• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combined proportional navigation law for interception of high-speed targets

    2014-02-14 09:23:41YunLILingYANJigungZHAOFnLIUToWANG
    Defence Technology 2014年3期

    Yun LI,Ling YAN,Ji-gung ZHAO,*,Fn LIU,To WANG

    aAcademy of Equipment,Beijing 101416,China

    bAir Force Xi'an Flight Academy,Xi'an 710300,China

    cUnit 95881 PLA,Beijing 100095,China

    Combined proportional navigation law for interception of high-speed targets

    Yuan LIa,Liang YANa,Ji-guang ZHAOa,*,Fan LIUb,Tao WANGc

    aAcademy of Equipment,Beijing 101416,China

    bAir Force Xi'an Flight Academy,Xi'an 710300,China

    cUnit 95881 PLA,Beijing 100095,China

    A new proportional navigation(PN)guidance law,called combined proportional navigation(CPN),is proposed.The guidance law is designed to intercept high-speed targets,which is a common case for ballistic targets.The range of target-to-interceptor speed ratio during target interception is derived when guidance laws are applied in high-speed targets interception,and the effectiveness of negative navigation ratio in the PN-based guidance law is proven analytically in some lemmas.Based on the lemmas,the lateral acceleration command of CPN is defned,and the solution to the appearance of singularity in time-varying navigation ratio is given.The simulation results show that CPN can determine headon engagement(as PN)or tail-chase engagement(as RPN)through initial path angle compared with PN and retro proportional navigation (RPN),and can adjust the value of navigation ratio for head-on engagement or tail-chase engagement.Therefore,the capture region of CPN is larger than that of other guidance laws using PN-based methods.

    Combined proportional navigation;Proportional navigation;High-speed target;Capture region;Interception

    1.Introduction

    Interception of high-speed exoatmospheric targets is a challenging task when the speed of target is higher than that of interceptor.When guidance laws are used for intercepting the high-speed targets,they can be classifed as two cases[1]: head-on and tail-chase engagements.The closing speed of tailchase engagement is lower than that of head-on engagement, but the fight time of tail-chase engagement is longer.

    In the case of head-on engagement,three-dimensional pure PN(PPN)guidance law[2]is used for engaging the highspeed targets,and a capture region is obtained.In the case of tail-chase engagement,the retro-PN(RPN)guidance law [3]for interception of high-speed targets without angular constraint uses a negative navigation constant.Prasanna et al. [3]indicated that the capture region of RPN is larger than that of PN for interception of high speed target,and reported that it is valuable to incorporate the useful features of PN and the RPN guidance laws in the future work.Hence,this paper proposed a guidance law,called combined proportional navigation(CPN).CPN guidance law can determine head-on engagement(PN)or tail-chase engagement(RPN)through initial path angle,which results in larger capture region of CPN than that of PN or RPN.

    In addition,some points about PN-based guidance laws need to be discussed further.Firstly,the range of target-tointerceptor speed ratio should be determined when guidance laws are used to engage the high-speed targets.Secondly,the value of navigation ratio of PN-based guidance law is set as a positive value commonly[4-8].Recently,Prasanna,et al. proposed the RPN guidance law of which navigation ratio is a negative constant,but did not give the analytical explanation about it.

    In the paper,Section 2 presents the equations of motion and some lemmas,Section 3 defnes the lateral acceleration,andSection 4 presents the simulation results(trajectories,navigation ratio variations and capture regions,etc)compared with those of PN and RPN.Section 5 concludes with a discussion on possible generalizations of this approach.

    2.Equations of motion and some lemmas

    In this work,planar motion of interceptor and target is considered.In order to facilitate the whole analysis,some general assumptions are introduced as follows:

    1)The interceptor and the target are considered as geometric points moving in a plane.

    2)The target is assumed to be nonmaneuvering,which is a common case for ballistic targets.

    3)Gravitational effects are neglected.

    Under the above assumptions,a planar engagement geometry in Fig.1 can be represented by the following nonlinear differential equations.The rotation rate of the line of sight (LOS)at any time is given by the following equation

    The velocity component along the line of sight is given by the following equation

    where R is the range between interceptor and target;Vmis the velocity of interceptor missile;Vtis the level velocity of target; λ is the LOS angle;and γ is the missile fight path(or heading) angle.

    The rotation rate of the interceptor heading is defned as[9]

    where N is the navigation constant;and˙λ is the LOS rate.

    Lemma 1:for a given value of β,β=Vt/Vm,it should be ensured that β∈(1,1/sinλ)(λ≠nπ,n=0,±1,±2,…)during the interception of high-speed targets in this engagement geometry(Fig.1).

    Proof:Note that the target speed is higher than the interceptor speed,so β>1.For the case of the interceptor being encountered with a target on a collision course,from Eq.(1), we can derive

    Fig.1.Planar engagement geometry.

