• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Indirect robust control of agile missile via Theta-D technique

    2014-02-14 09:23:34DiZHOUQuanLI
    Defence Technology 2014年3期

    Di ZHOU*,Quan LI

    School of Astronautics,Harbin Institute of Technology,Harbin 15001,China

    Indirect robust control of agile missile via Theta-D technique

    Di ZHOU*,Quan LI

    School of Astronautics,Harbin Institute of Technology,Harbin 15001,China

    An agile missile with tail fns and pulse thrusters has continuous and discontinuous control inputs.This brings certain diffculty to the autopilot design and stability analysis.Indirect robust control via Theta-D technique is employed to handle this problem.An acceleration tracking system is formulated based on the nonlinear dynamics of agile missile.Considering the dynamics of actuators,there is an error between actual input and computed input.A robust control problem is formed by treating the error as input uncertainty.The robust control is equivalent to a nonlinear quadratic optimal control of the nominal system with a modifed performance index including uncertainty bound.Theta-D technique is applied to solve the nonlinear optimal control problem to obtain the fnal control law.Numerical results show the effectiveness and robustness of the proposed strategy.

    Agile missile;Robust control;Optimal control;Theta-D technique

    1.Introduction

    To intercept highly maneuverable targets in the endoatmosphere,modern air defense missiles are required to defeat targets by direct body-to-body impact.However,the traditional tail-controlled missile cannot quickly respond to an acceleration command to achieve“hit-to-kill”at an altitude of 20 km above the earth's surface because the dynamic control effectiveness is weak.An approach to improve the agility of a missile is to utilize lateral thrust besides aerodynamic force. As shown in Fig.1,an agile missile is usually equipped with tail fns and pulse thrusters,so it is also called blended controlled missile.Forexample,the PatriotAdvanced Capability-3 missile is equipped with 4 steering fns at its tail and 180 attitude control motors(pulse thrusters)ahead of the center-of-gravity of the missile.

    Many control methods have been used to the autopilot design of agile missile[1-12].Some control methods[1-6], such as linear quadratic optimal control,singular perturbation analysis and quantized control allocation,were applied to autopilot designs based on linearized motion models of the missiles.Since the exact dynamics of a missile is nonlinear, the above researches are local and may be unreliable in a wide range of fight conditions.

    Some autopilots have been designed for blended controlled missiles based on nonlinear models[7-10].In Ref.[7],the zero dynamics of missile were analyzed,and a feedback linearization approach was employed to design an optimal controller for the missile.In Ref.[8],pitch and yaw motions were decoupled by feedback linearization,and RBF neural network sliding mode control was applied to design a controller.The lateral thrust was treated as a continuous variable[7,8].In Ref.[9],the predictive control was applied to design a lateral thrust control law,and the active disturbance rejection technique wasused in aerodynamic control. Although the pulse-like dynamics of pulse thrusters were considered in the simulation,the stability of the closed-loopsystem was not analyzed.In Ref.[10],the nonlinear model has been analyzed and simplifed,and then the sliding mode control was employed to design a controller for tracking an angle of attack command.The pulse-like property of lateral thrust was discussed only in the implementation of autopilot rather than in the stability analysis.

    Fig.1.Diagram of missile and coordinate system.

    In practice,a pulse thruster works in on-off mode with a fxed period.Therefore,the lateral thrust is a pulse-like variable and can be approximated by a zero-order holder.The aerodynamic force is a continuous variable.The mixed control inputs,continuous and discontinuous control inputs,bring a challenge to the autopilot design and stability analysis of agile missile control system.To handle this problem,two strategies have been proposed.In Ref.[11],a two-step strategy was proposed and the autopilot was designed by state-dependent Riccati equation(SDRE)approach.Based on the nonlinear modelofagilemissile,acontinuousSDRE feedback was translated into a nonlinear quadratic optimal control problem,and the performance index was modifed with uncertainty bound.SDRE approach is applied to solve the problem to obtain a continuous feedback controller.However, to track the acceleration command quickly enough,the fn defections usually reach their upper or lower limits in the simulation.

    In this paper,the indirect robust control strategy is integrated with Theta-D technique[13,14]to solve the problem. Theta-D solution to the Hamilton-Jacobi-Bellman(HJB) equation is obtained by adding some small perturbations to the performance index and using the power series expansion to the co-state.A closed-form solution is obtained by taking fnite terms in the series expansion.Design fexibility is brought from the parameters in the additional perturbations, and an appropriate tracking accuracy can be achieved easily. The saturation of fn defections can be avoided by the free split of the state weighted matrix in the performance index.

    2.Nonlinear model of agile missile

    We consider an axisymmetric skid-to-turn missile in its terminal guidance process.The roll rate and roll angle are both assumed zero.

    The nonlinear dynamics of the agile missile[11]in pitch and yaw planes is given in terms of angle of attack α,sideslip angle β,yaw rate ωy,and pitch rate ωzas controller was designed.Accounting for the pulse-like lateral thrust,the nonlinear tolerance of the feedback system was analyzed when the control cannot be implemented ideally. Some suffcient conditions were given to guarantee the asymptotic stability of the closed-loop system.

