• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single channel source separation of radar fuze mixed signal based on phase difference analysis

    2014-02-14 09:23:43HngZHUShuningZHANGHuichngZHAO
    Defence Technology 2014年3期

    Hng ZHU,Shu-ning ZHANG*,Hui-chng ZHAO

    aSchool of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    bUnit 73015 of PLA,Huzhou 313000,China

    Single channel source separation of radar fuze mixed signal based on phase difference analysis

    Hang ZHUa,b,Shu-ning ZHANGa,*,Hui-chang ZHAOa

    aSchool of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    bUnit 73015 of PLA,Huzhou 313000,China

    A new method based on phase difference analysis is proposed for the single-channel mixed signal separation of single-channel radar fuze. This method is used to estimate the mixing coeffcients of de-noised signals through the cumulants of mixed signals,solve the candidate data set by the mixing coeffcients and signal analytical form,and resolve the problem of vector ambiguity by analyzing the phase differences.The signal separation is realized by exchanging data of the solutions.The waveform similarity coeffcients are calculated,and the time-frequency distributions of separated signals are analyzed.The results show that the proposed method is effective.

    Single channel source separation;Radar fuze signal;Phase difference analysis;Vector ambiguity

    1.Introduction

    The linear frequency modulation(LFM)and sinusoidal frequency modulation(SFM)signals,as non-stationary signals,become the most representative FM signals of radar fuze because of their good anti-jamming performance and low probability of intercept.Now many advanced radar fuze systems,such as the United States M734A1 and XXM733, German DM34,and Norway PPD440,use the FM radar fuze. In addition,the pseudo-random binary code and frequency modulation signal are also used in radar fuze system to obtain a better anti-intercept performance,such as the pseudorandom binary code and linearfrequency modulation (PRBC-LFM)signal,and the pseudo-random binary code and sinusoidal frequency modulation(PRBC-SFM)signal.Since the classical Fourier transform can't refect the frequency timevarying properties of non-stationary signal,the joint timefrequency analysis technique which can describe the relationship between signal frequency and time becomes an effective way to process such signals,such as Wigner-Ville distribution(WVD)and the smoothed pseudo Wigner-Ville distribution(SPWVD).

    In battlefeld environment,the channel resources are limited,so it is very possible to receive the multi-component radar fuze signals in single channel.Thus it is hard to get the good results by using the joint time-frequency analysis technique to analyze the multi-component signal because of the cross terms and the time-frequency plane intersections. Therefore the technology of separating multi-component signals in single channel is very necessary in this case.But for the single-channel radar fuze mixed signal with complex timefrequency distribution,an effective method is based on the modulation structure of radar fuze signal,which can extract the phase modulation information,then reconstruct the signals for separation.For example,the modulation information of multiple linear frequency modulation(LFM)signals is estimated by using maximum likelihood estimation method in Ref.[1];the fractional Fourier transform is used to detect themulti-component signal and extract the modulation information in Refs.[2,3];and the energy operator is used to estimate the modulation information of multi-component signal in Ref.[4].However,the above methods cannot effectively separate the single-channel mixture with different modulation types when the time-frequency distribution is complex.

    In this paper,a new method based on phase difference analysiswasproposed.Eventhoughthemultiplecrosspointsexistin the plane of time-frequency distribution and the component signalsaremodulatedindifferentmodulationtypes,themethod can also achieve good signal separation effect.

    2.Signal model

    2.1.Single channel mixed signal

    Let us consider a simple but popular model of singlechannel mixed signal.It has the following matrix form where Y∈R1×Tis the mixed signal observed at a receiving end;A∈R1×Nis the mixing vector;S∈RN×Trepresents N source signals;and Vis the Gaussian noise.Eq.(1)can also be rewritten as

    where y is a row vector,which represents the observed signal; siis also a row vector,which represents the ith source signal; and v is the Gaussian noise.According to the model,there is only one observed signal,called single-channel multiple component signal.Eq.(2)is an extremely underdetermined situation.

    2.2.Radar fuze mixed signal

    The signal mixed by radar fuze signals is considered here. Eq.(2)can be expressed as

    where y(t),si(t)and v(t)are the received mixed signal,the source signal and the Gaussian noise,respectively;and ai,Aiand θi(t)are the mixing coeffcient,the amplitude and phase of each source signal,respectively.We usually assume that the amplitude Aiis 1.

    Several kinds of radar fuze signals are considered in this paper,which have different phases.

    (1)LFM signal

    where fLFMis the carrier frequency;kLFMis the modulation rate;and φLFMis the initial phase.

    (2)SFM signal

    where fSFMis the carrier frequency;kSFMis the maximum modulated frequency deviation;ΩSFMis the modulation angular frequency;and φSFMis the initial phase.