    Apparently,for θ=90°,the maximum of β=1/sinλ (λ≠nπ,n=0,±1,±2,…).Therefore,it should be ensured that β∈(1,1/sinλ)(λ≠nπ,n=0,±1,±2,…)during the acting interception for any guidance in this engagement geometry.

    Lemma 2:when an interceptor is guided by PNS guidance law,the navigation ratio N can uses a negative value or a positive value,but should satisfy Eq.(5).

    Substituting Eq.(2)and Eq.(3)into Eq.(6),we have

    In order for˙λ to approximate the zero line,˙λ and¨λ must have different signs.Thus,

    Since the defnition ˙R?-Vc,Vc>0(Vcis the closing velocity of interceptor).The navigation ratio as Eq.(5)is obtained From Eq.(8).

    Remark:In the classical PN guidance law,the navigation ratio N is a positive value,and should satisfy Eq.(5a).The interception path is shown in Fig.1(path DC).If the navigation ratio N is a negative value,it should satisfy Eq.(5b). The interception path is shown in Fig.1(path DA).

    3.Interceptor lateral acceleration

    The classical PN lateral commanded acceleration is defned as[10]

    where N is a constant,and represents navigation ratio.

    The effective navigation ratio can be obtained by Eq.(10) proposed in Ref.[8]

    Where N′is effective navigation ratio,N′>2.

    If N′is set as a constant,from Eq.(10),N should be a timevarying navigation ratio,and can be derived from Eq.(10),

    In the above derivation,we adopt the equation system consisted of Eq.(9)and Eq.(11),which constitutes the CPN guidance in plane.

    The advantage of time-varying navigation ratio is that,in Eq.(11),N′>2,Vc>0,Vm>0,the sign of navigation ratiocan be determined by cos(γ - λ).Note that,for cos(γ-λ)≥0,N>0,the guidance law is called CPN+,and the interception path is shown in Fig.1(path DC).For cos(γ-λ)<0,the guidance law is called CPN-,and the interception path is shown in Fig.1(path DA).Hence,when CPN is implemented in terminal guidance,it can be determined as CPN+or CPN-by the relation of path angle and LOS angle.CPN+with positive N can be used to intercept the low-speed targets,and CPN-with negative N is used to intercept the high-speed targets.Also,CPN can be used to intercept the stationary targets.Moreover,the capture region of CPN without considering the impact angular constraint is larger than that of PN or RPN with regard to the capture region defned in Ref.[7].

    Note that,for cos(γm-λ)→0,N→±∞,an→±∞.The next section will discuss how to avoid this condition.

    3.1.Threshold value of time-varying navigation ratio

    In order to avoid the condition:cos(γ-λ)→0,N→±∞, an→±∞,a threshold value p of cos(γ-λ)should be set.

    Thus,we try to use the required overload to determine the threshold value p.From Eq.(9),the required overload aiis defned as

    where˙λiis the initial LOS rate;Vc,iis the initial closing velocity of interceptor;and λiis the initial LOS angle.

    For varied threshold value p,the initial acceleration changing from 0 to π with initial path angle is depicted in Fig.2(initial conditions and constants are shown in Section 4).

    Fig.2.Initial acceleration variations.

    From Fig.2,it can be seen that the acceleration at initial time is larger when the initial path angle is near 0°and 90°, and the acceleration decreases as the threshold value p increases.Hence,the threshold value p is determined by the required overload and the initial path angle.Note that,a)for the initial path angle being near 0°or 90°,the required overload at initial time is the largest during fight time;b)in order to intercept high speed target in this engagement geometry (Fig.1),the initial path angle should not be near 0°,which could cause larger required overload.For instance,if the required overload is equal to 50 g,the threshold value p should be set between 0.4 and 0.7.It needs to be explained that the threshold value p can be larger than 1 if the required overload is smaller.

    3.2.Defnition of time-varying navigation ratio

    Two boundary cases must be considered for computing the navigation ratio N,as shown in Fig.3.

    Case I:γi-λi<90°

    For γi-λi<90°,the value of γ-λ tends to a value,which is near γi-λiand less than 90°.Thus,the value of N should be defned as

    Case II:γi-λi≥90°

    For γi-λi≥90°,the value of γ-λ tends to a value, which is near γi-λiand larger than 90°.Thus,the value of N should be defned as

    Therefore,the interceptor lateral acceleration can be derived as

    where

    Fig.3.Two boundary cases of navigation ratio.

    Table 1Scenario parameters.

    Note that,for cos(γi-λi)≥0,the guidance law is called CPN+,and the interception path is shown in Fig.1(path DC). For cos(γi-λi)<0,the guidance law is called CPN-,and the interception path is shown in Fig.1(path DA).

