女人久久www免费人成看片| 热99久久久久精品小说推荐| 巨乳人妻的诱惑在线观看| 18禁观看日本| 黑人巨大精品欧美一区二区mp4| 色老头精品视频在线观看| 咕卡用的链子| av国产精品久久久久影院| 国产成人av激情在线播放| 美女扒开内裤让男人捅视频| 日本撒尿小便嘘嘘汇集6| 久久精品久久久久久噜噜老黄| 青草久久国产| 亚洲九九香蕉| 午夜福利,免费看| 无遮挡黄片免费观看| 悠悠久久av| 另类精品久久| 日韩中文字幕欧美一区二区| 97人妻天天添夜夜摸| 欧美国产精品va在线观看不卡| 精品久久久精品久久久| 热re99久久国产66热| 免费在线观看日本一区| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲欧美精品永久| 亚洲av男天堂| 性少妇av在线| 一区二区av电影网| 欧美人与性动交α欧美精品济南到| 啪啪无遮挡十八禁网站| 纵有疾风起免费观看全集完整版| 亚洲九九香蕉| 美女脱内裤让男人舔精品视频| 国产精品.久久久| 久久亚洲精品不卡| 久久久国产欧美日韩av| 国产在线一区二区三区精| 99国产极品粉嫩在线观看| 亚洲伊人色综图| 国产一区有黄有色的免费视频| 一边摸一边抽搐一进一出视频| 高清欧美精品videossex| 亚洲成人手机| 少妇猛男粗大的猛烈进出视频| 日本av手机在线免费观看| 精品一区二区三区av网在线观看 | 性高湖久久久久久久久免费观看| 免费在线观看完整版高清| 日韩欧美一区二区三区在线观看 | 女人久久www免费人成看片| 亚洲男人天堂网一区| 欧美精品高潮呻吟av久久| 亚洲精品一区蜜桃| 久久久久国产精品人妻一区二区| 久久国产亚洲av麻豆专区| 久久99热这里只频精品6学生| 国产成人av激情在线播放| 高清av免费在线| 成人三级做爰电影| 欧美少妇被猛烈插入视频| av一本久久久久| 国产片内射在线| 男女国产视频网站| 久久国产精品人妻蜜桃| av天堂久久9| 午夜福利视频精品| 大片免费播放器 马上看| 男男h啪啪无遮挡| 国产av国产精品国产| 亚洲 欧美一区二区三区| 99国产精品99久久久久| 亚洲av片天天在线观看| 9191精品国产免费久久| 国产1区2区3区精品| 91精品伊人久久大香线蕉| 男男h啪啪无遮挡| av电影中文网址| 一边摸一边抽搐一进一出视频| 9热在线视频观看99| 精品福利观看| 亚洲欧美日韩另类电影网站| 美女视频免费永久观看网站| 老司机靠b影院| 国产在线一区二区三区精| 欧美av亚洲av综合av国产av| 欧美在线黄色| 精品一品国产午夜福利视频| 久久狼人影院| 国产真人三级小视频在线观看| 啦啦啦免费观看视频1| 男女无遮挡免费网站观看| 另类亚洲欧美激情| 国产av一区二区精品久久| 精品人妻在线不人妻| 欧美午夜高清在线| 久久亚洲国产成人精品v| 亚洲精品国产精品久久久不卡| 久久中文看片网| 亚洲精品美女久久久久99蜜臀| 久久av网站| 国产精品二区激情视频| 国产欧美亚洲国产| www.