    In Ref.[12],an indirect robust control strategy via SDRE approach was presented for the missile.It was supposed that there exists a continuous feedback controller for the acceleration tracking problem.There were errors between actual inputs from actuators and computed inputs from the controller. A virtual robust control problem was formed by treating the errors as input uncertainties.Then,the robust control problem where δyand δzare the defections of rudder and elevator, respectively;nyand nzare the equivalent ignition numbers of pulse thrusters in the pitch and yaw planes,respectively;m,V, S and L are the mass,velocity,reference area and reference length of the missile,respectively;Jyand Jzare the moments of inertia of the missile;q is the aerodynamic pressure;Cx,cα, cβ,cδy,cδz,mα,mβ,mδy,mδz,mωyand mωzare aerodynamic coeffcients;d is the moment arm of the lateral thrust;T0is the equivalent thrust produced by one thruster.

    Eq.(1)can be rewritten as

    where the states and control inputs are defned as

    Eq.(2)can be translated into a linear-like structure with state-dependent coeffcient matrices

    where

    and

    where a1,a2,…a8andare dynamic coeffcients. They are defned as

    The pitch and yaw accelerations are chosen as the outputs of the system,i.e.,y=[ayaz]T,and the output equation is given by

    where

    3.Nonlinear tracking system

    The acceleration commands are produced by the following reference system:

    where z is the reference state;and yris the reference output. Here,we assume that F(z)is continuously differentiable and point-wise stabilizable,and the pair(F(z),H(z))is point-wise observable.

    A cost function of tracking performance is given by

    where Q and R are constant weighting matrices,and both are positive defnite.

    Taking the reference system into account,the performance index Eq.(11)is translated into

    where

    Corresponding to the performance index Eq.(12),the nonlinear state equation is written as

    where

    Now,the nonlinear optimal tracking problem described by Eqs.(1)-(11)has been converted into an optimal state regulator problem described by Eq.(12)and Eq.(13).

    In practice,all of the computed inputs u,fn defections and ignition numbers of pulse thrusters,are sent to the actuators, and then the control forces,i.e.,aerodynamic force and lateral thrust,are produced.The control forces are proportional to the actual fn defections or ignition numbers.The actual fn defections and ignition numbers are defned as actual inputs Φ(u).They can be treated as the perturbations of the computed inputs.Their error is defned as input uncertainty,i.e.,

    Taking the input uncertainty Δu into account,Eq.(13) should be modifed as

    Obviously,the input uncertainty is a matched uncertainty.

    4.Bound of input uncertainty

    The control law is designed as the following continuous feedback form:

    The input uncertainty is assumed to satisfy the following inequality:

    The dynamics of fns are modeled as second-order systems. The actual output of a fn actuator is zero when the command is less than a given value due to the existence of dead zone. When the absolute value of a computed fn defection is smaller than 0.2 deg,the actual defection is 0.

    The pulse thrusters are modeled as zero-order holders with a sampling period of 25 ms.When the absolute value of the ignition number is less than a threshold,the actual ignition number is 0.

    Therefore,the actual input and the input uncertainty are zero when the augmented stateis driven to the origin,i.e., the equilibrium point of the nonlinear system Eq.(15).

    5.The equivalence of robust control and optimal control

    Consider the following two problems.

    (A)Robust control problem

    (B)Optimal control problem

    For the system Eq.(15)with input uncertainty,its nominal system is

    It is to ?fnd a feedback controrrespondingfollowing performance index is minimized. where λmax(R)denotes the maximum eigenvalue ofR;and γ is a small positive scalar.

    According to Ref.[15],a robust control problem can be solved indirectly by translating it into a quadratic optimal control problem.For the matched uncertainty,when the weighting coeffcients in performance index are positive constants,it is also a solution to the robust control problem if there exists a solution to the optimal control problem.

    This conclusion can be extended to more complex situations,in which the weighting coeffcients are constant or statedependent coeffcient matrices.Then the problem proposed in this research can be handled.

    Theorem.If there exists a solution to the optimal control problem(B),then it is a solution to the robust control problem(A).

    Proof:Assume that~uois a solution to the optimal problem (B).A new weighting matrix is defned as

    where I represents an identity matrix.The minimum cost of the optimal control of the nominal system is defned as

    which satisfes the following HJB equation:

    A necessary condition for the optimal control is

    Substituting Eq.(20)and Eq.(25)into Eq.(24)yields

    It follows from the inequality(17)and Eq.(26)that

    6.Nonlinear optimal control solution

    Theta-D technique is used to solve the nonlinear optimal control problem(B).By adding perturbations to the performance index Eq.(19),it becomes.

    where Q0+Q1(x)=Q0=andx0denotes the initial states.In Eq.(28),θ is a scalar variable,Diare the perturbations.θ and Diare chosen such that Q0+Q1(x)+is positive defnite.

    With Eq.(23)and Eq.(28),the HJB Eq.(22)becomes

    The optimal control is given by

    Substituting Eq.(32)into Eq.(30)and letting the coeffcients of powers of θ be zero produces the following equations:

    and in general,

    where Tidenotes Ti(x,θ)for simplicity.