    4.Simulation results

    Fig.4.Simulation results for CPN,PN and RPN.

    Simulations are run in a MATLAB environment where they are terminated for Vc<0.The range value Rfat this fnalinstant is taken as the miss distance.The target speed Vtis 1500 m/s with(Xt,Yt)=(10,000 m,10,000 m).The interceptor speed Vmis 600 m/s,and the initial range Riis 10,000 m.The interceptor initial position can be calculated through Riand initial LOS angle λi.The seeker model is of a perfect seeker (without noise)with a suffciently large feld of view,but it is assumed to be unable to track the target and the guidance command maintains its last value when the range is below 30 m[11].The simulations are carried out in a planar engagement scenario.

    4.1.Simulation with varied initial angles

    Because CPN+and CPN-are similar with PN and RPN for intercepting high speed target,we consider the guidance scheme,RPN and PN proposed in Ref.[3]to demonstrate the basic properties of the proposed guidance law.The initial LOS angle λiis 10°,the effective navigation ratio N'is 3,the acceleration saturation asis 30.61 g,and the threshold value p=0.7.Because the navigation ratio is time-varying,we set the mean navigation ratio of CPN as the navigation ratio of PN and RPN for comparison.

    The frst two columns in Table 1 indicate the number of scenarios and the guidance schemes used,respectively.The next three columns present the performance variables consisted of the initial path angle,the miss distance and the total control effort.Fig.4 shows the simulation results,where the number of scenarios is indicated in the legend or on each curve.

    It can be known from Table 1 and Fig.4 that:

    1)Scenarios 2,3,4,6,8and 10 are included for comparison. Scenarios 2,3,4 and 6are presented for comparison with Scenarios 1 and 5.Scenarios 8 and 10 are presented for comparison with Scenarios 7 and 9.Table 1 and Fig.4 indicate that PN and RPN are similar with CPN+and CPN-in performance,respectively.Miss distance of CPN is less than those of PN or RPN,but its control effort is greater than them.It is because that the navigation value of guidance laws cannot be the same.For PN and RPN,the navigation value is fxed.For CPN,the navigation value is time-varying.

    2)In Fig.4(e),the navigation ratio N tends to be a fxed value Nfx,which should satisfy Lemma 2.Also note that a certain phase of the curve is an approximate straight-line,where cos(γ-λ)=p or cos(γ-λ)=-p(note from Eq.(15).

    3)CPN can adjust the value of navigation ratio according to initial path angle in order to ft head-on engagement or tail-chase engagement.It can be noted from Scenarios 2, 6,8 and 10 that,for the effective navigation ratio N'=3, the absolute value of mean navigation ratio of CPN+is larger than that of CPN-.This is just the advantage of CPN.It is because that,in order for˙λ to approximate the zero line,the required navigation ratio is larger than that of engagement incos(γi-λi)<0,which can be observed from Scenarios 2,3 and 4 in Fig.4(b)and(f)as PN-based guidance laws engage in cos(γi-λi)≥0.When thenavigation ratio decreases from 11.21 to 7.71,˙λ cannot tend to 0,and the lateral acceleration increases abruptly during the fnal phase.This brings about performance degradation manifesting its increased miss distance and control effort(note from scenario 2,3 and 4 of Table 1).

    Fig.5.Capture regions for CPN,PN and RPN.

    4.2.Capture region for CPN

    Fig.5 shows the comparison of the guidance laws(CPN, PN and RPN)for varied values of N by determining all those initial interceptor fight directions and impact angles for which capture is possible.Capture region[12,13]is defned as all those initial interceptor fight directions for which capture is possible.For comparison,PN and RPN capture regions are also shown in Fig.5.

    Four cases,with different positions of the interceptor defned through initial LOS angles λitaken as 5°,10°,14°and 18°,are shown.The simulations are performed for 36 varied desired impact angles from 0°to 180°and for 36 different initial path angles from 0°to 180°.Miss distance Rfis less than 0.5 m,the acceleration saturationasis 15.31 g,and threshold value p is 2.0.The mean navigation ratio of CPN is set as the navigation ratio of PN or RPN for comparison also.The green region with same radius represents CPN result with same effective navigation ratio N′.Other color region represents PN results on the left side,and RPN results on the right side.

    From Fig.5,the following observations can be made.

    1)Capture region of CPN is larger than that of PN or RPN.

    2)Capture region shrinks as the value of N decreases,and frst ascends and then descends as the value of λiincreases from 5°to 18°.

    Finally,when the CPN guidance law is implemented in a practical system,the requirements for a seeker-based homing interceptorwouldbeaseekerwithaverylargefeldofview,and the seeker axis can be directed along the relative LOS with respecttothemissilebodyaxis[3].Iftheinterceptorisusedina command guided mode,then this requirement may be avoided.