    (3)PRBC-LFM signal

    (4)PRBC-SFM signal

    where P is the length of pseudo-random sequence;Tcis the width of pseudo-random code;and ciis 1 or-1.

    In Eq.(3),y(t)is the signal mixed by radar fuze signals when θi(t)is one of the four phase equations(4)-(7).Here we consider the case of N=2.

    3.Estimation method of mixing coeffcients

    For the separation of single-channel source,we can use the two-step method.The frst step is to estimate the mixing coeffcients,and the second step is to realize separation by mixing coeffcients.We should use the de-noising process with wavelet transformation introduced in Refs.[5,6]to cancel the Gaussian noise.According to Refs.[5,6],SNR of mixed signal should not worse than 9 dB,or the satisfactory results would be not got using the separating method in this paper.Themethod of estimating mixing coeffcients is mentioned in this section.

    Fig.1.Signals represented as vectors in complex coordinate.

    3.1.Probability distribution of radar fuze signal

    In Ref.[7],the probability distribution of CW radar fuze signal was derived to give the following result

    where A is the amplitude.

    The odd moments obtained by calculating the statistics of this probability distribution are all 0,and their even moments are represented as

    3.2.Estimating the mixing coeffcients by cumulants

    Cumulants can be calculated by the moments.The relations of the second-order,forth-order and sixth-order cumulants with the moments are

    The cumulants have the following properties

    (1)For scalar a,cumk(ax)=akcumk(x);

    (2)If x and y are statistically independent, then cumk(x+y)=cumk(x)+cumk(y).

    For a mixed signal y(t)=a1x1(t)+a2x2(t),the two components are statistically independent.It can be known from the two properties mentioned above that

    The mixing coeffcients can be obtained by solving Eq. (13).

    4.Separation method of mixed signal

    4.1.Structuring vectors with signal analytic form

    Since an analytic signal can be represented as a vector in the complex coordinate system,the mixed signal vectoris the synthesis of the vectors,)and,of two components at the discrete timen1,whereandare the unit vectors of two components,and a1and a2are the mixing coeffcients,as shown in Fig.1.If the vector of mixed signal and the mixing coeffcients(a1and a2)are known,the component signals can be got.

    Two intersections are gained by drawing a cycle with the radius a1at the origin of the coordinate plane and another cycle with the radius a2at the end point of the vector of mixed signal.The vectorsand)can be determined through any intersection,as shown in Fig.2.

    Because there are two intersections,another pair of vectors can be got while)and)are obtained,as indicated in Fig.2 by dotted lines.In fact,because of the two intersections,two pairs of vectors can be got at each time,butit is hard to decide which pair of vectors corresponds to the two components.

    Fig.2.Solving process of the components.

    Fig.3.Phase differences before normalization.

    Fig.4.Phase differences after phase processing.

    4.2.Resolving vector ambiguity by phase difference analysis

    Resolving the vector ambiguity is to determine which one of the two solutions,X(1)(n)and X(2)(n),is the real solution at each discrete time n.

    For two component signals,Xc1(1:N)and Xc2(1:N),the mixed signal, Y(1:N), and the phase differences, φ(Y(1:N))-φ(Xc1(1:N))and φ(Y(1:N))-φ(Xc2(1:N)),are calculated.The phase differences are shown in Fig.3.

    In Fig.3,the phase differences are ruleless,so a phase is necessarily normalized.The processing rule of phase is expressed as follows:

    a)Adding±2iπ(i=0,1,2,…)to the phases of components and mixed signal to make them all greater than 0;

    b)If the component signal is in the counterclockwise direction of the mixed signal in the complex coordinate system, its phase should be greater than the phase of mixed phase; Instead,if the component signal is in the clockwise direction of the mixed signal,its phase should be less than the phase of mixed signal.

    For example,the phases of component signals are 1.8π and 0.3π,and the phase of the vector of mixed signal is 0.1π.If 2π is added to 0.1π and 0.3π,respectively,then 0<1.8π<2.1π<2.3π.

    Fig.5.Phase relation at continuous zero-crossing point.

    Fig.6.Phase relation at extreme hopping zero-crossing point.

    Fig.7.Combination of real and extraneous solutions.

    It can be seen from Fig.4 that the curves of phase differences are regular,and there are the continuous and extreme hopping zero-crossing points.

    For the continuous zero-crossing point in Fig.4(a),from the discrete time n to time n+1,the phase differences change as follows

    This change is shown in Fig.5,where the extraneous solution is drawn by dotted lines.It is obvious that,at time n,the real solution is in the counterclockwise direction of mixed signal,and the extraneous solution is in the clockwise direction;but at time n+1,their positional relations have changed.