    The perturbation Di(i=1,2…,n)is constructed as

    where

    where m is the dimension of the statekia,lia(a=1,2,…m) are positive scalars;and diag{*}represents a diagonal matrix.

    Eq.(33)is an algebra Riccati equation.The solution of Eq. (33)is a constant matrix T0.Eqs.(34)-(36)are Lyapunov equations which are linear in Ti.The Lyapunov equations with constant coeffcient matrix A0-have analytical solutions.After obtaining T0,the solutions Ti(i=1,2…,n)of Lyapunov equations can be obtained successively.

    During the above construction,θ is just an intermediate variable and can be canceled when θiis multiplied by Tiin the calculations of fnal control.Its value can be kept as 0.1.

    In practice,by taking the frst three terms in the power series expansion(32),a theta-D control is obtained as

    7.Simulation

    7.1.Simulation setup

    Numerical results are obtained using a six degree-offreedom skid-to-turn missile model.The missile is fying at the altitude of 22 km with a speed of 1100 m/s.The dynamic coeffcients are given as follows:

    The values of the coeffcients a2,a4(a′2,a′4)are obtained when the angle of attack(sideslip angle)are small.However, they gradually increase to two times their values above with α(β)increasing to|α|max=30 deg(|β|max=30 deg).

    The dynamics of tail fns,accelerators and gyroscopes are modeled as second-order systems.The fn defection limit is 30 deg and the defection rate limit is 300 deg/s. The dead zone features of fn actuators are added into the models.The dynamics of pulse thruster is modeled as a zero-orderholder.The maximum ignition numberis limited to 10.

    The initial states are given as x0=[0.05/57.3 -0.05/ 57.3 0 0]T.The performance of the designed autopilot is demonstrated by tracking step acceleration commands,which are approximately generated by the reference system.The initial state vector of the reference system is chosen as z0=[1 1]Tand the state matrix is selected as

    where λ=1×10-6,and the output matrix is chosen as

    where aycand azcdenote the desired acceleration commands and are both set to be 100 m/s2.

    The weighting matrices in the tracking performance index are chosen as

    The scalar γ in the modifed performance index is set to be 0.001.

    According to the previous research,the positive function)in the bound of input uncertainty is chosen as a constant, i.e.,=0.75.

    The terms Λi(t)in the perturbations are given as

    Fig.2.Pitch motion in the theta-D control.

    Fig.3.Yaw motion in the theta-D control.

    Fig.4.Pitch motion in the SDRE control.

    Fig.5.Yaw motion in the SDRE control.

    7.2.Simulation results and analysis

    The pitch and yaw motions are shown in Fig.2 and Fig.3, respectively.The motions are similar in the two planes.The tracking response of the pitch and yaw accelerations are displayed in Fig.2(a)and Fig.3(a),respectively.The pitch acceleration crosses the command at 0.17 s for the frst time while the time is 0.2 s in the yaw acceleration,and both track the command well after 0.8 s.There is no non-minimum phase phenomenon in the acceleration tracking.The pitch(yaw) acceleration achieved 50%of the command during the frst pulse period due to the large lateral thrust produced by pulse thrusters.

    Although the dynamic coeffcients and weighting matrices in the pitch motion are the same as those in the yaw motion, the pitch acceleration response is faster.This is caused by the nonlinear coupling terms in Eq.(1).Meanwhile,as shown in Figs.2(b)and 3(b),the response of angle of attack is slightly faster than the response of sideslip angle.

    The actual fn defections are demonstrated in Figs.2(c)and 3(c).As can be seen in the fgures,both the rudder and elevator defections do not reach their angle limits.

    The ignition numbers of pulse thrusters in the two planes are shown in Figs.2(d)and 3(d).It can be seen that the maximum ignition number is 3,appearing in the frst pulse period.The ignition number brings large lateral thrust,which makes main contribution to the acceleration tracking.Since the aerodynamic forces produced by the fn defections and attitude angles are small at this time,the lateral thrust gives the major part of the acceleration of agile missile.

    We applied indirect robust control strategy via SDRE control to design a missile autopilot in Ref.[12].The simulation results of the previous work are redrawn in Figs. 4 and 5.However,the weighting matrices are different from those in this paper to obtain a desired response.If the weighting matrices Eq.(43)and Eq.(44)are used in SDRE control,the acceleration commands can't be tracked within 2 s.

    Compared with the results of theta-D control,the responses of the attitude angles are slower,the overshoots of the acceleration responses are smaller,and the maximum ignition number is larger.There are signifcant differences in the fn defections.As shown in Figs.4(c)and 5(c),the rudder and elevator defections both reach their limits from 0.08 s to 0.18 s.While in Figs.2(c)and 3(c),there are no such saturations.Therefore,an advantage of the theta-D control is to avoid the saturations of the fn defections.The reason to avoid the saturations lies in the requirement of splitting the state weighted matrix)into two parts,one is constant matrix and the otheris a symbolic matrix.Wethe constant part as Q0=)and the rest part of)asThis split gives suitable calculation of T0,T1,T2and then the fnal control.Neither large fn defections nor ignition numbers appear in the solution.

    Fig.6.Pitch acceleration responses in different cases.