    5.Conclusions

    In this paper,a new guidance law called the CPN guidance law is developed for interception of high-speed targets,which is a common case for ballistic targets.The guidance law provides the valuable features.Firstly,CPN can incorporate the useful features of both PN and RPN,and determine headon engagement(PN)or tail-chase engagement(RPN)through initial path angle.Secondly,CPN use a time-varying navigation ratio and can adjust the value of navigation ratio according to initial path angle in order to ft head-on engagement or tail-chase engagement.Therefore,the capture region of CPN is larger than those of other guidance laws using PN-based methods.Simulation results are shown to support these claims.

    [1]Tal S,Golan OM.Head pursuit guidance.J Guid Control Dyn 2007;30:1437-44.

    [2]Lin YP,Lin CL,Li YH.Development of 3-D modifed proportional navigation guidance law against high-speed targets.IEEE Trans Aerosp Electron Syst 2013;49:677-87.

    [3]Prasanna HM,Ghose D.Retro-proportional-navigation:a new guidance law for interception of high-speed targets.J Guid Control,Dyn 2012;35:377-86.

    [4]Erer KS,Merttopcuoglu O.Indirect impact-angle-control against stationary targets using biased pure proportional navigation.J Guid Control Dyn 2012;35:700-3.

    [5]Ratnoo A,Ghose D.Impact angle constrained interception of stationary targets.J Guid Control Dyn 2008;31:1816-21.

    [6]Ratnoo A,Ghose D.Impact angle constrained guidance against nonstationary nonmaneuvering targets.J Guid Control Dyn 2010;33:269-75.

    [7]Ratnoo A,Ghosey D.Satisfying terminal angular constraint using proportional navigation.In:AIAA Guidance,Navigation,and Control Conference and Exhibit,August 10,2009-August 13,2009.Chicago,IL, United states:American Institute of Aeronautics and Astronautics Inc.; 2009.

    [8]Ravindra Babu K,Sarma IG,Swamy KN.Switched bias proportional navigation for homing guidance against highly maneuvering targets.J Guid Control Dyn 1994;17:1357-63.

    [9]Zarchan P.Tactical and strategic missile guidance.6th ed.15.American Institute of Aeronautics and Astronautics;2002.p.11-28.

    [10]Siouris GM.Missile guidance and control systems.Springer;2004. p.113-95.

    [11]Byung Soo K,Jang Gyu L,Hyung Seok H.Biased PNG law for impact with angular constraint. IEEE Trans Aerosp Electron Syst 1998;34:277-88.

    [12]Ghawghawe SN,Ghose D.Pure proportional navigation against timevarying targetmaneuvers.IEEE Trans Aerosp Electron Syst 1996;32:1336-47.

    [13]Yan L,Zhao JG,Shen HR,Li Y.Biased retro-proportional navigation law for interception of high-speed targets with angular constraint.Def Technol 2014;10:60-5.

    Received 9 December 2013;revised 29 January 2014;accepted 20 March 2014 Available online 31 July 2014

    *Corresponding author.