精华液| 精品国产乱码久久久久久小说| 在线观看免费日韩欧美大片| 亚洲精品自拍成人| 色精品久久人妻99蜜桃| 亚洲中文av在线| avwww免费| 久久精品国产a三级三级三级| 亚洲 国产 在线| 国产日韩欧美亚洲二区| 欧美精品高潮呻吟av久久| 美女中出高潮动态图| 1024香蕉在线观看| 91成年电影在线观看| 国产伦人伦偷精品视频| 日韩人妻精品一区2区三区| 国产极品粉嫩免费观看在线| 亚洲av男天堂| 欧美另类一区| av在线播放精品| 久久精品亚洲熟妇少妇任你| 一边摸一边做爽爽视频免费| 国产高清视频在线播放一区 | 免费人妻精品一区二区三区视频| 国产极品粉嫩免费观看在线| 国产成人免费无遮挡视频| 老司机在亚洲福利影院| 久久国产亚洲av麻豆专区| 丰满饥渴人妻一区二区三| 18禁观看日本| 亚洲精品美女久久av网站| 欧美亚洲 丝袜 人妻 在线| 正在播放国产对白刺激| 日韩免费高清中文字幕av| 成年av动漫网址| 十八禁网站免费在线| 免费人妻精品一区二区三区视频| av在线播放精品| 99久久人妻综合| 日韩视频一区二区在线观看| 女人精品久久久久毛片| 欧美精品亚洲一区二区| 亚洲av美国av| 欧美黄色淫秽网站| 夜夜骑夜夜射夜夜干| 在线观看一区二区三区激情| 这个男人来自地球电影免费观看| 丁香六月欧美| 日韩视频在线欧美| 两性夫妻黄色片| 日日夜夜操网爽| 午夜精品国产一区二区电影| 狠狠狠狠99中文字幕| 欧美中文综合在线视频| 少妇粗大呻吟视频| 国产免费福利视频在线观看| 国产成人av激情在线播放| 在线亚洲精品国产二区图片欧美| 国产精品av久久久久免费| 日韩有码中文字幕| 我要看黄色一级片免费的| 成年av动漫网址| 精品亚洲乱码少妇综合久久| 高清黄色对白视频在线免费看| 色94色欧美一区二区| 日韩欧美一区二区三区在线观看 | 黄色视频不卡| 午夜福利在线观看吧| 91大片在线观看| 美女视频免费永久观看网站| 国产av精品麻豆| av又黄又爽大尺度在线免费看| 久热爱精品视频在线9| 亚洲久久久国产精品| 国产精品秋霞免费鲁丝片| av不卡在线播放| 他把我摸到了高潮在线观看 | 久久青草综合色| 乱人伦中国视频| 高清黄色对白视频在线免费看| 久久综合国产亚洲精品| 18禁观看日本| 国产精品自产拍在线观看55亚洲 | 午夜激情av网站| a在线观看视频网站| 久久天躁狠狠躁夜夜2o2o| 亚洲国产av影院在线观看| 69精品国产乱码久久久| 欧美成狂野欧美在线观看| svipshipincom国产片| 欧美精品啪啪一区二区三区 | 日韩中文字幕视频在线看片| 久9热在线精品视频| av片东京热男人的天堂| 国产精品 欧美亚洲| 久久久久久久精品精品| 国产精品99久久99久久久不卡| 亚洲成人国产一区在线观看| 亚洲免费av在线视频| 日韩 亚洲 欧美在线| 欧美日本中文国产一区发布| 亚洲欧洲日产国产| av天堂在线播放| 国产黄色免费在线视频| 亚洲精品国产av成人精品| 亚洲第一青青草原| 欧美一级毛片孕妇| 中文字幕制服av| 欧美xxⅹ黑人| 看免费av毛片| 一区福利在线观看| 日本av免费视频播放| av国产精品久久久久影院| 日韩视频在线欧美| 久久久久久亚洲精品国产蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品日韩在线中文字幕| 99国产精品一区二区三区| 亚洲久久久国产精品| 国产亚洲欧美精品永久| 97在线人人人人妻| 欧美人与性动交α欧美精品济南到| 欧美精品啪啪一区二区三区 | 久久影院123| 精品人妻一区二区三区麻豆| 久久久国产成人免费| 精品久久久精品久久久| 蜜桃国产av成人99| 国产人伦9x9x在线观看| av网站在线播放免费| 久久精品国产综合久久久| 秋霞在线观看毛片| 老司机靠b影院| 久久久国产欧美日韩av| 十八禁网站网址无遮挡| 51午夜福利影视在线观看| 国产熟女午夜一区二区三区| 在线十欧美十亚洲十日本专区| 亚洲精品美女久久久久99蜜臀| 亚洲综合色网址| 三上悠亚av全集在线观看| 欧美精品人与动牲交sv欧美| www日本在线高清视频| 91精品三级在线观看| 久久久国产一区二区| www.