    The new strategy not only handles the two different inputs, but also processes some robustness to parameter uncertainty due to the infuence of jet interaction[4].The infuence of jet interaction is caused by the interaction of lateral thrust with free stream aerodynamics.It leads to the changes of the moment coeffcient a6and the force coeffcient a7of lateral thrust.Let their nominal values multiply some perturbed ratios to represent the changes.In the simulation,two pairs of the perturbed ratios(case 1:1.2,0.4)and(case 2:0.8,0.7)are investigated.The nominal pair(1,1)is marked as case 0. Applying the solution obtained in case 0 to the perturbed systems,we have tested the robustness of Theta-D solution. The tracking response of the pitch and yaw accelerations are demonstrated in Fig.6 and Fig.7,respectively.

    As can be seen from Figs.6 and 7,the acceleration commands are well tracked and the rising times in the two planes are both less than 0.2 s in all three cases.Since the force coeffcient of lateral thrust a7in case 1 or 2 is smaller than thatin case 0,the effectiveness of the lateral thrust in the output is weaker.Thus,the pitch(or yaw)acceleration doesn't achieve 50%of the command in case 1 or 2 during the frst pulse period.

    Fig.7.Yaw acceleration responses in different cases.

    8.Conclusions

    Indirect robust control strategy was used to design autopilot for an agile missile with tail fns and pulse thrusters.It handled the continuous and discontinuous control inputs simultaneously by constructing a robust control problem with input uncertainty.It was proved that the robust control is equivalent to a nonlinear optimal control with a modifed performance index including uncertainty bound.Theta-D approach was applied to solve the nonlinear optimal control problem to obtain a closed-form control law.Both stabilization and suboptimal tracking performance can be achieved.The numerical results have demonstrated the robust tracking performance even under parameter uncertainties due to the infuence of jet interaction.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China(61174203)and Aeronautical Science Foundation of China(20110177002).

    [1]Xing LD,Zhang KN,Chen WC,Yin XL.Optimal control and output feedback considerations for missile with blended aero-fn and lateral impulsive thrust.Chin J Aeronautics 2010;23(4):401-8.

    [2]Xu ML,Liu LH,Tang GJ,Zhu LK.Research on attitude control of kinetic energy interceptor under blended operation of lateral thrust and aerodynamic force.J Natl Univ Def Technol 2010;32(4):30-6[in Chinese].

    [3]Qi NM,Li YQ,Yang Y,Gao JZ.Application of singular perturbation analysisin dualcontrol system design.JHarbin InstTechnol 2012;44(5):20-4[in Chinese].

    [4]Wise KA,Broy DJ.Agile missile dynamics and control.J Guid Control Dyn 1998;21(3):441-9.

    [5]Ridgely DB,Lee Y,Fanciullo T.Dual aero/propulsive missile controloptimal control and control allocation.In:AIAA guidance,navigation, and control conference and exhibit;2006.

    [6]Doman DB,Gamble BJ,Ngo AD.Quantized control allocation of reaction control jets and aerodynamic control surface.J Guid Control,Dyn 2009;32(1):13-24.

    [7]Zhou D,Shao CT.Dynamics and autopilot design for endoatmospheric interceptors with dual control systems. Aerosp Sci Technol 2009;13(6):291-300.

    [8]Hou MY,Xie ZH,Fan HL.Control law design and simulation for high maneuveringair-to-airmissile with compound control.JBallist 2011;23(4):22-6[in Chinese].

    [9]Yang BQ,Ma J,Yao Y,Cao XB.Blended control method with lateral thrust and aerodynamic force based on predictive control.J Syst Sci Math Sci 2010;30(6):816-26[in Chinese].

    [10]Ma KM,Zhao H,Zhang DC.Control design and implementation for missiles with blended lateral jets and aerodynamic control systems.J Astronautics 2011;32(2):310-6[in Chinese].

    [11]Li Q,Zhou D.Design of autopilot for a blended controlled missile via state-dependent riccati equation.Syst Eng Electron 2012;34(7):1445-51 [in Chinese].

    [12]Li Q,Zhou D.Indirect robust control of interceptors with tail fns and pulse thrusters.In:Proceedings of IEEE International Conference on Information and Automation;2013.p.213-8.

    [13]Xin M,Balakrishnan SN.A new method for suboptimal control of a class of non-linear systems.Optim Control Appl Methods 2005;26(2):55-83.

    [14]Xin M,Balakrishnan SN.Nonlinear H∞missile longitudinal autopilot design with θ-D method.IEEE Trans Aerosp Electron Syst 2008;44(1):41-56.

    [15]Lin F.Robust control design:an optimal control approach.Hoboken: John Wiley&Sons Ltd;2007.

    [16]Meyer CD.Matrix analysis and applied linear algebra.Cambridge: Cambridge University Press;2000.

    Received 10 October 2013;revised 23 April 2014;accepted 20 June 2014 Available online 22 July 2014

    *Corresponding author.

