• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis on the resistive force in penetration of a rigid projectile

    2014-02-14 09:23:38XiaoweiCHENJichengLI
    Defence Technology 2014年3期

    Xiao-wei CHEN*,Ji-cheng LI

    Institute of Systems Engineering,China Academy of Engineering Physics,Mianyang 919416,China

    Analysis on the resistive force in penetration of a rigid projectile

    Xiao-wei CHEN*,Ji-cheng LI

    Institute of Systems Engineering,China Academy of Engineering Physics,Mianyang 919416,China

    According to the dimensionless formulae of DOP(depth of penetration)of a rigid projectile into different targets,the resistive force which a target exerts on the projectile during the penetration of rigid projectile is theoretically analyzed.In particular,the threshold Vcof impact velocity applicable for the assumption of constant resistive force is formulated through impulse analysis.The various values of Vccorresponding to different pairs of projectile-target are calculated,and the consistency of the relative test data and numerical results is observed.

    Rigid projectile;Constant resistive force;Impact velocity

    1.Introduction

    The penetration of a rigid projectile into thick target (metals,concrete,etc.)has been an intense research topic for many decades.The analysis of resistive force which a target exerts on the projectile during penetration is the basis of all relative problems.Usually the resistive force is obtained from the dynamic cavity expansion model.

    The resistive force obtained from the dynamic cavity expansion model is usually expressed as the following form[1].

    where d is the diameter of projectile shank;σyand ρ are yield stress and density of target material,respectively;A and B are dimensionless material constants[2-5];V is the rigid-body velocity of projectile during penetration;N1and N2are the dimensionless parameters related to the nose shape of projectile and the friction coeffcient μ[1].In general,if the nose shape can be represented by the nose shape function y=y(x)for an arbitrary nose shape,then the nose factors are defned as

    where h is the height of nose;and N*in Eq.(2c)is defned as the geometry factor of projectile.Regarding the ogival and conical noses,the formulae of N1,N2and N*are very simple [1].Obviously,the resistive force consists of two parts:quasistatic resistive force(target strength term)AN1σyand dynamic resistive force(inertial term)BN2ρV2.

    Fig.1.Dependence of(X/d)/I on I/N based on Eq.(3).

    There have been many arguments about the contributions of the target strength term and the inertial term to the resistive force.For example,Batra and Wright[6]numerically analyzed the resistive force of an infnitely long,sphericallynosed rigid projectile penetrating into a rigid plastic target in a series of simulations,and found that the dimensionless constant B in Eq.(1)is just 0.0733,which is much smaller than that used in general analysis.Thus,they concluded that the dependence of the target resistive force on the impact velocity is much less than that obtained from the dynamic cavity expansion model.Forrestal et al.and Frew et al.conducted a series of penetration tests of concrete targets to measure the acceleration curves[7,8]and found that the effect of the inertial term is very small in the range of the impact velocity(<460 m/s).Forrestal and Warren's analysis on the penetration of ogive-nosed projectile into aluminum target also suggested that the resistive force is dominated by the target strength term when the impact velocity is below a certain value[9].Recently,Rosenberg and Dekel conducted lots of simulations[10]and declared that,for different pairs of projectiles with various nose shapes(ogive,spherical,conical and fat)and target(aluminum and steel),the resistive force is constant and independent on the impact velocity in a certain range of impact velocities(<1.5 km/s).However,if the impact velocity exceeds a certain threshold value,the dynamic cavity expansion model,which includes both the target strength term and inertial term,is appropriate.Further more,the threshold ofimpact velocity depends on the nose shape of projectile and target material.

    Table 1Summary of projectile parameters.

    Table 2A summary of material parameters of different targets.

    Chen and Li defned two dimensionless parameters[1],i.e. impact function I and geometry function of projectileN,and then analyzed the parameters which dominate the penetration dynamics of a rigid projectile in detail.In fact,based on the relative discussions about I and N,the respective effects of the target strength term and the inertial term in the dynamic cavity expansion model can be analyzed,too.Based on the previous preparatory work in Ref.[11],the present paper further analyzed the penetration of rigid projectile,and obtained some conclusions which have good agreement with the test data in Refs.[7,8]and the simulation results in Ref.[10].

    2.Formulae of DOP

    Based on Eqs.(1,2),Chen and Li[1],Li and Chen[5] indicated that the dimensionless DOPs of different target materials subjected to rigid projectile impact are only dominated by two dimensionless factors,i.e.impact function I and geometry function of projectile N,and the dimensionless formula of DOP subjected to the impact of rigid projectiles with various nose shapes is

    where X is DOP,and the respective expressions of I and N are

    Fig.2.Simulations and model predictions of decelerations vs time for projectile with L/d=20 and ψ=3 penetrating aluminum target with σy=400 MPa at different impact velocities.

    Fig.3.Simulations and model predictions of decelerations vs time for projectiles with ψ=3 and different values of L/d penetrating aluminum target with σy=400 MPa at 1000 m/s.

    where M is the mass of projectile;V0is the initial impact velocity;I*is the dimensionless impact factor;and λ is the dimensionless mass ratio.

    Deep penetration usually relates to a sharp and slender projectile.The geometry function of projectile N,is large, usually N>100 and I<N.Thus,Taylor series expression of Eq.(3)gives

    Fig.1 shows the dependence of(X/d)/I on I/N based on Eq.(3).Chen and Li[1]further declared that X/d is much more sensitive to the impact function I than the geometry function of projectile N when the value of N is large enough (which usually corresponds to a sharp and slender projectile, e.g.earth penetrating projectile).If I<<N,the upper limit of Eq.(6)can be obtained.