自偷自拍.com| 又大又爽又粗| 欧美激情久久久久久爽电影 | 嫁个100分男人电影在线观看| 激情视频va一区二区三区| 纵有疾风起免费观看全集完整版| 性高湖久久久久久久久免费观看| 久久天堂一区二区三区四区| 91麻豆精品激情在线观看国产 | 亚洲中文av在线| 亚洲精品国产av蜜桃| 男女高潮啪啪啪动态图| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久水蜜桃国产精品网| 国产精品久久久av美女十八| 女性被躁到高潮视频| 久久久久国产一级毛片高清牌| 精品一区二区三区四区五区乱码| 亚洲人成电影观看| 麻豆av在线久日| 国产精品 国内视频| www.av在线官网国产| 女性生殖器流出的白浆| 日本黄色日本黄色录像| 日韩,欧美,国产一区二区三区| 精品少妇黑人巨大在线播放| 69av精品久久久久久 | 中亚洲国语对白在线视频| 国产免费视频播放在线视频| 热99re8久久精品国产| 中文字幕精品免费在线观看视频| 热99久久久久精品小说推荐| 视频区图区小说| 亚洲精品成人av观看孕妇| 老汉色av国产亚洲站长工具| 国产国语露脸激情在线看| 欧美日韩国产mv在线观看视频| 午夜福利视频在线观看免费| 亚洲五月婷婷丁香| 男人爽女人下面视频在线观看| 午夜福利,免费看| 日韩有码中文字幕| 亚洲欧洲日产国产| 日本欧美视频一区| 中文欧美无线码| 精品高清国产在线一区| 黄色视频不卡| 各种免费的搞黄视频| 欧美日韩精品网址| 91精品三级在线观看| av一本久久久久| 999精品在线视频| 色94色欧美一区二区| 国产成人免费观看mmmm| 国产精品影院久久| 久久久久久久久久久久大奶| av国产精品久久久久影院| 亚洲av成人不卡在线观看播放网 | 亚洲欧美清纯卡通| 久久毛片免费看一区二区三区| 久久久久视频综合| 热re99久久精品国产66热6| 国产精品 国内视频| 精品少妇久久久久久888优播| tube8黄色片| 男女之事视频高清在线观看| 色视频在线一区二区三区| 久久毛片免费看一区二区三区| 国产一区二区在线观看av| 飞空精品影院首页| 永久免费av网站大全| 女人爽到高潮嗷嗷叫在线视频| 在线观看免费视频网站a站| 久久天躁狠狠躁夜夜2o2o| 老司机影院成人| 精品一区二区三卡| 最近中文字幕2019免费版| 自线自在国产av| 国产老妇伦熟女老妇高清| a 毛片基地| 亚洲午夜精品一区,二区,三区| 在线观看舔阴道视频| 黑人操中国人逼视频| 中文字幕精品免费在线观看视频| 亚洲熟女毛片儿| 一区二区三区激情视频| 久久久久久久国产电影| 秋霞在线观看毛片| 亚洲国产成人一精品久久久| 国产欧美日韩一区二区三区在线| 99久久人妻综合| 久久精品aⅴ一区二区三区四区| 国产欧美日韩精品亚洲av| 丝袜人妻中文字幕| 午夜福利影视在线免费观看| 精品乱码久久久久久99久播| 国产成人啪精品午夜网站| 纯流量卡能插随身wifi吗| 中文字幕另类日韩欧美亚洲嫩草| 美女扒开内裤让男人捅视频| 