    E-mail address:zhoud@hit.edu.cn(D.ZHOU).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2014.06.009

    2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    桃色一区二区三区在线观看| 在线观看一区二区三区激情| 另类亚洲欧美激情| 亚洲人成77777在线视频| 高清黄色对白视频在线免费看| 欧美日韩一级在线毛片| 国内久久婷婷六月综合欲色啪| 日韩免费高清中文字幕av| 精品电影一区二区在线| 色综合站精品国产| 国产精品秋霞免费鲁丝片| 精品一区二区三区av网在线观看| 一区二区三区激情视频| 国产精品国产av在线观看| 亚洲七黄色美女视频| 国产亚洲欧美98| 男男h啪啪无遮挡| 老司机靠b影院| 美女高潮喷水抽搐中文字幕| 久久久久国内视频| 亚洲第一青青草原| 大香蕉久久成人网| 看免费av毛片| 韩国精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 婷婷丁香在线五月| 亚洲欧美日韩高清在线视频| 97超级碰碰碰精品色视频在线观看| 免费看a级黄色片| ponron亚洲| 老司机亚洲免费影院| 一二三四在线观看免费中文在| 不卡一级毛片| 精品人妻1区二区| 男女下面进入的视频免费午夜 | 欧美日韩福利视频一区二区| 成人国语在线视频| 黑人猛操日本美女一级片| 怎么达到女性高潮| 一区二区三区国产精品乱码| 又黄又爽又免费观看的视频| 丰满饥渴人妻一区二区三| 波多野结衣高清无吗| 女人爽到高潮嗷嗷叫在线视频| av网站在线播放免费| 午夜精品在线福利| 午夜福利欧美成人| 91麻豆精品激情在线观看国产 | 国产精品久久电影中文字幕| 亚洲欧美激情综合另类| 中文字幕色久视频| 成熟少妇高潮喷水视频| 老司机福利观看| 色综合欧美亚洲国产小说| 欧美一级毛片孕妇| 欧美一级毛片孕妇| 精品第一国产精品| 午夜91福利影院| 在线观看免费视频日本深夜| 日韩免费av在线播放| 国产一区在线观看成人免费| 欧美午夜高清在线| 亚洲人成77777在线视频| 在线看a的网站| 成人手机av| x7x7x7水蜜桃| 国产高清videossex| 亚洲 欧美一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品av麻豆狂野| 欧美成人午夜精品| 日本 av在线| 亚洲性夜色夜夜综合| 亚洲人成电影观看| 99香蕉大伊视频| 村上凉子中文字幕在线| 日韩 欧美 亚洲 中文字幕| 少妇被粗大的猛进出69影院| 亚洲精品粉嫩美女一区| 国产片内射在线| 99re在线观看精品视频| 亚洲熟妇中文字幕五十中出 | avwww免费| 久久久久久久午夜电影 | 最好的美女福利视频网| av在线天堂中文字幕 | 亚洲一区二区三区色噜噜 | 夫妻午夜视频| 日韩中文字幕欧美一区二区| 亚洲精品美女久久av网站| 99riav亚洲国产免费| www.熟女人妻精品国产| 国产99白浆流出| 在线免费观看的www视频| 高清毛片免费观看视频网站 | 精品一区二区三卡| 国产精品久久视频播放| xxx96com| 亚洲 国产 在线| 视频区欧美日本亚洲| 中文字幕av电影在线播放| 久热爱精品视频在线9| 午夜福利欧美成人| 国产精华一区二区三区| 真人做人爱边吃奶动态| 色在线成人网| 国产精品 国内视频| www.精华液| 老熟妇乱子伦视频在线观看| 久久精品国产清高在天天线| 一级作爱视频免费观看| 国产亚洲精品一区二区www| 亚洲精品一区av在线观看| 国产av精品麻豆| 国产97色在线日韩免费| 一级a爱视频在线免费观看| 亚洲视频免费观看视频| 国产熟女午夜一区二区三区| 精品国产国语对白av| 精品人妻1区二区| 免费观看人在逋| 国产单亲对白刺激| 久久香蕉精品热| 天堂动漫精品| 桃色一区二区三区在线观看| 九色亚洲精品在线播放| 国产精品二区激情视频| 97超级碰碰碰精品色视频在线观看| 一本综合久久免费| 精品久久久久久成人av| 麻豆一二三区av精品| 12—13女人毛片做爰片一| 欧美激情极品国产一区二区三区| 日韩一卡2卡3卡4卡2021年| 欧美日韩国产mv在线观看视频| 国产av在哪里看| 麻豆成人av在线观看| 91麻豆精品激情在线观看国产 | 麻豆久久精品国产亚洲av | 亚洲va日本ⅴa欧美va伊人久久| 亚洲第一av免费看| 成年人黄色毛片网站| 中文字幕av电影在线播放| 神马国产精品三级电影在线观看 | 亚洲欧美精品综合一区二区三区| 