    For the extreme hopping zero-crossing point in Fig.4(b), from the discrete time n to time n+1,the phase differences change as follows

    Fig.8.Data exchange process.

    Fig.9.Phase differences between the vectors of mixed signal and solution.

    The change is shown in Fig.6,where the extraneous solution is also drawn by dotted lines.The positional relations of real solution and extraneous solution have changed from time n to time n+1,too,and the phase of mixed signal has changed nearly π.

    It can be found from Figs.5 and 6 that the positional relations of real solution and extraneous solution about mixed signal change before and after the zero-crossing points,so the X(1)(1:N)and X(2)(1:N)are actually the combinations of real and extraneous solutions,as shown in Fig.7.

    If the locations of all the zero-crossing points B={n1,n2…np}are known,then two sets of solutions can be obtained by exchanging data.The data exchange process is shown in Fig.8.

    The fnal solutions are represented as

    One of fnal solutions consists of all the real solutions from time 1 to time N,and the other consists of all the extraneous solutions.Commonly,the T-F(time-frequency)distribution of the array combined with all the real solutions is clearer than that of the array combined with all the extraneous solutions, which means that we can distinguish which of them is combined with all the real solutions by observing the T-F distribution.

    Fig.10.Phase hopping points of pseudo random code.

    The plots of the phase differences,(1∶N)),can be drawn to get the locations of all the zerocrossing points,as shown in Fig.9.

    It can be seen from Figs.5 and 6 that the common extreme points in Fig.9 correspond to all the zero-crossing points in Fig.4.Therefore,the locations of all the zero-crossing points B={n1,n2…np}can be got by fnding out the common extreme points in Fig.9.

    Fig.11.Issue 1:source and separated signals.

    Fig.12.Issue 1:time-frequency distribution after separation.

    In the case of component signal composited by pseudorandom code,the phase hopping points of pseudo random code sequence can also be found in the curves of phase differences.An example with phase hopping points of pseudo random code is shown in Fig.10.When the data is exchanged, except for the extreme points,these phase hopping points should be considered,too.

    5.Simulation and analysis

    In this section,the method proposed in this paper is used to realize the separation of two mixed signal.The following computational formula is used to calculate the similarity between two waveforms. where ρijis the value of similarity;yi(t)and sj(t)are two signals;E[·]is the expected value.

    If the value of similarity is close to 1,it means that the waveform is well recovered;instead,if the value is close to 0, it means that the signals are not similar at all.Eq.(24)can be used to calculate the similarities of separated and source signals.

    For the following two issues,the proposed method is used to separate the mixed signals,and the separation effect is measured by calculating the similarities.In issue 1,the mixed signal is mixed by an LFM signal and an SFM signal;in Issue 2,the mixed signal is mixed by a PRBC-LFM signal and an SFM signal.

    In Issue 1,the LFM and SFM signals are mixed in single channel.For LFM signal,the carrier frequency is 10 MHz,and the frequency modulation rate is 2.65×109Hz/s.For SFM signal,the carrier frequency is 9 MHz,the maximum frequency deviation is 8 MHz,and the modulation angular frequency is 40,000π Hz.The mixing coeffcients of LFM and SFM signals are 0.6 and 0.7,respectively,and their estimated mixing coeffcients are 0.5945 and 0.7187,respectively.The separation results are shown in Fig.11,the similarity coeffcients of separated and source signals are 0.9722 and 0.9552,respectively.Fig.12 shows the time-frequency distribution after separation.

    It can be seen from Fig.11 that the source signals are almost recovered from the separated signals,but the values of the separated signals are very different from the source signal at some points.These points make the similarity coeffcients not exactly be 1.It can be seen from Fig.12 that the distribution of separated signals meets the requirement of extracting all the modulation coeffcients.

    Fig.13.Issue 2:source and separated signals.

    Fig.14.Issue 2:time-frequency distribution after separation.

    In Issue 2,the PRBC-LFM and SFM signals are mixed in single channel.For PRBC-LFM signal which is composited by pseudo-random code and an LFM signal,the carrier frequency is 8 MHz,and the frequency modulation rate of LFM signal is 2.65×109Hz/s.For SFM signal,the carrier frequency is 13 MHz,and the other parameters are the same as Issue 1.The estimated mixing coeffcients of PRBC-LFM and SFM signals are 0.5642 and 0.7346,respectively.The separation results are shown in Fig.13.The similarity coeffcients of separated and source signals are 0.9175 and 0.9053,respectively.Fig.14 shows the time-frequency distribution after separation.