    Fig.4.Simulations and model predictions of decelerations vs time for projectile with L/d=20 and ψ=3 penetrating aluminum targets with σy=400 MPa or 800 MPa at 1000 m/s.

    Fig.5.Simulations and model predictions of decelerations vs time for projectile with L/d=20 and ψ=3 penetrating steel targets with σy=400 MPa or 800 MPa at 1000 m/s.

    Regarding a concrete target,the depth of the front crater, k/2,should be included in Eqs.(3,6 and 7),[5].

    On the other hand,by integrating a large amount of test data,Chen and Li[1]suggested empirically that,in a wide range of I/N,the dimensionless DOP X/d has a simple linear relationship with the impact function I

    More discussion on Eq.(8)can be found in Ref.[1].

    We may further discuss the effect of the higher order terms in Eq.(6).Regarding the deep penetration,we usually have 100 < N < 200 and I≈ 50 [12],thuswehave 0.125<I/2N<0.25.Therefore,we may think that Eq.(8)is equal to the value that is Eq.(7)minus the higher order terms in Eq.(6).

    3.Analysis on resistive force

    Fig.6.Simulations and model predictions of decelerations vs time for conicalnosed projectile penetrating aluminum targets with σy=400 MPa or 800 MPa at 1000 m/s.

    Fig.7.Simulations and model predictions of decelerations vs time for conicalnosed projectile penetrating steel targets with σy=400 MPa or 800 MPa at 1000 m/s.

    From the defnitions in Eqs.(4)and(5),it is easy to know that Eqs.(7)and(8)are the expressions of displacement under a constant force.The total penetration time is te=V0/a, where a is the constant deceleration.Based on the formula of displacement,i.e.X=V0te-at2e/2=V20/(2a),X can be substituted with the expressions in Eqs.(7,8)to obtain the corresponding deceleration.

    Thus,the corresponding resistive force just equals to the target strength term in Eq.(1)or is multiplied by a constant value 4/π.Basically,according to the analysis in the last paragraph of Section 2,the difference between Eqs.(9)and (10)is caused by the effect of the higher order terms in Eq.(6).

    For concrete target,the crater region and the tunnel region need to be considered,respectively.Forrestal et al.[13]suggested the expressions of the resistive forces in crater and tunnel,respectively,

    Fig.8.Simulations and model predictions of decelerations vs time for spherical-nosed projectile with L/d=20 penetrating aluminum target with σy=400 MPa at different impact velocities.

    Fig.9.Simulations and model predictions of decelerations vs time for spherical-nosed projectile with L/d=20 penetrating aluminum and steel targets with σy=400 MPa at 1500 m/s.

    Comparatively,Rosenberg and Dekel[10]neglected the inertial term and gave the formulae of DOP and the deceleration of projectile during penetration

    Fig.10.Simulations and model predictions of decelerations vs time for fatnosed projectile penetrating steel target with σy=400 MPa at 500 m/s.

    Fig.11.Simulations and model predictions of decelerations vs time for fatnosed projectile penetrating aluminum and steel targets with σy=400 MPa at 1000 m/s.

    They also defned the effective length of projectile Leff=4M/(ρpπd2).

    Obviously,the nose shape factor of projectile,N1,is taken into account in Eqs.(9)and(11c)compared to Eq.(12),and thus Eqs.(9)and(11c)have a more comprehensive applicability.Besides,Eq.(9)only relates to the case of I<<N,i.e. the impact velocity is lower,while Eqs.(10)and(11c)are appropriate for a wider range of I/N.Therein,the following analyses are mainly to use Eqs.(10)and(11c)to discuss the resistive force.

    The simulations on penetration of rigid projectiles with various nose shapes,such as ogival,spherical,conical and fat, into the aluminum and steel targets gave the corresponding deceleration data[10].In the tests[7,8],the deceleration of projectile a during penetration was recorded by a singlechannel acceleration data recorder.According to the relative parameters of projectiles and targets,the corresponding decelerations a can be calculated from Eqs.(10)and(11c), and the stopping time of penetration,te,can be obtained by V0/a.Thus,the rationalities and explicabilities of Eqs.(10) and(11c)can be verifed compared with the test data and the simulation results.

    Fig.12.Test data and model predictions of decelerations vs time for projectile with ψ=3 penetrating concrete target with σcf=23 MPa at different impact velocities.

    Fig.13.Test data and model predictions of decelerations vs time for projectile with ψ=6 penetrating concrete target with σcf=23 MPa at 379 m/s.

    The parameters of projectiles and target materials in the calculations are listed in Table 1 and Table 2,respectively. In the calculations related to Eq.(10),according to Ref.[1], the friction coeffcient μ take values of 0.02 for ogival nose and μ=0.1 for spherical and conical noses,respectively,then the corresponding dimensionless parameter of projectile,N1,can be obtained.In the calculations related to Eq.(11c),according to Ref.[7],the resistive force R=165 MPa for projectiles with φ=76.2 mm and ψ=3 or 6 penetrating into the concrete target with σcf=23 MPa. Comparatively,R = 360 MPa for projectile with φ=76.2 mm and ψ=3 penetrating into the concrete target with σcf=39 MPa,and R=265 MPa for projectile with φ=76.2 mm and ψ=6 penetrating into the concrete target with σcf=39 MPa.

    Fig.14.Test data and model predictions of decelerations vs time for projectile with ψ=3 penetrating concrete target with σcf=39 MPa at different impact velocities.

    Fig.15.Test data and model predictions of decelerations vs.time for projectile with ψ=6 penetrating concrete target with σcf=39 MPa at different impact velocities.