    E-mail address:haofangshi@163.com(J.G.ZHAO).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2014.07.004 2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    亚洲丝袜综合中文字幕| 免费av不卡在线播放| 久久久午夜欧美精品| 亚洲国产最新在线播放| 午夜爱爱视频在线播放| 国产乱人视频| 日本免费一区二区三区高清不卡| 亚洲欧美精品专区久久| 亚洲伊人久久精品综合 | 99久久成人亚洲精品观看| 亚洲天堂国产精品一区在线| 国产伦在线观看视频一区| 欧美精品一区二区大全| 97在线视频观看| 日韩亚洲欧美综合| 亚洲三级黄色毛片| 午夜福利在线观看免费完整高清在| 久久婷婷人人爽人人干人人爱| 少妇的逼好多水| 午夜福利视频1000在线观看| 国产成人a区在线观看| 成人亚洲欧美一区二区av| 看非洲黑人一级黄片| 国产精品女同一区二区软件| 91精品国产九色| 国产伦一二天堂av在线观看| av在线观看视频网站免费| 久久精品综合一区二区三区| 一级黄片播放器| 麻豆一二三区av精品| 91久久精品电影网| 91久久精品国产一区二区三区| 久久久久网色| 婷婷色av中文字幕| 少妇高潮的动态图| 在线观看av片永久免费下载| 久久久精品欧美日韩精品| 最近的中文字幕免费完整| 一级毛片aaaaaa免费看小| 精品熟女少妇av免费看| 国产成年人精品一区二区| 午夜免费激情av| 中文字幕人妻熟人妻熟丝袜美| 亚洲色图av天堂| 精华霜和精华液先用哪个| 亚洲av一区综合| 成年免费大片在线观看| www.av在线官网国产| 2021天堂中文幕一二区在线观| 日韩强制内射视频| 久久草成人影院| 久久久久久久久久成人| 热99在线观看视频| 日本欧美国产在线视频| 成人午夜精彩视频在线观看| 国产精品福利在线免费观看| 日韩av在线大香蕉| 精品99又大又爽又粗少妇毛片| 久久鲁丝午夜福利片| 婷婷色综合大香蕉| 日韩高清综合在线| 男女那种视频在线观看| 久久热精品热| 一个人免费在线观看电影| 久久精品国产99精品国产亚洲性色| 伦精品一区二区三区| 亚洲自拍偷在线| 深爱激情五月婷婷| 免费黄网站久久成人精品| 大香蕉久久网| 波野结衣二区三区在线| 男女下面进入的视频免费午夜| 亚洲国产精品成人综合色| 特大巨黑吊av在线直播| 亚洲在线自拍视频| 在线播放无遮挡| 国产精品国产高清国产av| 久久久久免费精品人妻一区二区| 欧美高清成人免费视频www| 高清午夜精品一区二区三区| 久久久午夜欧美精品| 久久精品国产自在天天线| 国产精品av视频在线免费观看| 爱豆传媒免费全集在线观看| 日韩欧美三级三区| 日韩精品有码人妻一区| 国产私拍福利视频在线观看| 国产精品日韩av在线免费观看| 69av精品久久久久久| 亚洲成人久久爱视频| 欧美一级a爱片免费观看看| 亚洲经典国产精华液单| 国产午夜精品论理片| 永久免费av网站大全| 日韩中字成人| 最近视频中文字幕2019在线8| 毛片一级片免费看久久久久| 精品久久久久久久末码| 午夜免费激情av| 亚洲一区高清亚洲精品| 日韩欧美国产在线观看| 伦精品一区二区三区| 国产免费福利视频在线观看| 精华霜和精华液先用哪个| 国产成人福利小说| 美女内射精品一级片tv| 麻豆精品久久久久久蜜桃| 国产日韩欧美在线精品| 成人高潮视频无遮挡免费网站| 国产精品综合久久久久久久免费| 久久久成人免费电影| 成人漫画全彩无遮挡| 亚洲欧美日韩高清专用| av线在线观看网站| 夫妻性生交免费视频一级片| 久久精品综合一区二区三区| 九九爱精品视频在线观看| 亚洲成人av在线免费| 爱豆传媒免费全集在线观看| 欧美丝袜亚洲另类| 小蜜桃在线观看免费完整版高清| 色噜噜av男人的天堂激情| 97热精品久久久久久| 久久久久久久亚洲中文字幕| av播播在线观看一区| 色播亚洲综合网| 级片在线观看| 亚洲精品,欧美精品| 日本免费a在线| 欧美高清性xxxxhd video| 欧美区成人在线视频| 亚洲av成人av| 嘟嘟电影网在线观看| 亚洲av二区三区四区| 五月玫瑰六月丁香| 如何舔出高潮| 日本黄大片高清| 丰满乱子伦码专区| 色尼玛亚洲综合影院| av.