    It can be known from Fig.13 that the effect of separation is not better than that of Issue 1.That is because several crosspoints exist in the plane of time-frequency distribution.In Fig.14,the modulation coeffcients can be obtained from the distribution of separated signals,and the phase hopping points can be found from the distribution of PRBC-LFM signals.

    6.Conclusions

    A new method based on phase difference analysis was proposed for the single-channel mixed signal separation of single-channel radar fuze.This method was used to estimate the mixing coeffcients through the cumulants of the mixed signals,then the solutions of the component signals at all the time were obtained,and the separation was fnally realized by analyzing the phase differences between the vectors of mixed signal and solutions.The similarity coeffcients and the timefrequency distribution after separation were analyzed.The proposed method can be used to separate the mixed signal effectively,even in the situation that many crossing points exist in the plane of time-frequency distribution.

    [1]Lin Y,Peng YN,Wang XT.Maximum likelihood parameter estimation of multiple chirp signals by a new Markov chain Monte Carlo approach. IEEE Proc Radar Conf 2004:559-62.

    [2]Huang GM,Xiong G,Zhao HC,Wang LJ.Radio fuze signal reconnaissance based on fractional Fourier transform.J Electron Inf Technol 2004;27(3):431-3.

    [3]Li JQ,Jin RH,Geng JP,Fan Y,Mao W.Detection and estimation of multicomponent LFM signals based on Gauss short-time fractional Fourier transform.J Electron Inf Technol 2007;29(3):570-3.

    [4]Liu Y.A fast and accurate single frequency estimator synthetic approach. Acta Electron Sin 1999;27(6):126-8.

    [5]Xue W,Guan FH,Chen LZ,Sun XW.Radar signal de-noising based on a new wavelet thresholding functions.Comput Simul 2008;25(8):319-22.

    [6]Zhao S,Jiang HH,Zhang CL,Ke ZX.Radar signal denoising based on improved waveletthresholding functions.Ordnance Ind Autom 2011;30(7):1-3[in Chinese].

    [7]Cheng H.Study on separation and parameter estimation for multicomponent signals.Chengdu:University of Electronic Science and Technology of China;2011[in Chinese].

    Received 18 February 2014;revised 20 February 2014;accepted 21 March 2014Available online 31 July 2014

    *Corresponding author.