    Figs.2-11 show the simulations of deceleration versus time[10]and model predictions from Eq.(10);Figs.12-15 show the test data of deceleration versus time[7]and model predictions from Eq.(11c);Fig.16 shows the test data of deceleration versus time[8]and model predictions from Eq. (11c).Specially,the theoretical prediction in Ref.[7]corresponding to the cases of low velocity impact are also given in Figs.12-16 and labeled as F(2003),and this prediction is less than that from Eq.(11c).Moreover,the crater region is neglected in the analysis.

    Fig.16.Test data and model predictions of decelerations vs.time for projectile with ψ=3 penetrating concrete targets with σcf=23 MPa and different values of D/d at different impact velocities.

    Table 3The ranges of impact velocity threshold Vc/(km·s-1)[10].

    Regarding that penetration of ogive-nosed projectile into aluminum and steel targets(Figs.2-5),in the range of impact velocity(V0≤1000m/s)in the simulations,the theoretical decelerations a from Eq.(10)have good agreement with the corresponding simulation results.Penetration of conical-nosed projectile(Figs.6,7)is similar to that of ogive-nosed projectile,and the numerical decelerations a are still constant for V0=1000 m/s but a little less than the modeling prediction. For spherical-nosed projectile(Figs.8,9),the numerical decelerations a also keep as a constant value for V0≤1000 m/s, and are larger than the modeling prediction.However,for V0=1500 m/s,the numerical deceleration a is no longer a constant,specially for steel targets,the effect of inertia term is almost same as that of target strength term at V0=1500 m/s (Fig.9).Penetration of fat-nosed projectile(Figs.10,11)is similar to that of spherical-nosed projectile.Thus,we can see that,for the penetration of rigid projectiles into aluminum and steel targets,when V0is under a certain value,the relative deceleration a can assuredly be approximated as a constant and simply expressed by Eq.(10).However,when V0exceeds a certain threshold of impact velocity Vc,the inertial term of resistive force becomes obvious and the assumption of constant deceleration no longer exists.Also,the different pairs of projectile-target corresponds to different values of Vc,i.e.,Vcis related to the projectile geometry and target material.

    From Figs.12-16,it can be seen that almost all the decelerations a are kept as an approximate constant,i.e.,the effect of the inertia term could be ignored.Specially,when the impact velocity is comparatively low(V0<200 m/s),the test data are more close to the corresponding predictions in Ref.[7].However,when the impact velocity increases (V0>200 m/s),the prediction of Eq.(11c)shows a better agreement with the test data.Moreover,the cratering time is far less than the subsequent penetration time,thus the history of the crater region could be neglected.As that mentioned before,the prediction in Ref.[7]is less than that from Eq.(11) with a factor of 4/π.The essential is that,for the linear dependence of dimensionless DOP X/d on the impact function I,is Eq.(7)or Eq.(8)more reasonable?It is shown from the above analysis that Eq.(7)is appropriate to the case of lower velocity impact and Eq.(8)is applicable for a wider range of impact velocity.

    Fig.17.The resistive force versus time.

    4.Analysis on thresholds of impact velocity Vc

    As mentioned in Section 3,Rosenberg and Dekel[10] conducted the numerical simulations on the penetrations of rigid projectiles with different nose shapes into aluminum and steel targets,respectively,and found that the hypothesis of constant resistive force comes into existence when the impact velocity V0locates in a certain range;however,when impact velocity increases to a threshold value Vc,the inertial term of the resistive force must be taken into account.Based on their simulations,Rosenberg and Dekel[10]also obtained the ranges of Vccorresponding to different pairs of projectiles and targets,as listed in Table 3.Meanwhile,they also analyzed the test data of concrete penetration[14]and found that the deceleration a is almost a constant in the impact velocity range of 400<V0<1200 m/s.

    We note that the variation of resistive force F in Eq.(1) with time t is an approximate parabola,as demonstrated qualitatively in Fig.17,and it can be validated by the dynamic cavity expansion model.In Fig.17,the broken line represents the target strength term Fs=πAσyN1d2/4 in Eq.(1)and corresponds to the deceleration predicted by Eq.(9).The difference between the solid curve AB and the broken line is the inertial termFd=πd2BρV2N2/4,and the dash-dotted line represents the constant resistive force Fc=AσyN1d2and corresponds to the deceleration predicted by Eq.(10).It should be noted that Fcis 4/π times of Fs.

    From Fig.17 it can be known that,when the impact velocity V0is comparatively low,the impulse of F(i.e.,the area surrounded by the solid curve OABC)approximates to the impulse of Fc(i.e.,the area under the dash-dotted line),and thus F could be simplifed approximately as the constant resistive force Fc.However,when V0reaches a higher value, the impulse of F must be greater than that of Fc.According to the impulse equivalence,the impact velocity threshold Vcexists only when the impulse of F is less than or equal to that of Fc.By ignoring the initial phase of penetration,this qualifcation could be expressed as As the curve of F(solid curveAB)is comparatively mild,it assumes that the deceleration is constant,and the rigid-body velocity of projectile during penetration process is

    and the total penetration time is

    From Eq.(13),an in equation can be obtained.

    Eq.(17)gives a parameter range of rigid projectile penetration under the assumption of constant resistive force.Corresponding to Fig.1,Eq.(8)can be employed to predict DOP in the range of 0<I/N≤0.82;while out of this range,the approximation of constant resistive force is no longer appropriate,i.e.the effect of the inertial term in dynamic cavity expansion model is distinct,and Eq.(3)should be employed to predict DOP.The present formulation further declares the applicable range of the empirical formula of DOP in Ref.[1] (Eq.(8)).

    Eq.(17)gives a threshold of impact velocity.