天堂√8在线中文| 久久久精品国产亚洲av高清涩受| a级毛片黄视频| 80岁老熟妇乱子伦牲交| bbb黄色大片| 搡老熟女国产l中国老女人| 国产在线观看jvid| 在线观看免费日韩欧美大片| 欧美久久黑人一区二区| 久久这里只有精品19| av免费在线观看网站| 国产精品永久免费网站| av福利片在线| 日韩欧美免费精品| 亚洲精品粉嫩美女一区| 免费在线观看完整版高清| 麻豆久久精品国产亚洲av | 欧美精品亚洲一区二区| 亚洲国产精品999在线| 天堂中文最新版在线下载| 91字幕亚洲| 久久香蕉激情| 久久久久久亚洲精品国产蜜桃av| 久久草成人影院| 91大片在线观看| 国产激情欧美一区二区| 国产亚洲av高清不卡| 日本欧美视频一区| 一区二区三区精品91| 免费一级毛片在线播放高清视频 | 国产高清激情床上av| 欧美成狂野欧美在线观看| 99久久99久久久精品蜜桃| 在线观看免费视频网站a站| 成年人黄色毛片网站| 91九色精品人成在线观看| 欧美在线黄色| 热99re8久久精品国产| 欧美性长视频在线观看| 亚洲精品国产精品久久久不卡| 久久久久久亚洲精品国产蜜桃av| 国产无遮挡羞羞视频在线观看| av在线天堂中文字幕 | 亚洲国产精品999在线| 在线观看午夜福利视频| 国产免费男女视频| 啦啦啦 在线观看视频| 久久久久国产一级毛片高清牌| 天堂俺去俺来也www色官网| 久久久久久久午夜电影 | 亚洲久久久国产精品| 欧美丝袜亚洲另类 | 丰满的人妻完整版| 操美女的视频在线观看| 久久婷婷成人综合色麻豆| 国内毛片毛片毛片毛片毛片| 国产成人av激情在线播放| 村上凉子中文字幕在线| 99香蕉大伊视频| 免费日韩欧美在线观看| 琪琪午夜伦伦电影理论片6080| 91麻豆av在线| 国产精品影院久久| 国产欧美日韩一区二区精品| 一二三四在线观看免费中文在| av有码第一页| 国产在线精品亚洲第一网站| 在线观看免费视频网站a站| 久99久视频精品免费| 亚洲一区中文字幕在线| 淫秽高清视频在线观看| 欧美大码av| 女人高潮潮喷娇喘18禁视频| 一级作爱视频免费观看| 国产亚洲av高清不卡| 99国产综合亚洲精品| 91大片在线观看| 国产亚洲精品第一综合不卡| 中文字幕人妻熟女乱码| 精品少妇一区二区三区视频日本电影| 91av网站免费观看| 男男h啪啪无遮挡| 少妇被粗大的猛进出69影院| 大码成人一级视频| 日韩欧美国产一区二区入口| 久久九九热精品免费| 老司机深夜福利视频在线观看| 天堂动漫精品| 成人影院久久| 一区福利在线观看| 最新在线观看一区二区三区| 日韩免费av在线播放| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| 精品国产美女av久久久久小说| 精品久久久久久电影网| 又紧又爽又黄一区二区| 国产一区二区三区在线臀色熟女 | a级片在线免费高清观看视频| 97超级碰碰碰精品色视频在线观看| 夜夜看夜夜爽夜夜摸 | 日日夜夜操网爽| 欧美黑人精品巨大| 亚洲第一欧美日韩一区二区三区| 久久欧美精品欧美久久欧美| 波多野结衣一区麻豆| a级毛片黄视频| 90打野战视频偷拍视频| 99精品在免费线老司机午夜| 午夜福利,免费看| 色综合欧美亚洲国产小说| 日本免费一区二区三区高清不卡 | 三上悠亚av全集在线观看| 亚洲精品中文字幕在线视频| 两个人免费观看高清视频| 午夜亚洲福利在线播放| 色综合欧美亚洲国产小说| 一二三四在线观看免费中文在| 午夜a级毛片| 国产精品久久视频播放| 最新美女视频免费是黄的| 老汉色∧v一级毛片| 亚洲av美国av| 99热国产这里只有精品6| 久久 成人 亚洲| 亚洲少妇的诱惑av| 性色av乱码一区二区三区2| 欧美黄色淫秽网站| 女人爽到高潮嗷嗷叫在线视频| 99国产极品粉嫩在线观看| 天堂中文最新版在线下载| 性少妇av在线| 欧美日韩av久久| 日韩 欧美 亚洲 中文字幕| av超薄肉色丝袜交足视频| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 午夜免费观看网址| 成年人黄色毛片网站| 色综合婷婷激情| 村上凉子中文字幕在线| 欧美成人性av电影在线观看| 一级片'在线观看视频| 侵犯人妻中文字幕一二三四区| 国产免费av片在线观看野外av| 免费观看人在逋| 大香蕉久久成人网| 母亲3免费完整高清在线观看| 国产区一区二久久| 丝袜美足系列| 999久久久国产精品视频| 天天添夜夜摸| 少妇的丰满在线观看| 不卡av一区二区三区| av天堂在线播放| 视频区欧美日本亚洲| 国产激情久久老熟女| 精品少妇一区二区三区视频日本电影| 