    E-mail address:a353eoenjust@163.com(S.N.ZHANG).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2014.07.006 2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    亚洲国产av新网站| 免费av中文字幕在线| 亚洲五月婷婷丁香| 黑丝袜美女国产一区| 大陆偷拍与自拍| 一进一出好大好爽视频| 欧美日本中文国产一区发布| 久久中文看片网| 女人久久www免费人成看片| 高清毛片免费观看视频网站 | 国产高清视频在线播放一区| 精品一区二区三区视频在线观看免费 | 欧美国产精品一级二级三级| 老司机福利观看| 在线播放国产精品三级| 可以免费在线观看a视频的电影网站| 91麻豆av在线| 99热网站在线观看| 免费在线观看黄色视频的| 成人国语在线视频| 老司机午夜福利在线观看视频 | 欧美国产精品va在线观看不卡| 又紧又爽又黄一区二区| 嫩草影视91久久| 天天影视国产精品| 少妇被粗大的猛进出69影院| av超薄肉色丝袜交足视频| 91精品三级在线观看| 欧美激情 高清一区二区三区| 亚洲精品国产精品久久久不卡| 99精品欧美一区二区三区四区| 一区二区日韩欧美中文字幕| 亚洲av电影在线进入| 一区在线观看完整版| 欧美精品av麻豆av| 亚洲自偷自拍图片 自拍| 欧美成人午夜精品| 中文字幕制服av| 在线亚洲精品国产二区图片欧美| 91字幕亚洲| 美女午夜性视频免费| 一二三四社区在线视频社区8| 午夜福利免费观看在线| 亚洲性夜色夜夜综合| 亚洲精品自拍成人| 丁香六月天网| 国产不卡一卡二| 久久久精品免费免费高清| 极品少妇高潮喷水抽搐| 十八禁高潮呻吟视频| 日韩免费av在线播放| 精品人妻1区二区| 亚洲伊人色综图| 老熟妇仑乱视频hdxx| 国产在线一区二区三区精| 日韩三级视频一区二区三区| 国产麻豆69| 少妇猛男粗大的猛烈进出视频| 午夜视频精品福利| 露出奶头的视频| 无人区码免费观看不卡 | 亚洲全国av大片| 人妻一区二区av| a在线观看视频网站| 在线播放国产精品三级| 国产成人欧美| 老司机影院毛片| 菩萨蛮人人尽说江南好唐韦庄| 色播在线永久视频| 免费看a级黄色片| 大陆偷拍与自拍| 国产一区有黄有色的免费视频| 国内毛片毛片毛片毛片毛片| av网站在线播放免费| 成年人午夜在线观看视频| 啦啦啦免费观看视频1| 女人久久www免费人成看片| 91成年电影在线观看| 午夜激情av网站| 亚洲专区国产一区二区| www.自偷自拍.com| 日韩三级视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 国产成人免费观看mmmm| www.精华液| 丝袜美足系列| 少妇 在线观看| 午夜福利欧美成人| 少妇裸体淫交视频免费看高清 | 一级毛片电影观看| 美女福利国产在线| 不卡一级毛片| 在线观看一区二区三区激情| 国产男女超爽视频在线观看| 99热国产这里只有精品6| 一级片'在线观看视频| 少妇猛男粗大的猛烈进出视频| 超碰成人久久| 国产1区2区3区精品| www.熟女人妻精品国产| 久久影院123| av网站免费在线观看视频| 国产精品偷伦视频观看了| 成人国产av品久久久| 伦理电影免费视频| 国产成人精品久久二区二区免费| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲综合一区二区三区_| 在线av久久热| 又紧又爽又黄一区二区| 午夜福利免费观看在线| 亚洲欧洲日产国产| 欧美 日韩 精品 国产| 美女高潮到喷水免费观看| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕精品免费在线观看视频| 欧美激情 高清一区二区三区| 欧美日韩视频精品一区| 国产在视频线精品| 91麻豆精品激情在线观看国产 | 亚洲国产精品一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费电影在线观看| 国产精品自产拍在线观看55亚洲 | 中文字幕人妻丝袜一区二区| 日本vs欧美在线观看视频| 亚洲欧美一区二区三区久久| 两性午夜刺激爽爽歪歪视频在线观看 | 蜜桃在线观看..