    In other words,for a rigid projectile penetration under V0≤Vc,it needs not to simultaneously consider the target strength term and the inertial term,instead,only the modifed constant resistive force Fc=d2AσyN1or Fc=d2R is used. Obviously,the threshold of impact velocity Vcdepends on the nose shape of projectile,target material and its strength,which is the same as the numerical results in Ref.[10].Regarding the different pairs of projectiles and targets,the thresholds of impact velocity Vccan be easily obtained from Eq.(18).

    Therein,Vcfor different pairs of projectile-target is discussed with Forrestal's test data,in which the projectiles include ogival(ψ=2,3,4.25,6),spherical and conical nose shapes,and the targets include elastic,perfectly plastic metals, strain-hardening metals,concrete and soil,etc.Flat-nosed projectile is also taken into account in our analysis in order to compare with the results in Ref.[10].6061-T651 aluminum and steel with strength of 400 MPa[2],as shown in Table 2, and concrete with σcf=58.4 MPa in Ref.[14]are selected as the analytical target materials.Moreover,for concrete target with σcf=58.4 MPa,its density is simply defned as ρ=2320kg/m3,A=9.422 and B=1 according to Li and Chen[5].Table 4 shows the different impact velocity thresholds of different pairs of projectile-target.

    It can be concluded that the predictions of impact velocity thresholds of different pairs of projectile-target in Table 4 are close to the numerical results in Table 3,which obtained byRosenberg and Dekel[10].In particular,the predictions of ogival(ψ=3),spherical,and fat noses are a little less than the corresponding ranges in Table 3,while the predictions of conical nose are a little larger than those in Table 3.The deviations between Tables 3 and 4 are trusted to come from the implication of theoretical model and numerical simulation,but they all locate in the allowed range of 10%.Moreover,the prediction of the effect of nose shape on Vcis completely consistent with the results in Ref.[10].

    Table 4Theoretical predictions of Vc(in m/s)of different pairs of projectile-target.

    Table 5Comparison of DOPs from theoretical formulae and simulations in the case of V0>Vc

    With re-check of Figs.2-11,since the impact velocities of most cases are less than the impact velocity threshold Vc,the assumption of constant resistive force is available.Exceptionally,regarding the cases of spherical and fat nose projectiles impacting aluminum and steel targets at V0=1500 m/ s and V0=1000 m/s,respectively,as the impact velocities exceed the threshold(see Figs.8,9 and 11),the effect of the initial term is quite dominating during the penetration.Similarly,as V0<Vcin the concrete penetrations[7,8],almost all the decelerations a are kept as constant,as shown in Figs. 12-16.

    Thus,the rationality of above theoretical analysis and Eq. (18)are further validated,and the applicability of the predictions of Vcon the other cases of Table 4 can also be confrmed.

    According to above analysis,in the range of V0≤Vc,Eq. (8)is reasonable for predicting DOP;and for V0>Vc,DOP should be calculated using Eq.(3).Due to the limit of experimental conditions,no test data of V0>Vchas been reported in published literatures regarding to the pairs of projectile-target in Table 4,and thus it is impossible to check the applicable range of Eqs.(3)and(8)by experimental results.However,Rosenberg and Dekel[10]also conducted some simulations under the condition of V0>Vc.Their simulations use two kinds of aspect ratios of projectile,i.e. L/d=20,10.Target materials are aluminum and steel with strength of 400 MPa,which are listed in Table 2.The DOPs predicted by theoretical analysis are further compared with the simulation results to check the applications of Eqs.(3)and(8). The comparative results are listed in Table 5,where the labels of X-ns,X-Eqs.(3)and(8).represent DOPs predicted by simulation,Eqs.(3)and(8),respectively.

    It can be found from Table 5 that,for any kind of nose shape,the most values of ratio X-Eq.(3)/X-ns are close to 1, and the relative deviations mostly locate in the allowed range of 20%.In contrast,the most values of ratio X-Eq.(8)/X-ns are larger than 1 and the relative deviations are out of the allowed range of 20%.It indicates that Eq.(8)is indeed inappropriate and only Eq.(3)can be used to predict DOP accurately in the case of V0>Vc.

    5.Conclusions

    According to the dimensionless formulae of DOP of different targets penetrated by a rigid projectile,this paper theoretically analyzed the resistive force exerting on the projectile during the penetration.According to the impulse equivalence,the impact velocity threshold Vcwas formulated, which is applicable for the assumption of constant resistive force.Vconly depends on the nose shape of projectile and target material.The applicable ranges of various formulae of DOP were also checked up based on the test data in Refs.[7,8] and the simulation results in Ref.[10].Especially,for V0>Vc, Eq.(8)formulated from the assumption of constant resistive force is no longer appropriate and only Eq.(3)is able to be employed to predict DOP.

    The values of Vcfor different pairs of projectile-target in the present theoretical analysis are consistent with the simulation results in Ref.[10].The relative test data also confrmed that the values of Vcare correct and applicable.In particular, the impact velocity threshold Vcare formulated out withcombined the effects of projectile geometry and target material.

    Acknowledgments

    This work is supported by the National Outstanding Young Scientist Foundation of China(11225213),and Major Program of National Natural Science Foundation of China(Grant No. 11390362).

    [1]Chen XW,Li QM.Deep penetration of a non-deformable projectile with different geometrical characteristics. Int J Impact Eng 2002;27(6):619-37.

    [2]Forrestal MJ,Luk VK.Dynamic spherical cavity-expansion in a compressible elastic-plastic solid.Trans ASME J ApplMech 1988;55(3):275-9.

    [3]Forrestal MJ,Luk VK.Penetration into soil targets.Int J Impact Eng 1992;12(5):427-44.