免费av毛片视频| 中文欧美无线码| 亚洲av片天天在线观看| 国产精品香港三级国产av潘金莲| 麻豆av在线久日| 精品一区二区三区av网在线观看| 午夜精品国产一区二区电影| 国产精品av久久久久免费| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲色图av天堂| 久久亚洲精品不卡| 亚洲人成电影观看| 精品高清国产在线一区| 精品人妻在线不人妻| 成人手机av| 水蜜桃什么品种好| 亚洲黑人精品在线| 欧美日韩瑟瑟在线播放| 99国产精品一区二区蜜桃av| a级毛片黄视频| 亚洲七黄色美女视频| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 黄色a级毛片大全视频| 少妇被粗大的猛进出69影院| 国产精品 欧美亚洲| 久久国产精品男人的天堂亚洲| 久久这里只有精品19| 丰满饥渴人妻一区二区三| 免费看十八禁软件| 亚洲三区欧美一区| www.www免费av| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品一区二区三区在线| 国产精品国产高清国产av| 国产有黄有色有爽视频| 欧美人与性动交α欧美软件| 亚洲av第一区精品v没综合| 欧美乱码精品一区二区三区| 99精国产麻豆久久婷婷| 久久人妻av系列| 99久久人妻综合| 黑丝袜美女国产一区| 久久久久国产一级毛片高清牌| 久热爱精品视频在线9| 久久香蕉国产精品| 欧美另类亚洲清纯唯美| 欧美+亚洲+日韩+国产| 性色av乱码一区二区三区2| 黑人欧美特级aaaaaa片| 欧美日韩亚洲高清精品| 日韩欧美一区视频在线观看| 欧美精品一区二区免费开放| 最新美女视频免费是黄的| 97碰自拍视频| 母亲3免费完整高清在线观看| 一级毛片女人18水好多| 欧美日韩亚洲高清精品| 51午夜福利影视在线观看| 久久久久久久久免费视频了| 神马国产精品三级电影在线观看 | 51午夜福利影视在线观看| 首页视频小说图片口味搜索| 成人av一区二区三区在线看| 69av精品久久久久久| 可以在线观看毛片的网站| 人人妻,人人澡人人爽秒播| 香蕉丝袜av| 久久国产精品人妻蜜桃| 亚洲国产精品999在线| 一级作爱视频免费观看| 成年版毛片免费区| 免费在线观看完整版高清| 欧美黄色淫秽网站| 不卡av一区二区三区| 日韩欧美一区二区三区在线观看| 一级作爱视频免费观看| a级毛片黄视频| 欧美日韩中文字幕国产精品一区二区三区 | 美女国产高潮福利片在线看| 欧美午夜高清在线| 女警被强在线播放| 无限看片的www在线观看| 亚洲美女黄片视频| tocl精华| 国产免费男女视频| 在线免费观看的www视频| 性少妇av在线| 国产av在哪里看| 91成人精品电影| 国产精品国产高清国产av| 国产亚洲精品久久久久5区| 搡老熟女国产l中国老女人| 日韩欧美免费精品| 精品福利观看| 91国产中文字幕| 色哟哟哟哟哟哟| 在线观看免费午夜福利视频| 欧美+亚洲+日韩+国产| 日本撒尿小便嘘嘘汇集6| 涩涩av久久男人的天堂| 人妻久久中文字幕网| 两个人免费观看高清视频| 搡老乐熟女国产| 午夜福利,免费看| 免费在线观看日本一区| 天天添夜夜摸| 一边摸一边抽搐一进一出视频| 啪啪无遮挡十八禁网站| 久久精品91蜜桃| 99香蕉大伊视频| 黑人巨大精品欧美一区二区蜜桃| 可以免费在线观看a视频的电影网站| 国产不卡一卡二| 黄色丝袜av网址大全| 国产精品免费一区二区三区在线| 午夜免费鲁丝| 成在线人永久免费视频| 激情在线观看视频在线高清| 黄片大片在线免费观看| 日本免费一区二区三区高清不卡 | 欧美中文日本在线观看视频| 国产伦人伦偷精品视频| 国产精品免费视频内射| 国产精品成人在线| 97碰自拍视频| 成人三级做爰电影| 他把我摸到了高潮在线观看| 国产激情欧美一区二区| 精品国产乱码久久久久久男人| 亚洲一区中文字幕在线| 国产精华一区二区三区| 亚洲av成人不卡在线观看播放网| www国产在线视频色| 在线观看免费视频网站a站| 最新在线观看一区二区三区| 99久久人妻综合| 久久这里只有精品19| 男女午夜视频在线观看| aaaaa片日本免费| 老汉色∧v一级毛片| 精品国产一区二区久久| 国产又色又爽无遮挡免费看| 国产精品永久免费网站| 日韩三级视频一区二区三区| 国产在线精品亚洲第一网站| 免费av毛片视频| 少妇的丰满在线观看| 亚洲一区二区三区色噜噜 | 欧美+亚洲+日韩+国产| 国产欧美日韩精品亚洲av| 丰满人妻熟妇乱又伦精品不卡| 在线观看一区二区三区| 性欧美人与动物交配| 亚洲国产精品sss在线观看 | 不卡av一区二区三区| 亚洲七黄色美女视频| 色婷婷久久久亚洲欧美| 国产av精品麻豆| 91九色精品人成在线观看| 国产精品爽爽va在线观看网站 | 美女高潮到喷水免费观看| 精品一区二区三区av网在线观看| 亚洲视频免费观看视频| 国产精品一区二区在线不卡| avwww免费| 大码成人一级视频| 91成人精品电影| 高清毛片免费观看视频网站 | 啦啦啦在线免费观看视频4| 男女做爰动态图高潮gif福利片 | 超色免费av| 国产精品1区2区在线观看.