| 丝袜人妻中文字幕| 色综合婷婷激情| 一个人免费看片子| 国产精品偷伦视频观看了| 日日爽夜夜爽网站| 亚洲国产看品久久| 美女主播在线视频| 国产精品国产高清国产av | 这个男人来自地球电影免费观看| 国产av国产精品国产| 男女午夜视频在线观看| 1024视频免费在线观看| 久久99热这里只频精品6学生| 国产深夜福利视频在线观看| 免费观看av网站的网址| 精品第一国产精品| 久久人人97超碰香蕉20202| 国产精品av久久久久免费| 色综合欧美亚洲国产小说| 在线观看免费视频日本深夜| 岛国毛片在线播放| 亚洲欧洲日产国产| 亚洲伊人色综图| 人成视频在线观看免费观看| 黄色毛片三级朝国网站| 午夜福利在线免费观看网站| 亚洲第一欧美日韩一区二区三区 | 日韩视频一区二区在线观看| 国产精品久久电影中文字幕 | 午夜免费成人在线视频| 久久精品成人免费网站| 女人爽到高潮嗷嗷叫在线视频| 国产真人三级小视频在线观看| 一边摸一边抽搐一进一小说 | 黑人巨大精品欧美一区二区蜜桃| 亚洲精华国产精华精| 亚洲欧美日韩高清在线视频 | 国产精品 欧美亚洲| 国产一区二区三区视频了| 午夜福利在线免费观看网站| 成人18禁高潮啪啪吃奶动态图| 中文字幕制服av| 18禁美女被吸乳视频| 黄色丝袜av网址大全| 亚洲中文字幕日韩| 天天影视国产精品| 国产av一区二区精品久久| 中文字幕高清在线视频| 又紧又爽又黄一区二区| 亚洲精品一二三| 亚洲精品自拍成人| 日本一区二区免费在线视频| 欧美精品啪啪一区二区三区| 女性被躁到高潮视频| 韩国精品一区二区三区| 日韩三级视频一区二区三区| 国产免费福利视频在线观看| 男女之事视频高清在线观看| 丝袜人妻中文字幕| 色综合欧美亚洲国产小说| 久久精品国产综合久久久| 一区二区三区激情视频| 久久精品国产亚洲av香蕉五月 | 老司机影院毛片| 日本av免费视频播放| 精品国产国语对白av| 两个人免费观看高清视频| 欧美日韩福利视频一区二区| 在线观看66精品国产| 五月开心婷婷网| 91麻豆av在线| av线在线观看网站| 在线观看免费日韩欧美大片| 亚洲va日本ⅴa欧美va伊人久久| 欧美黄色片欧美黄色片| 狂野欧美激情性xxxx| 一边摸一边做爽爽视频免费| 高清黄色对白视频在线免费看| 人人妻人人添人人爽欧美一区卜| 午夜福利乱码中文字幕| 夜夜夜夜夜久久久久| 久久国产精品影院| 男女之事视频高清在线观看| 色视频在线一区二区三区| 精品亚洲成国产av| 美女高潮到喷水免费观看| 十分钟在线观看高清视频www| 亚洲五月色婷婷综合| 国产精品自产拍在线观看55亚洲 | 变态另类成人亚洲欧美熟女 | 在线 av 中文字幕| 97在线人人人人妻| 国产一区二区激情短视频| 99riav亚洲国产免费| 777米奇影视久久| 一区二区三区乱码不卡18| 亚洲少妇的诱惑av| 俄罗斯特黄特色一大片| 99热网站在线观看| 精品久久久精品久久久| 欧美日韩精品网址| 亚洲国产中文字幕在线视频| 午夜日韩欧美国产| 三上悠亚av全集在线观看| 欧美变态另类bdsm刘玥| 天天操日日干夜夜撸| 久久久久国产一级毛片高清牌| 99九九在线精品视频| 亚洲美女黄片视频| 久久天躁狠狠躁夜夜2o2o| 王馨瑶露胸无遮挡在线观看| 久久天堂一区二区三区四区| av网站在线播放免费| 久久久久久久国产电影| 窝窝影院91人妻| 日本黄色视频三级网站网址 | 久久久精品免费免费高清| 亚洲性夜色夜夜综合| 亚洲av国产av综合av卡| 18禁裸乳无遮挡动漫免费视频| 精品少妇内射三级| 日韩免费av在线播放| av有码第一页| 国产一区二区在线观看av| 欧美人与性动交α欧美软件| 国产精品.久久久| 欧美国产精品一级二级三级| 免费黄频网站在线观看国产| 国产麻豆69| 亚洲精品一卡2卡三卡4卡5卡| 美女午夜性视频免费| 成在线人永久免费视频| 成年人黄色毛片网站| 日本vs欧美在线观看视频| 亚洲av片天天在线观看| 国产在线一区二区三区精| 免费观看人在逋| 婷婷丁香在线五月| 黄色 视频免费看| 纵有疾风起免费观看全集完整版| 一本久久精品| 90打野战视频偷拍视频| 免费一级毛片在线播放高清视频 | 脱女人内裤的视频| 欧美激情 高清一区二区三区| 欧美一级毛片孕妇| 91成人精品电影| 不卡av一区二区三区| av视频免费观看在线观看| 亚洲人成伊人成综合网2020| 日韩免费av在线播放| 久久免费观看电影| 欧美精品啪啪一区二区三区| 免费女性裸体啪啪无遮挡网站| 啦啦啦在线免费观看视频4| 久久久欧美国产精品| 精品欧美一区二区三区在线| 波多野结衣av一区二区av| 男人操女人黄网站| 精品国产亚洲在线| 黄频高清免费视频| 欧美大码av| 一个人免费看片子| av福利片在线| 夜夜骑夜夜射夜夜干| 亚洲久久久国产精品| 黄色丝袜av网址大全| 欧美在线黄色| 欧美一级毛片孕妇| 国产精品麻豆人妻色哟哟久久| 18禁黄网站禁片午夜丰满| 动漫黄色视频在线观看| 国产黄频视频在线观看| 中文亚洲av片在线观看爽 | 国产成人免费观看mmmm| 十八禁高潮呻吟视频| 在线观看免费午夜福利视频| 