在线天堂| 麻豆国产97在线/欧美| 麻豆av噜噜一区二区三区| 白带黄色成豆腐渣| 久久久久久大精品| 国产乱人偷精品视频| 国产免费福利视频在线观看| 99九九线精品视频在线观看视频| 久久人妻av系列| 天天躁夜夜躁狠狠久久av| 视频中文字幕在线观看| 国产一区有黄有色的免费视频 | 永久免费av网站大全| 噜噜噜噜噜久久久久久91| 亚洲欧美精品综合久久99| 欧美日韩综合久久久久久| 又粗又硬又长又爽又黄的视频| 免费在线观看成人毛片| 亚洲成人av在线免费| 色哟哟·www| 干丝袜人妻中文字幕| 成人高潮视频无遮挡免费网站| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品国产av成人精品| 成人午夜精彩视频在线观看| 日韩制服骚丝袜av| 麻豆乱淫一区二区| 欧美三级亚洲精品| 日本爱情动作片www.在线观看| 久热久热在线精品观看| 九九在线视频观看精品| 色尼玛亚洲综合影院| 欧美极品一区二区三区四区| 天堂网av新在线| 国产成人一区二区在线| 搞女人的毛片| .国产精品久久| 你懂的网址亚洲精品在线观看 | 色哟哟·www| 美女cb高潮喷水在线观看| 精品久久久久久成人av| 不卡视频在线观看欧美| 亚洲乱码一区二区免费版| 国产精品日韩av在线免费观看| 国产片特级美女逼逼视频| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人澡人人爽人人夜夜 | 亚洲第一区二区三区不卡| 免费电影在线观看免费观看| 一区二区三区乱码不卡18| 亚洲av福利一区| 国产成人aa在线观看| 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 免费看美女性在线毛片视频| 午夜精品一区二区三区免费看| 亚洲精品,欧美精品| videossex国产| 天堂av国产一区二区熟女人妻| 久久久久精品久久久久真实原创| 久久精品国产亚洲网站| 欧美日韩一区二区视频在线观看视频在线 | 国产乱来视频区| 伦理电影大哥的女人| 国产国拍精品亚洲av在线观看| 又爽又黄无遮挡网站| 欧美三级亚洲精品| 日本av手机在线免费观看| 亚洲不卡免费看| 日韩一本色道免费dvd| 丝袜美腿在线中文| 日韩一区二区视频免费看| 国产不卡一卡二| 亚洲国产色片| 精品国产露脸久久av麻豆 | 午夜老司机福利剧场| 小蜜桃在线观看免费完整版高清| 国产一区亚洲一区在线观看| 亚洲美女搞黄在线观看| 只有这里有精品99| 成人av在线播放网站| 国内精品一区二区在线观看| 国产高清国产精品国产三级 | 久久久久久国产a免费观看| 精品99又大又爽又粗少妇毛片| 欧美一区二区精品小视频在线| 日日摸夜夜添夜夜爱| 国产精品野战在线观看| 日韩大片免费观看网站 | 亚洲精品日韩在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 日韩在线高清观看一区二区三区| 亚洲18禁久久av| 99久国产av精品| 91久久精品电影网| 毛片女人毛片| 黄色日韩在线| 日本爱情动作片www.在线观看| 成人综合一区亚洲| 最近最新中文字幕免费大全7| 国产精品一二三区在线看| 精品不卡国产一区二区三区| 少妇裸体淫交视频免费看高清| 十八禁国产超污无遮挡网站| 亚洲欧洲国产日韩| 免费看日本二区| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 久久精品国产亚洲av涩爱| 又粗又硬又长又爽又黄的视频| 精品久久久久久成人av| 亚洲精品日韩av片在线观看| 精品无人区乱码1区二区| 美女脱内裤让男人舔精品视频| 99九九线精品视频在线观看视频| 美女被艹到高潮喷水动态| 久久婷婷人人爽人人干人人爱| 精品无人区乱码1区二区| 九九在线视频观看精品| 亚洲高清免费不卡视频| 国产精品乱码一区二三区的特点| 淫秽高清视频在线观看| av专区在线播放| 久久这里只有精品中国| 午夜福利成人在线免费观看| 黄片无遮挡物在线观看| 热99re8久久精品国产| 日本-黄色视频高清免费观看| 成人午夜高清在线视频| 国产精品99久久久久久久久| 99国产精品一区二区蜜桃av| 中文资源天堂在线| 成年女人永久免费观看视频| 午夜久久久久精精品| 美女大奶头视频| 能在线免费观看的黄片| 精品一区二区三区人妻视频| 亚洲高清免费不卡视频| 白带黄色成豆腐渣| 日日摸夜夜添夜夜爱| 久久久久久久久中文| 七月丁香在线播放| 久久精品国产亚洲av天美| 日产精品乱码卡一卡2卡三| 老司机影院成人| 亚洲成色77777| 噜噜噜噜噜久久久久久91| 天堂网av新在线| 久久99热这里只有精品18| 免费看av在线观看网站| 亚洲真实伦在线观看| 国产老妇伦熟女老妇高清| av天堂中文字幕网| 亚洲高清免费不卡视频| 国产黄片美女视频| 一二三四中文在线观看免费高清| 