    [4]Luk VK,Forrestal MJ,Amos DE.Dynamics spherical cavity expansion of strain-hardening materials. Trans ASME J Appl Mech 1991;58(1):1-6.

    [5]Li QM,Chen XW.Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile.Int J Impact Eng 2003;28(1):93-116.

    [6]Batra,Wright TW.Steady state penetration of rigid perfectly plastic targets.Int J Eng Sci 1986;24(1):41-54.

    [7]Forrestal MJ,Frew DJ,Hickerson JP,Rohwer TA.Penetration of concrete targets with deceleration-time measurements.Int J Impact Eng 2003;28(5):479-97.

    [8]Frew DJ,Forrestal MJ,Cargile JD.The effect of concrete target diameter on projectile deceleration and penetration depth.Int J Impact Eng 2006;32(6):584-94.

    [9]Forrestal Michael J,Warren Thomas L.Penetration equations for ogivenose rods into aluminum targets.Int J Impact Eng 2008;35(8):727-30.

    [10]Rosenberg Z.Dekel E.The penetration of rigid long rods-revisited.Int J Impact Eng 2009;36(4):551-64.

    [11]Xiaowei Chen,Jicheng Li.Analysis of penetration depth and resistive force in the deep penetration of a rigid projectile.Explos Shock Waves 2009;29(6):584-9[in Chinese].

    [12]Chen XW,Li QM,Zhang FJ,He LL.Investigation of the structural failure of penetration projectiles.Int J Prot Struct 2010;1(1):41-65.

    [13]Forrestal MJ,Altman BS,Cargile JD,Hanchak SJ.An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. Int J Impact Eng 1994;15(4):395-405.

    [14]Frew DJ,Hanchak SJ,Green ML,Forrestal MJ.Penetration of concrete targets with ogive-nose steel rods.Int J Impact Eng 1998;21(5):489-97.

    Received 5 December 2013;revised 13 March 2014;accepted 12 June 2014 Available online 22 July 2014

    *Corresponding author.Tel.:+86 816 2484336.