| 色精品久久人妻99蜜桃| 精品福利观看| 啪啪无遮挡十八禁网站| 看黄色毛片网站| 成年人免费黄色播放视频| 黑人欧美特级aaaaaa片| 欧美黑人精品巨大| 免费不卡黄色视频| 亚洲精品国产区一区二| 男女下面插进去视频免费观看| 精品久久久精品久久久| 女性生殖器流出的白浆| 黄片播放在线免费| 十八禁网站免费在线| 麻豆一二三区av精品| 高清黄色对白视频在线免费看| 久久精品91蜜桃| 97超级碰碰碰精品色视频在线观看| 欧美黑人精品巨大| 高潮久久久久久久久久久不卡| 黄色视频,在线免费观看| 九色亚洲精品在线播放| 别揉我奶头~嗯~啊~动态视频| 男女午夜视频在线观看| 天堂影院成人在线观看| 色综合站精品国产| 国产精品99久久99久久久不卡| 99香蕉大伊视频| 日本欧美视频一区| 人人澡人人妻人| 欧美日韩亚洲综合一区二区三区_| 97人妻天天添夜夜摸| 精品熟女少妇八av免费久了| 久久狼人影院| 精品一区二区三区av网在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品亚洲一级av第二区| 亚洲人成伊人成综合网2020| 国产高清激情床上av| 中文字幕av电影在线播放| 久久人妻熟女aⅴ| 久久精品91蜜桃| aaaaa片日本免费| 国产欧美日韩一区二区三| 久久国产亚洲av麻豆专区| 免费人成视频x8x8入口观看| 免费在线观看影片大全网站| 成熟少妇高潮喷水视频| 91精品三级在线观看| 免费在线观看视频国产中文字幕亚洲| 丝袜人妻中文字幕| 涩涩av久久男人的天堂| av天堂久久9| 国产成人精品在线电影| 精品少妇一区二区三区视频日本电影| x7x7x7水蜜桃| 男女做爰动态图高潮gif福利片 | 色老头精品视频在线观看| 午夜精品在线福利| 久久久国产欧美日韩av| 国产日韩一区二区三区精品不卡| 露出奶头的视频| 亚洲精品成人av观看孕妇| 一级作爱视频免费观看| 在线观看免费视频网站a站| 亚洲精品久久午夜乱码| 亚洲aⅴ乱码一区二区在线播放 | 久久草成人影院| 亚洲av美国av| 无限看片的www在线观看| 欧美成狂野欧美在线观看| 无遮挡黄片免费观看| 黄色a级毛片大全视频| 中文字幕人妻丝袜制服| 国产一区二区三区视频了| 亚洲欧美精品综合久久99| 88av欧美| 高清欧美精品videossex| 制服诱惑二区| 在线观看一区二区三区| 日日摸夜夜添夜夜添小说| 久久久久久久久久久久大奶| 每晚都被弄得嗷嗷叫到高潮| av网站在线播放免费| 天堂√8在线中文| 日韩国内少妇激情av| 真人一进一出gif抽搐免费| 在线视频色国产色| 精品第一国产精品| 午夜亚洲福利在线播放| 99久久久亚洲精品蜜臀av| www国产在线视频色| 在线天堂中文资源库| 日韩精品中文字幕看吧| 亚洲色图 男人天堂 中文字幕| 在线观看一区二区三区激情| 99精品在免费线老司机午夜| 免费人成视频x8x8入口观看| 久久欧美精品欧美久久欧美| 成人影院久久| 欧美日韩乱码在线| 国产成人欧美| 人妻久久中文字幕网| 亚洲av日韩精品久久久久久密| 亚洲专区国产一区二区| 欧美丝袜亚洲另类 | 满18在线观看网站| 老熟妇仑乱视频hdxx| www.熟女人妻精品国产| 大陆偷拍与自拍| 丰满饥渴人妻一区二区三| 精品久久蜜臀av无| 国产一区二区激情短视频| 国产乱人伦免费视频| 国产区一区二久久| 人人妻人人爽人人添夜夜欢视频| 老司机亚洲免费影院| 午夜精品久久久久久毛片777| 午夜福利一区二区在线看| 亚洲欧美一区二区三区久久| 波多野结衣一区麻豆| 在线观看免费视频网站a站| 韩国av一区二区三区四区| 两性夫妻黄色片| 国产精品香港三级国产av潘金莲| netflix在线观看网站| a在线观看视频网站| 巨乳人妻的诱惑在线观看| 亚洲色图综合在线观看| 最近最新免费中文字幕在线| av天堂在线播放| 精品国内亚洲2022精品成人| av网站免费在线观看视频| 夜夜爽天天搞| 国产三级在线视频| xxx96com| 男女下面插进去视频免费观看| 午夜免费成人在线视频| 黄色a级毛片大全视频|