欧美人与善性xxx| 丰满乱子伦码专区| 欧美变态另类bdsm刘玥| 精品久久久久久久久av| 国产淫语在线视频| 变态另类丝袜制服| 欧美潮喷喷水| 变态另类丝袜制服| 国产精品电影一区二区三区| 99在线人妻在线中文字幕| 国产精品永久免费网站| 搡女人真爽免费视频火全软件| 免费看av在线观看网站| 国产精品无大码| 精品一区二区三区视频在线| 欧美潮喷喷水| 又粗又爽又猛毛片免费看| 国产高清有码在线观看视频| 欧美人与善性xxx| 91久久精品国产一区二区三区| 日韩视频在线欧美| 久久人人爽人人爽人人片va| 欧美97在线视频| 日韩欧美三级三区| 亚洲在线自拍视频| 亚洲熟妇中文字幕五十中出| 啦啦啦观看免费观看视频高清| 亚洲国产精品专区欧美| 国产在线一区二区三区精 | 中文乱码字字幕精品一区二区三区 | 日本黄大片高清| 国产在视频线精品| 亚洲第一区二区三区不卡| 性色avwww在线观看| 少妇高潮的动态图| 亚洲欧美日韩卡通动漫| 色综合色国产| av卡一久久| 亚洲最大成人中文| 一夜夜www| 搞女人的毛片| 午夜亚洲福利在线播放| 国产伦一二天堂av在线观看| 精品免费久久久久久久清纯| 国产伦一二天堂av在线观看| 国产黄色小视频在线观看| 中国美白少妇内射xxxbb| 国产黄a三级三级三级人| 天堂√8在线中文| 亚洲人成网站在线播| 91aial.com中文字幕在线观看| 免费在线观看成人毛片| 亚洲欧美精品专区久久| 国产精品久久久久久久久免| 3wmmmm亚洲av在线观看| 亚洲精品乱码久久久v下载方式| eeuss影院久久| 亚洲欧美精品综合久久99| 日本色播在线视频| 99热这里只有精品一区| 久久99热这里只有精品18| 高清毛片免费看| 日韩精品有码人妻一区| 国产精品永久免费网站| 美女黄网站色视频| 久久久久久久亚洲中文字幕| 精品久久久久久久久亚洲| 久久久国产成人免费| 白带黄色成豆腐渣| 成人特级av手机在线观看| 尤物成人国产欧美一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲美女搞黄在线观看| 我的老师免费观看完整版| 成人毛片a级毛片在线播放| 国产一级毛片七仙女欲春2| 国产男人的电影天堂91| 午夜福利在线观看吧| 久久99热6这里只有精品| 亚洲欧美日韩东京热| 天天躁夜夜躁狠狠久久av| АⅤ资源中文在线天堂| a级毛色黄片| 免费av不卡在线播放| 久久久久久大精品| 日韩欧美国产在线观看| 91aial.com中文字幕在线观看| 日韩亚洲欧美综合| 国产精品国产高清国产av| a级毛片免费高清观看在线播放| 中文在线观看免费www的网站| 亚洲真实伦在线观看| 亚洲最大成人手机在线| 日韩国内少妇激情av| 国产成人精品婷婷| 亚洲美女搞黄在线观看| 汤姆久久久久久久影院中文字幕 | 日韩精品有码人妻一区| 99热全是精品| 国内精品美女久久久久久| 成人午夜高清在线视频| 成人午夜精彩视频在线观看| 亚洲av男天堂| 久久久久久久亚洲中文字幕| 男女边吃奶边做爰视频| 国产伦一二天堂av在线观看| 久久韩国三级中文字幕| 高清午夜精品一区二区三区| 国产精品久久久久久精品电影小说 | 我要看日韩黄色一级片| 日韩,欧美,国产一区二区三区 | 国产激情偷乱视频一区二区| 国产精品一及| 日韩一区二区三区影片| 亚洲中文字幕日韩| 69人妻影院| 赤兔流量卡办理| www.色视频.com| 啦啦啦啦在线视频资源| 国产不卡一卡二| 日本三级黄在线观看| 我的女老师完整版在线观看| 国产色婷婷99| 听说在线观看完整版免费高清| 亚洲性久久影院| 精品免费久久久久久久清纯| 在线a可以看的网站| 大香蕉97超碰在线| 久久热精品热| 久久草成人影院| 亚洲av成人精品一二三区| av黄色大香蕉| 国产精品三级大全| 精品少妇黑人巨大在线播放 | 国产一级毛片七仙女欲春2| 精品欧美国产一区二区三| www.av在线官网国产| 国产黄a三级三级三级人| 亚洲天堂国产精品一区在线| 蜜臀久久99精品久久宅男| 亚洲av免费高清在线观看| 免费一级毛片在线播放高清视频| 少妇丰满av| 最近的中文字幕免费完整| 寂寞人妻少妇视频99o| 亚洲精品影视一区二区三区av| 亚洲在久久综合| 噜噜噜噜噜久久久久久91| 成人一区二区视频在线观看| 久久久久久伊人网av| 久热久热在线精品观看| 日日啪夜夜撸| 在线免费十八禁| 亚洲中文字幕日韩| 99久久无色码亚洲精品果冻| 日本色播在线视频| a级毛色黄片| 男人舔女人下体高潮全视频| 级片在线观看| 欧美一区二区国产精品久久精品| 欧美人与善性xxx| 