亚洲国产欧美日韩在线播放| 欧美日韩视频精品一区| 不卡一级毛片| 欧美成狂野欧美在线观看| 在线观看66精品国产| 国产成人精品久久二区二区91| 搡老熟女国产l中国老女人| 美女高潮到喷水免费观看| 天堂8中文在线网| 少妇 在线观看| 露出奶头的视频| 9色porny在线观看| 亚洲成人国产一区在线观看| 国产aⅴ精品一区二区三区波| 久久亚洲精品不卡| 午夜久久久在线观看| 色在线成人网| 十分钟在线观看高清视频www| 成人国产一区最新在线观看| 后天国语完整版免费观看| 亚洲成人免费电影在线观看| 亚洲五月婷婷丁香| 热re99久久精品国产66热6| 99国产精品一区二区蜜桃av | 欧美精品高潮呻吟av久久| aaaaa片日本免费| 老熟妇仑乱视频hdxx| 男人操女人黄网站| 少妇粗大呻吟视频| 成人手机av| 欧美国产精品va在线观看不卡| 国产精品自产拍在线观看55亚洲 | 黄色 视频免费看| 汤姆久久久久久久影院中文字幕| 欧美成人午夜精品| 成人手机av| 建设人人有责人人尽责人人享有的| 欧美精品一区二区大全| 一二三四在线观看免费中文在| 人成视频在线观看免费观看| 国产精品99久久99久久久不卡| 黄频高清免费视频| 欧美激情久久久久久爽电影 | 97人妻天天添夜夜摸| 国产成人精品久久二区二区91| 亚洲自偷自拍图片 自拍| 久久中文字幕人妻熟女| 高清欧美精品videossex| 99精国产麻豆久久婷婷| 一级毛片电影观看| 亚洲国产成人一精品久久久| 亚洲熟妇熟女久久| 别揉我奶头~嗯~啊~动态视频| 亚洲精品av麻豆狂野| 日韩 欧美 亚洲 中文字幕| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添小说| 亚洲欧洲日产国产| 成人精品一区二区免费| 亚洲专区中文字幕在线| av网站免费在线观看视频| 搡老熟女国产l中国老女人| 蜜桃在线观看..| 国产精品美女特级片免费视频播放器 | 久久久久精品人妻al黑| 国产一区二区 视频在线| 亚洲第一青青草原| 脱女人内裤的视频| 国产免费现黄频在线看| 欧美日韩国产mv在线观看视频| 免费高清在线观看日韩| 91九色精品人成在线观看| 精品久久久久久久毛片微露脸| 99久久99久久久精品蜜桃| 精品久久久久久久毛片微露脸| 精品卡一卡二卡四卡免费| 老司机影院毛片| 丰满少妇做爰视频| 男女免费视频国产| 亚洲色图av天堂| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区mp4| 视频在线观看一区二区三区| 999久久久精品免费观看国产| 日本av免费视频播放| 久久婷婷成人综合色麻豆| 免费观看a级毛片全部| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 少妇精品久久久久久久| 午夜激情久久久久久久| 一进一出好大好爽视频| 精品少妇久久久久久888优播| 精品少妇黑人巨大在线播放| 丁香六月欧美| 19禁男女啪啪无遮挡网站| 久久久精品94久久精品| 精品高清国产在线一区| 女性被躁到高潮视频| av视频免费观看在线观看| 亚洲五月婷婷丁香| 热re99久久国产66热| 国产91精品成人一区二区三区 | 777久久人妻少妇嫩草av网站| 免费观看a级毛片全部| av免费在线观看网站| 一边摸一边抽搐一进一小说 | 考比视频在线观看| 青青草视频在线视频观看| www.999成人在线观看| 色综合欧美亚洲国产小说| 丝瓜视频免费看黄片| 又大又爽又粗| 午夜福利视频精品| 丁香欧美五月| 国产欧美日韩一区二区精品| 国产亚洲精品一区二区www | 人妻 亚洲 视频| 亚洲国产av新网站| 日韩中文字幕欧美一区二区| 中文字幕人妻丝袜制服| 亚洲精品av麻豆狂野| 超碰97精品在线观看| 精品国产乱码久久久久久男人| 久久午夜综合久久蜜桃| av有码第一页| 一区二区三区精品91| 久久精品亚洲精品国产色婷小说| 99国产综合亚洲精品| 欧美 亚洲 国产 日韩一| 亚洲av日韩在线播放| 亚洲自偷自拍图片 自拍| videosex国产| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看| 色综合婷婷激情| 亚洲成av片中文字幕在线观看| www.