巨乳人妻的诱惑在线观看| 亚洲熟女精品中文字幕| 成年人午夜在线观看视频| 日韩欧美国产一区二区入口| 色精品久久人妻99蜜桃| 精品久久久精品久久久| 亚洲成人免费av在线播放| 久久久精品国产亚洲av高清涩受| 久久人人爽人人片av| 国产精品九九99| 99热网站在线观看| 侵犯人妻中文字幕一二三四区| av有码第一页| 18禁黄网站禁片午夜丰满| 亚洲国产成人一精品久久久| 午夜福利在线观看吧| 国产99久久九九免费精品| 91精品三级在线观看| 美女扒开内裤让男人捅视频| 亚洲精品一区蜜桃| 日韩中文字幕视频在线看片| 久久久久久久国产电影| 在线观看免费日韩欧美大片| 婷婷色av中文字幕| 在线看a的网站| 窝窝影院91人妻| av有码第一页| 丰满迷人的少妇在线观看| av天堂在线播放| 电影成人av| 高清欧美精品videossex| 日本精品一区二区三区蜜桃| 天堂8中文在线网| 80岁老熟妇乱子伦牲交| 亚洲成国产人片在线观看| av在线老鸭窝| 中文字幕人妻熟女乱码| 91九色精品人成在线观看| 午夜两性在线视频| 欧美日韩视频精品一区| 王馨瑶露胸无遮挡在线观看| 少妇精品久久久久久久| 热99re8久久精品国产| 97在线人人人人妻| 后天国语完整版免费观看| 亚洲国产精品成人久久小说| 麻豆av在线久日| 欧美性长视频在线观看| 成人亚洲精品一区在线观看| 亚洲专区字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产又爽黄色视频| 大片免费播放器 马上看| 国产精品一二三区在线看| 18禁国产床啪视频网站| 成年美女黄网站色视频大全免费| 国产99久久九九免费精品| 婷婷成人精品国产| 最近最新中文字幕大全免费视频| 大片电影免费在线观看免费| 久久久久久久国产电影| 免费观看人在逋| 国产激情久久老熟女| 国产精品熟女久久久久浪| 啦啦啦免费观看视频1| 亚洲av欧美aⅴ国产| 日本av手机在线免费观看| 精品人妻1区二区| 日韩视频一区二区在线观看| 国产亚洲欧美精品永久| 老熟女久久久| 一级片免费观看大全| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影 | 久热爱精品视频在线9| 99久久综合免费| 嫩草影视91久久| 亚洲九九香蕉| svipshipincom国产片| 悠悠久久av| 999精品在线视频| 免费少妇av软件| 精品人妻熟女毛片av久久网站| 人人妻,人人澡人人爽秒播| 亚洲成人免费电影在线观看| 久久久久国产精品人妻一区二区| 自线自在国产av| 亚洲第一av免费看| 热99久久久久精品小说推荐| 美女脱内裤让男人舔精品视频| 久久精品亚洲av国产电影网| av又黄又爽大尺度在线免费看| 18在线观看网站| 欧美另类亚洲清纯唯美| 亚洲精品久久午夜乱码| 欧美乱码精品一区二区三区| 12—13女人毛片做爰片一| 一区二区日韩欧美中文字幕| 亚洲av日韩精品久久久久久密| 久久99一区二区三区| 多毛熟女@视频| 国产精品熟女久久久久浪| 乱人伦中国视频| 成在线人永久免费视频| 久久这里只有精品19| 亚洲精品乱久久久久久| 一级毛片电影观看| 午夜免费鲁丝| 亚洲精品久久成人aⅴ小说| 又大又爽又粗| 日韩中文字幕视频在线看片| 丰满少妇做爰视频| 岛国毛片在线播放| 精品欧美一区二区三区在线| 亚洲专区国产一区二区| 两个人免费观看高清视频| 