    E-mail address:chenxiaoweintu@yahoo.com(X.W.CHEN).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2014.06.007 2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    精品久久久久久久久av| 一级毛片aaaaaa免费看小| 特级一级黄色大片| av播播在线观看一区| 免费电影在线观看免费观看| 国产精品久久久久久av不卡| 在线观看免费高清a一片| 午夜爱爱视频在线播放| 老师上课跳d突然被开到最大视频| 少妇高潮的动态图| 日本色播在线视频| 日日摸夜夜添夜夜爱| 超碰97精品在线观看| 久久久精品免费免费高清| 免费观看av网站的网址| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线 av 中文字幕| 男人添女人高潮全过程视频| 午夜福利高清视频| 久久久久久久午夜电影| 人妻少妇偷人精品九色| 久久久欧美国产精品| 男的添女的下面高潮视频| 亚洲精品色激情综合| 亚洲高清免费不卡视频| 中文字幕人妻熟人妻熟丝袜美| 看十八女毛片水多多多| 日韩伦理黄色片| 久久久久久久精品精品| 国产精品久久久久久精品古装| 人人妻人人看人人澡| 精品人妻偷拍中文字幕| 日韩强制内射视频| 97精品久久久久久久久久精品| 大又大粗又爽又黄少妇毛片口| 免费观看av网站的网址| 午夜激情久久久久久久| 在线免费观看不下载黄p国产| 日韩电影二区| freevideosex欧美| 免费大片18禁| 久久久久久久国产电影| 老司机影院毛片| 国产精品秋霞免费鲁丝片| 久久97久久精品| 亚洲精品456在线播放app| 亚洲,欧美,日韩| 国产精品福利在线免费观看| 亚洲色图综合在线观看| 国产久久久一区二区三区| 少妇高潮的动态图| 爱豆传媒免费全集在线观看| 简卡轻食公司| 国产在线男女| 国产黄频视频在线观看| 欧美zozozo另类| 晚上一个人看的免费电影| 一个人看视频在线观看www免费| 只有这里有精品99| 国产成人免费无遮挡视频| 中文字幕亚洲精品专区| 黄色日韩在线| 国产精品人妻久久久影院| 禁无遮挡网站| 新久久久久国产一级毛片| 成人亚洲欧美一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 大片免费播放器 马上看| 免费在线观看成人毛片| 亚洲精品乱码久久久v下载方式| 日本一本二区三区精品| 免费看不卡的av| 久久精品国产亚洲av涩爱| 久久久久久久久久久免费av| 亚洲一区二区三区欧美精品 | 在线免费观看不下载黄p国产| 欧美3d第一页| 国产乱人偷精品视频| 欧美一级a爱片免费观看看| 午夜视频国产福利| 99视频精品全部免费 在线| 边亲边吃奶的免费视频| 亚洲伊人久久精品综合| 18禁在线播放成人免费| 国产片特级美女逼逼视频| 久久精品夜色国产| 九九爱精品视频在线观看| 老女人水多毛片| 久热这里只有精品99| 高清视频免费观看一区二区| 1000部很黄的大片| 日韩制服骚丝袜av| 午夜免费鲁丝| 色视频www国产| 国产精品99久久久久久久久| 黄片wwwwww| 亚洲,一卡二卡三卡| 亚洲人成网站在线播| 国产欧美亚洲国产| 免费不卡的大黄色大毛片视频在线观看| 精品国产一区二区三区久久久樱花 | 亚洲精品亚洲一区二区| 久久国产乱子免费精品| 一本色道久久久久久精品综合| 青春草亚洲视频在线观看| 能在线免费看毛片的网站| 久久99热6这里只有精品| videos熟女内射| 人妻一区二区av| 国产精品久久久久久久电影| 日韩av在线免费看完整版不卡| www.色视频.com| 噜噜噜噜噜久久久久久91| 一级毛片我不卡| 女人被狂操c到高潮| 夜夜爽夜夜爽视频| 久久久久国产网址| 婷婷色综合大香蕉| 大片免费播放器 马上看| 国产综合懂色| 午夜日本视频在线| 性插视频无遮挡在线免费观看| 97在线人人人人妻| 免费观看av网站的网址| 欧美一区二区亚洲| 在线观看人妻少妇| freevideosex欧美| 能在线免费看毛片的网站| 午夜精品一区二区三区免费看| 欧美精品人与动牲交sv欧美| 在线观看国产h片| 超碰97精品在线观看| 国产精品.久久久| 99热网站在线观看| 久久久色成人| 亚洲在久久综合| 99热国产这里只有精品6| 亚洲精品影视一区二区三区av| 99热这里只有精品一区| 久久热精品热| 丝袜美腿在线中文| 中文字幕久久专区| 日本色播在线视频| 亚洲精品日本国产第一区| 看黄色毛片网站| 亚洲自拍偷在线| 一个人观看的视频www高清免费观看| 极品少妇高潮喷水抽搐| 国产极品天堂在线| av国产精品久久久久影院| 日本三级黄在线观看| 男女无遮挡免费网站观看| 国产高清不卡午夜福利| 精品午夜福利在线看| 亚洲成人久久爱视频| 国产又色又爽无遮挡免| 国产精品一及| 三级国产精品片| 女人久久www免费人成看片| 高清日韩中文字幕在线| 免费黄色在线免费观看| 亚洲国产精品专区欧美| 亚洲国产精品成人综合色| 久久精品国产a三级三级三级| 国产熟女欧美一区二区| 一级毛片电影观看| 久久精品国产鲁丝片午夜精品| 免费观看av网站的网址| 嫩草影院精品99| 久久久久久久大尺度免费视频| 在线 av 中文字幕| 日韩电影二区| 少妇被粗大猛烈的视频| 国产亚洲精品久久久com| 国产又色又爽无遮挡免| av免费在线看不卡| 亚洲精品456在线播放app| 99精国产麻豆久久婷婷| 99九九线精品视频在线观看视频| av在线老鸭窝| 神马国产精品三级电影在线观看| av国产久精品久网站免费入址| 青春草视频在线免费观看| 黄片无遮挡物在线观看| 亚洲四区av| 日韩成人伦理影院| 国产成人91sexporn| 国产精品一区www在线观看| 伊人久久精品亚洲午夜| 色哟哟·www| 国产一级毛片在线| 欧美日韩一区二区视频在线观看视频在线 | 成人国产麻豆网| 在现免费观看毛片| 