精华液| 亚洲精品一二三| 久久99热这里只频精品6学生| 成人亚洲精品一区在线观看| 高清欧美精品videossex| 欧美在线一区亚洲| 久久久久网色| 肉色欧美久久久久久久蜜桃| 精品少妇久久久久久888优播| 欧美变态另类bdsm刘玥| 女人精品久久久久毛片| 日本黄色视频三级网站网址 | 久久精品国产亚洲av高清一级| xxxhd国产人妻xxx| 亚洲男人天堂网一区| 欧美中文综合在线视频| 人人妻人人爽人人添夜夜欢视频| 午夜日韩欧美国产| 欧美在线一区亚洲| 动漫黄色视频在线观看| 精品久久久久久电影网| h视频一区二区三区| 久久热在线av| 国产男女超爽视频在线观看| 成年版毛片免费区| 两性夫妻黄色片| 天天躁夜夜躁狠狠躁躁| 亚洲综合色网址| 久久中文看片网| 亚洲欧洲精品一区二区精品久久久| e午夜精品久久久久久久| 午夜激情av网站| 国内毛片毛片毛片毛片毛片| 美女福利国产在线| 99re6热这里在线精品视频| 国产亚洲午夜精品一区二区久久| 亚洲成人免费av在线播放| 18禁黄网站禁片午夜丰满| 亚洲精品中文字幕在线视频| 一边摸一边抽搐一进一小说 | 考比视频在线观看| 亚洲精品av麻豆狂野| 中文字幕另类日韩欧美亚洲嫩草| 国产精品一区二区精品视频观看| 如日韩欧美国产精品一区二区三区| 亚洲 国产 在线| 久久久久视频综合| 欧美黄色片欧美黄色片| 在线观看舔阴道视频| 69av精品久久久久久 | 两人在一起打扑克的视频| 亚洲精品久久成人aⅴ小说| 国产精品一区二区免费欧美| 黄色视频,在线免费观看| 一边摸一边抽搐一进一出视频| 久久九九热精品免费| 精品亚洲乱码少妇综合久久| √禁漫天堂资源中文www| 久久久久精品人妻al黑| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美av亚洲av综合av国产av| 欧美精品av麻豆av| 国产精品一区二区在线观看99| 亚洲午夜精品一区,二区,三区| 日本av免费视频播放| 国产日韩欧美亚洲二区| 国产人伦9x9x在线观看| 国产一区二区三区在线臀色熟女 | 91九色精品人成在线观看| 亚洲精华国产精华精| 中文字幕制服av| 欧美成人免费av一区二区三区 | 新久久久久国产一级毛片| 国产精品欧美亚洲77777| 黄色视频不卡| a级毛片黄视频| 成人手机av| 亚洲美女黄片视频| 久久国产精品人妻蜜桃| 国产精品.久久久| 国产精品久久久久久精品电影小说| 后天国语完整版免费观看| 一个人免费看片子| 黄片播放在线免费| 黄频高清免费视频| 国产一区二区三区视频了| 一本—道久久a久久精品蜜桃钙片| 18禁国产床啪视频网站| 天天躁日日躁夜夜躁夜夜| 狠狠婷婷综合久久久久久88av| av不卡在线播放| 香蕉丝袜av| 老司机深夜福利视频在线观看| 叶爱在线成人免费视频播放| 一本久久精品| 狠狠婷婷综合久久久久久88av| 免费日韩欧美在线观看| 交换朋友夫妻互换小说| 一级a爱视频在线免费观看| 1024视频免费在线观看| 成人特级黄色片久久久久久久 | 国产视频一区二区在线看| 亚洲国产av新网站| 蜜桃在线观看..| 咕卡用的链子| 91国产中文字幕| 国产精品麻豆人妻色哟哟久久| 黄色a级毛片大全视频| 欧美日韩亚洲综合一区二区三区_| 日韩中文字幕欧美一区二区| 一本色道久久久久久精品综合| 欧美黄色片欧美黄色片| 免费在线观看视频国产中文字幕亚洲| 男人操女人黄网站| 男女无遮挡免费网站观看| 国产精品电影一区二区三区 | 熟女少妇亚洲综合色aaa.| 精品人妻熟女毛片av久久网站| 我要看黄色一级片免费的| 欧美日韩视频精品一区| 精品一区二区三卡| 91精品国产国语对白视频| 一级,二级,三级黄色视频| 精品人妻1区二区| 久久国产精品人妻蜜桃| 精品免费久久久久久久清纯 | 色视频在线一区二区三区| 18禁美女被吸乳视频| 少妇粗大呻吟视频| √禁漫天堂资源中文www| 午夜福利在线免费观看网站| 黄色视频在线播放观看不卡| 黄色片一级片一级黄色片| 久久毛片免费看一区二区三区| 精品卡一卡二卡四卡免费| 超色免费av| 丁香欧美五月| 久久 成人 亚洲| 色精品久久人妻99蜜桃| 老熟女久久久| 国产一区二区 视频在线| 亚洲欧美一区二区三区黑人| 午夜精品国产一区二区电影| 国产精品欧美亚洲77777| 成在线人永久免费视频| 999久久久精品免费观看国产| 午夜激情久久久久久久| 午夜福利免费观看在线| 亚洲三区欧美一区| 自拍欧美九色日韩亚洲蝌蚪91| 美女高潮到喷水免费观看| 又紧又爽又黄一区二区| 久久精品国产99精品国产亚洲性色 | a在线观看视频网站| 国产精品麻豆人妻色哟哟久久| 亚洲精品av麻豆狂野| 欧美国产精品va在线观看不卡| 免费在线观看黄色视频的| 久久天堂一区二区三区四区| 欧美人与性动交α欧美软件| 精品熟女少妇八av免费久了| 欧美午夜高清在线| 99久久99久久久精品蜜桃| 欧美成狂野欧美在线观看| 一区福利在线观看| 天天躁日日躁夜夜躁夜夜| 久久久国产成人免费| 国产高清激情床上av| 久久精品亚洲精品国产色婷小说| 99香蕉大伊视频| 一进一出好大好爽视频| 久久精品亚洲熟妇少妇任你|