制服诱惑二区| 亚洲国产欧美网| 下体分泌物呈黄色| 国产真人三级小视频在线观看| 国产欧美日韩一区二区精品| av天堂久久9| 18禁观看日本| 中文字幕另类日韩欧美亚洲嫩草| 精品国产一区二区久久| 韩国高清视频一区二区三区| 黄色视频不卡| 777米奇影视久久| 另类精品久久| 国产欧美亚洲国产| 18禁裸乳无遮挡动漫免费视频| 美女国产高潮福利片在线看| 好男人电影高清在线观看| 男人操女人黄网站| 热99国产精品久久久久久7| 人妻 亚洲 视频| 国产有黄有色有爽视频| 人人妻人人澡人人看| 国产精品一二三区在线看| 亚洲人成77777在线视频| 亚洲欧洲日产国产| 久久久久久久大尺度免费视频| 日韩熟女老妇一区二区性免费视频| 最新在线观看一区二区三区| 国产精品免费视频内射| 国产精品久久久人人做人人爽| 国产黄频视频在线观看| 国产精品一区二区在线不卡| 亚洲精品一区蜜桃| 亚洲精品中文字幕一二三四区 | 高清在线国产一区| 国产精品一区二区精品视频观看| 国产主播在线观看一区二区| 亚洲av国产av综合av卡| 亚洲精品国产av蜜桃| 大陆偷拍与自拍| 人妻久久中文字幕网| 亚洲午夜精品一区,二区,三区| tube8黄色片| 亚洲九九香蕉| 国产av国产精品国产| 亚洲精品一区蜜桃| 免费在线观看黄色视频的| 动漫黄色视频在线观看| 亚洲国产欧美一区二区综合| 99九九在线精品视频| 一个人免费在线观看的高清视频 | 少妇 在线观看| 大型av网站在线播放| 91九色精品人成在线观看| 久久久久精品人妻al黑| 男女国产视频网站| 久久久久久久大尺度免费视频| 啪啪无遮挡十八禁网站| 少妇猛男粗大的猛烈进出视频| 午夜福利视频在线观看免费| 99香蕉大伊视频| 在线观看www视频免费| 18在线观看网站| 久久国产精品人妻蜜桃| 亚洲少妇的诱惑av| 91国产中文字幕| 老司机影院成人| 国产一区二区三区在线臀色熟女 | 18禁观看日本| 久久久国产成人免费| 搡老熟女国产l中国老女人| 久久狼人影院| 青草久久国产| 搡老乐熟女国产| 麻豆乱淫一区二区| 午夜福利免费观看在线| 亚洲avbb在线观看| 麻豆乱淫一区二区| 国产成人精品无人区| 亚洲欧洲日产国产| 婷婷成人精品国产| 交换朋友夫妻互换小说| svipshipincom国产片| 一二三四在线观看免费中文在| 热99久久久久精品小说推荐| 午夜精品久久久久久毛片777| 精品国内亚洲2022精品成人 | 亚洲精品国产av成人精品| 精品国产一区二区三区四区第35| 国产成人影院久久av| 97精品久久久久久久久久精品| 欧美日韩中文字幕国产精品一区二区三区 | 18禁观看日本| 成年美女黄网站色视频大全免费| 免费av中文字幕在线| 秋霞在线观看毛片| 久久久水蜜桃国产精品网| 国产日韩一区二区三区精品不卡| 国产野战对白在线观看| 大香蕉久久成人网| 91精品国产国语对白视频| 91麻豆精品激情在线观看国产 | 亚洲欧美精品综合一区二区三区| 久久人妻熟女aⅴ| 黄色怎么调成土黄色| 欧美在线黄色| 国产精品免费大片| videos熟女内射| 最黄视频免费看| 99久久人妻综合| 亚洲色图 男人天堂 中文字幕| 色婷婷久久久亚洲欧美| 午夜福利在线观看吧| 99国产精品一区二区三区| 母亲3免费完整高清在线观看| 欧美乱码精品一区二区三区| 日韩欧美免费精品| 久久99热这里只频精品6学生| 欧美精品高潮呻吟av久久|