精品少妇黑人巨大在线播放| 国产成年人精品一区二区| 欧美成人a在线观看| 91精品国产九色| 97超碰精品成人国产| 纵有疾风起免费观看全集完整版| 午夜激情久久久久久久| 大香蕉97超碰在线| 欧美97在线视频| 亚洲成人av在线免费| 亚洲熟女精品中文字幕| 亚洲色图综合在线观看| 蜜桃久久精品国产亚洲av| 日日摸夜夜添夜夜添av毛片| 国产成人精品久久久久久| 亚洲综合色惰| 成年人午夜在线观看视频| 高清在线视频一区二区三区| 夜夜看夜夜爽夜夜摸| 搡女人真爽免费视频火全软件| 久久精品久久精品一区二区三区| 丝瓜视频免费看黄片| 久久久久国产网址| 亚洲av男天堂| 国产成人aa在线观看| 精品酒店卫生间| 色哟哟·www| 日本三级黄在线观看| 亚洲av国产av综合av卡| 日本一二三区视频观看| 国产精品99久久久久久久久| 男女国产视频网站| 国产成人a区在线观看| 亚洲成人中文字幕在线播放| 国产精品一区www在线观看| 成年版毛片免费区| 日韩成人av中文字幕在线观看| 亚洲在线观看片| 国产 一区精品| 国内精品宾馆在线| 女人久久www免费人成看片| 国国产精品蜜臀av免费| 亚洲人成网站高清观看| 亚洲国产精品专区欧美| 又爽又黄无遮挡网站| 国内精品美女久久久久久| 女人十人毛片免费观看3o分钟| 久热这里只有精品99| 久久久成人免费电影| 亚洲欧美日韩另类电影网站 | 身体一侧抽搐| 久久午夜福利片| 欧美高清成人免费视频www| 亚洲国产精品专区欧美| 又爽又黄无遮挡网站| 国产女主播在线喷水免费视频网站| 欧美zozozo另类| 国产午夜精品一二区理论片| 久久久国产一区二区| 国产爽快片一区二区三区| 亚洲精品日韩在线中文字幕| 日韩亚洲欧美综合| 九九在线视频观看精品| 视频中文字幕在线观看| 18+在线观看网站| 国产精品国产三级国产av玫瑰| 国产精品伦人一区二区| 神马国产精品三级电影在线观看| 在线免费十八禁| 夫妻性生交免费视频一级片| 欧美激情在线99| 人人妻人人看人人澡| 日韩三级伦理在线观看| 中文在线观看免费www的网站| 亚洲熟女精品中文字幕| 久久精品久久久久久久性| 国产精品一区二区性色av| 性插视频无遮挡在线免费观看| 日韩成人伦理影院| 狂野欧美激情性xxxx在线观看| 免费黄频网站在线观看国产| 精品久久久久久电影网| 欧美日韩亚洲高清精品| 亚洲自拍偷在线| 水蜜桃什么品种好| 国产高潮美女av| 一级毛片我不卡| 人妻制服诱惑在线中文字幕| 青春草亚洲视频在线观看| 亚洲精品乱码久久久v下载方式| 人体艺术视频欧美日本| a级毛片免费高清观看在线播放| 麻豆乱淫一区二区| 国产白丝娇喘喷水9色精品| 亚洲av男天堂| 免费在线观看成人毛片| 欧美最新免费一区二区三区| 有码 亚洲区| 国产美女午夜福利| 亚洲在久久综合| 最新中文字幕久久久久| 国产亚洲av嫩草精品影院| 国产淫语在线视频| 免费看a级黄色片| 日韩成人av中文字幕在线观看| 18禁动态无遮挡网站| 网址你懂的国产日韩在线| 日韩大片免费观看网站| 亚洲欧美日韩另类电影网站 | 涩涩av久久男人的天堂| 中文字幕av成人在线电影| 欧美性感艳星| 新久久久久国产一级毛片| 亚洲av日韩在线播放| 国产精品三级大全| 欧美成人精品欧美一级黄| 人人妻人人澡人人爽人人夜夜| 97超视频在线观看视频| 精品人妻熟女av久视频| 九草在线视频观看| 亚洲国产欧美在线一区| 婷婷色av中文字幕| 老司机影院毛片| 久久久国产一区二区| 国产中年淑女户外野战色| 国产 精品1| 波多野结衣巨乳人妻| 日本午夜av视频| 欧美xxxx黑人xx丫x性爽| 亚洲av成人精品一区久久| 日韩中字成人| 美女视频免费永久观看网站| 久久国产乱子免费精品| 成年免费大片在线观看| 蜜臀久久99精品久久宅男| 国产精品熟女久久久久浪| 色网站视频免费| 亚洲,一卡二卡三卡| 伦精品一区二区三区| av一本久久久久| 国产高清三级在线| 中国三级夫妇交换| 国产成人a区在线观看| 亚洲av.av天堂| 日本三级黄在线观看| 欧美bdsm另类| 国产精品蜜桃在线观看| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 亚洲成人精品中文字幕电影| 一级av片app| 2022亚洲国产成人精品| 天堂俺去俺来也www色官网| 亚洲精品自拍成人| 少妇熟女欧美另类| 欧美亚洲 丝袜 人妻 在线| 国产精品99久久99久久久不卡 | 精品人妻熟女av久视频| 亚洲精品自拍成人| 国产美女午夜福利| 神马国产精品三级电影在线观看| 人妻系列 视频| 成人毛片a级毛片在线播放| 亚洲va在线va天堂va国产| 国产男女超爽视频在线观看| 亚洲国产最新在线播放| 人体艺术视频欧美日本| 2021少妇久久久久久久久久久| 一级毛片黄色毛片免费观看视频| av卡一久久| 欧美老熟妇乱子伦牲交| 国产真实伦视频高清在线观看| 国产熟女欧美一区二区| 高清av免费在线| 国产视频首页在线观看| 国产成人a∨麻豆精品| 久久精品国产鲁丝片午夜精品| 久久热精品热| av在线播放精品| 在线观看一区二区三区激情| 国产高潮美女av| 99九九线精品视频在线观看视频| 中文在线观看免费www的网站| 国产极品天堂在线| 国产成人a∨麻豆精品| 日韩欧美一区视频在线观看 | 美女高潮的动态| 成人亚洲欧美一区二区av| 国产高清国产精品国产三级 | 精品少妇黑人巨大在线播放| 69人妻影院| 不卡视频在线观看欧美| 一二三四中文在线观看免费高清| 人人妻人人澡人人爽人人夜夜| 18禁在线无遮挡免费观看视频| 亚洲色图av天堂| 18禁在线无遮挡免费观看视频| 亚洲成人av在线免费| 性色avwww在线观看| 一级毛片黄色毛片免费观看视频| 老司机影院成人| 91久久精品电影网| 久久精品夜色国产| 国产真实伦视频高清在线观看| 嘟嘟电影网在线观看| 亚洲天堂av无毛| 在线亚洲精品国产二区图片欧美 | 亚洲最大成人av| 涩涩av久久男人的天堂| 欧美bdsm另类| 色视频www国产| 身体一侧抽搐| 