卡戴珊不雅视频在线播放| 夜夜看夜夜爽夜夜摸| 亚洲成人久久爱视频| 日韩欧美精品v在线| 高清毛片免费看| 亚洲av福利一区| kizo精华| 色播亚洲综合网| 日本-黄色视频高清免费观看| 亚洲人与动物交配视频| 日本午夜av视频| 国产大屁股一区二区在线视频| 麻豆国产97在线/欧美| 久久久久久久久久成人| 能在线免费看毛片的网站| 边亲边吃奶的免费视频| 久久草成人影院| 国产成人免费观看mmmm| 国产伦精品一区二区三区四那| 日韩成人av中文字幕在线观看| 一级黄色大片毛片| 51国产日韩欧美| 欧美日韩精品成人综合77777| 老师上课跳d突然被开到最大视频| 高清av免费在线| 欧美人与善性xxx| 日韩欧美精品免费久久| 天天躁夜夜躁狠狠久久av| 嘟嘟电影网在线观看| av免费在线看不卡| 亚洲人成网站在线观看播放| 岛国在线免费视频观看| 欧美三级亚洲精品| 韩国高清视频一区二区三区| 99热网站在线观看| 亚洲av中文字字幕乱码综合| 色综合站精品国产| 国产伦精品一区二区三区四那| 国产av不卡久久| 天堂网av新在线| 黑人高潮一二区| 久久久久久久亚洲中文字幕| 久久久久久久久久黄片| av线在线观看网站| 免费播放大片免费观看视频在线观看 | 国产精品久久久久久精品电影小说 | 91精品伊人久久大香线蕉| 伦精品一区二区三区| 亚洲av一区综合| 欧美激情国产日韩精品一区| 欧美一区二区亚洲| 中国美白少妇内射xxxbb| 18禁在线播放成人免费| 国产精品人妻久久久久久| 国产视频首页在线观看| 亚洲精华国产精华液的使用体验| 色综合站精品国产| 午夜视频国产福利| 欧美一区二区国产精品久久精品| 精品久久久久久久人妻蜜臀av| av又黄又爽大尺度在线免费看 | 免费观看在线日韩| 国内精品宾馆在线| 国产三级在线视频| 真实男女啪啪啪动态图| 超碰av人人做人人爽久久| 99视频精品全部免费 在线| 99热全是精品| 久久久久久久久大av| 亚洲精华国产精华液的使用体验| 毛片一级片免费看久久久久| 国产精品综合久久久久久久免费| 久久久久久久国产电影| 成年女人永久免费观看视频| 一个人看的www免费观看视频| 熟女人妻精品中文字幕| 亚洲欧洲国产日韩| 欧美变态另类bdsm刘玥| 久久午夜福利片| 2022亚洲国产成人精品| 又爽又黄a免费视频| 舔av片在线| 高清午夜精品一区二区三区| 免费看av在线观看网站| 国产男人的电影天堂91| 九草在线视频观看| 日韩 亚洲 欧美在线| 日本wwww免费看| 国产激情偷乱视频一区二区| 亚洲高清免费不卡视频| 日本五十路高清| 国产在视频线在精品| 乱人视频在线观看| 九九在线视频观看精品| 亚洲一区高清亚洲精品| 亚洲国产欧洲综合997久久,| 黄色一级大片看看| 三级毛片av免费| 精品久久久久久电影网 | videossex国产| 国产极品天堂在线| 观看免费一级毛片| 午夜亚洲福利在线播放| 边亲边吃奶的免费视频| 欧美高清性xxxxhd video| 综合色av麻豆| 高清午夜精品一区二区三区| 久久久国产成人精品二区| 亚洲av成人av| 三级经典国产精品| 精品无人区乱码1区二区| 高清日韩中文字幕在线| 久久精品国产亚洲av涩爱| 久久久国产成人免费| 亚洲av成人精品一二三区| 亚洲成av人片在线播放无| 99久久精品国产国产毛片| 亚洲成人中文字幕在线播放| 国产伦精品一区二区三区四那| 一区二区三区免费毛片| 亚洲欧美精品专区久久| 亚洲三级黄色毛片| 欧美成人a在线观看| 日日啪夜夜撸| 国产一区有黄有色的免费视频 | 国产老妇伦熟女老妇高清| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久久中文| 最近手机中文字幕大全| av免费观看日本| 精品久久久久久久人妻蜜臀av| 插阴视频在线观看视频| 日本午夜av视频| 欧美变态另类bdsm刘玥| 久久久久九九精品影院| 精品久久久久久久久亚洲| 赤兔流量卡办理| 男插女下体视频免费在线播放| www日本黄色视频网| 久久久久久久久中文| 免费观看的影片在线观看| 少妇丰满av| 久久亚洲国产成人精品v| 亚洲欧美日韩高清专用| 亚洲怡红院男人天堂| 亚洲,欧美,日韩| av女优亚洲男人天堂| 国产成人91sexporn| 熟妇人妻久久中文字幕3abv| 乱系列少妇在线播放| 最近最新中文字幕免费大全7| 成人高潮视频无遮挡免费网站| 热99re8久久精品国产| 国产精品人妻久久久影院| 国语自产精品视频在线第100页| 久久精品国产亚洲网站| 亚洲熟妇中文字幕五十中出| .国产精品久久| 国产精品久久久久久久久免|