一级毛片我不卡| 国产探花极品一区二区| 欧美少妇被猛烈插入视频| 新久久久久国产一级毛片| 日韩欧美精品v在线| 亚洲精品日本国产第一区| 国产白丝娇喘喷水9色精品| 久久久精品欧美日韩精品| 免费少妇av软件| 日本wwww免费看| 干丝袜人妻中文字幕| 国产精品一区二区性色av| 亚洲精品影视一区二区三区av| av在线亚洲专区| 亚洲内射少妇av| 高清在线视频一区二区三区| 99热国产这里只有精品6| 日韩一区二区三区影片| 久久久亚洲精品成人影院| 亚洲va在线va天堂va国产| 岛国毛片在线播放| 精品少妇久久久久久888优播| 午夜视频国产福利| 嫩草影院新地址| 亚洲av二区三区四区| 丰满少妇做爰视频| 久久久久久九九精品二区国产| 秋霞在线观看毛片| eeuss影院久久| 日日啪夜夜爽| 午夜激情久久久久久久| 亚洲无线观看免费| 亚洲精品影视一区二区三区av| 肉色欧美久久久久久久蜜桃 | 深夜a级毛片| 九九爱精品视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本色播在线视频| 涩涩av久久男人的天堂| 国产一区二区亚洲精品在线观看| 十八禁网站网址无遮挡 | 美女xxoo啪啪120秒动态图| 成人高潮视频无遮挡免费网站| 国产高清有码在线观看视频| 色网站视频免费| 男人爽女人下面视频在线观看| 汤姆久久久久久久影院中文字幕| 成人亚洲精品av一区二区| 久久久久久伊人网av| 久久精品熟女亚洲av麻豆精品| 青春草亚洲视频在线观看| 欧美激情久久久久久爽电影| 一本久久精品| 22中文网久久字幕| 日本免费在线观看一区| 免费不卡的大黄色大毛片视频在线观看| 成人一区二区视频在线观看| 亚洲av一区综合| 久久女婷五月综合色啪小说 | 波野结衣二区三区在线| 在线免费十八禁| 国产午夜精品久久久久久一区二区三区| 亚洲人成网站在线播| 亚洲一级一片aⅴ在线观看| 免费人成在线观看视频色| 免费大片18禁| 99视频精品全部免费 在线| 简卡轻食公司| 亚洲精品成人久久久久久| 极品少妇高潮喷水抽搐| 久久久精品94久久精品| 国产精品一区二区三区四区免费观看| 丰满少妇做爰视频| 亚洲一区二区三区欧美精品 | 777米奇影视久久| 18+在线观看网站| 日日摸夜夜添夜夜爱| 国产午夜福利久久久久久| 狂野欧美激情性bbbbbb| 男女下面进入的视频免费午夜| 亚洲av成人精品一区久久| 舔av片在线| 久久女婷五月综合色啪小说 | 插逼视频在线观看| 一级黄片播放器| 在线观看一区二区三区| 成人美女网站在线观看视频| 青春草亚洲视频在线观看| 一个人看的www免费观看视频| 精品一区二区三区视频在线| 精品人妻视频免费看| 国产亚洲av片在线观看秒播厂| 精品久久国产蜜桃| 免费看光身美女| 亚洲欧美清纯卡通| 自拍偷自拍亚洲精品老妇| 久久久久久久久久久丰满| 国产黄a三级三级三级人| 免费看光身美女| 大香蕉97超碰在线| 亚洲欧美日韩无卡精品| 国产大屁股一区二区在线视频| 色哟哟·www| www.av在线官网国产| 国产亚洲精品久久久com| 2021天堂中文幕一二区在线观| 日本三级黄在线观看| 国产亚洲午夜精品一区二区久久 | 一本一本综合久久| 日本与韩国留学比较| 国产日韩欧美亚洲二区| 噜噜噜噜噜久久久久久91| 国产精品一区二区在线观看99| 丝袜脚勾引网站| eeuss影院久久| 青春草视频在线免费观看| 久久精品久久精品一区二区三区| 国内精品美女久久久久久| 男人狂女人下面高潮的视频| 精品午夜福利在线看| 在线精品无人区一区二区三 | 午夜精品一区二区三区免费看| 超碰av人人做人人爽久久| 欧美日韩一区二区视频在线观看视频在线 | 午夜免费观看性视频| 久久97久久精品| 国产女主播在线喷水免费视频网站| 特大巨黑吊av在线直播| 国产男人的电影天堂91| 久久久久国产网址| 国产 精品1| 亚洲美女视频黄频| 少妇的逼水好多| 一个人观看的视频www高清免费观看| 交换朋友夫妻互换小说| 亚洲久久久久久中文字幕| 精品久久国产蜜桃| 亚洲av二区三区四区| 少妇人妻精品综合一区二区| 亚洲综合色惰| 国产伦在线观看视频一区| 18禁裸乳无遮挡免费网站照片| 亚洲真实伦在线观看| 中文在线观看免费www的网站| 99九九线精品视频在线观看视频| 肉色欧美久久久久久久蜜桃 | 中国三级夫妇交换| 搞女人的毛片| 麻豆成人午夜福利视频| 亚洲欧美成人综合另类久久久| 国产在线男女| 一级毛片我不卡| av播播在线观看一区| 亚洲av成人精品一区久久| 69人妻影院| av网站免费在线观看视频| 国产久久久一区二区三区| 搡老乐熟女国产| 国产av码专区亚洲av| 亚洲成人一二三区av| 午夜激情久久久久久久| 成人免费观看视频高清| 少妇熟女欧美另类| 亚州av有码| 九草在线视频观看| 少妇人妻精品综合一区二区| 色吧在线观看| 不卡视频在线观看欧美| 简卡轻食公司| 亚洲国产精品专区欧美| 欧美人与善性xxx| 久久国内精品自在自线图片| eeuss影院久久| 另类亚洲欧美激情| 一级毛片我不卡| 少妇人妻一区二区三区视频| 国产免费又黄又爽又色| 91精品伊人久久大香线蕉| 蜜臀久久99精品久久宅男| 亚洲av成人精品一区久久| 日日摸夜夜添夜夜爱| 国产黄色免费在线视频| 国产一区有黄有色的免费视频| 亚洲,一卡二卡三卡| 男人舔奶头视频| 久久久a久久爽久久v久久| 久久99热这里只频精品6学生| av网站免费在线观看视频| av黄色大香蕉| 久久99热这里只频精品6学生| 久久热精品热| 国产 一区 欧美 日韩| 午夜免费鲁丝| 日韩人妻高清精品专区| 亚洲天堂国产精品一区在线| 日韩成人av中文字幕在线观看| 22中文网久久字幕| 国产大屁股一区二区在线视频| 免费观看性生交大片5| 中文字幕av成人在线电影| 国产 一区 欧美 日韩| 国产av国产精品国产| 男人舔奶头视频| 亚洲在线观看片| 大片免费播放器 马上看| 国产一区二区三区av在线| 日韩欧美一区视频在线观看 | 亚洲国产精品成人综合色| 免费看a级黄色片|