• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds

    2014-02-14 09:23:32MAGUDEESWARANSreehriNAIRLSUNDARHARIKANNAN
    Defence Technology 2014年3期
    關(guān)鍵詞:精簡專賣店階級

    G.MAGUDEESWARAN*,Sreehri R.NAIRL.SUNDAR,N.HARIKANNAN

    aDepartment of Mechanical Engineering,PSNA College of Engineering and Technology,Dindigul 624 622,Tamilnadu,India

    bAdor Welding Limited,Melakottaiyur,Via-Vandalur,Chennai 600 048,Tamilnadu,India

    Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds

    G.MAGUDEESWARANa,*,Sreehari R.NAIRa,L.SUNDARb,N.HARIKANNANa

    aDepartment of Mechanical Engineering,PSNA College of Engineering and Technology,Dindigul 624 622,Tamilnadu,India

    bAdor Welding Limited,Melakottaiyur,Via-Vandalur,Chennai 600 048,Tamilnadu,India

    The activated TIG(ATIG)welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked infuence on its solidifcation cracking tendency.The major infuencing ATIG welding parameters,such as electrode gap,travel speed,current and voltage,that aid in controlling the aspect ratio of DSS joints,must be optimized to obtain desirable aspect ratio for DSS joints.Hence in this study,the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array(OA) experimental design and other statistical tools such as Analysis of Variance(ANOVA)and Pooled ANOVA techniques.The optimum process parameters are found to be 1 mm electrode gap,130 mm/min travel speed,140 A current and 12 V voltage.The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidifcation cracking.

    Duplex stainless steel;ATIG welding;Aspect ratio;Taguchi design;Ferrite number;Solidifcation cracking

    1.Introduction

    Duplex stainless steel(DSS)typically comprises the microstructures consisting of approximately equal proportions of body-centered cubic ferrite and face-centered cubic austenite. These two phases possess varying affnities for alloying elements in duplex stainless steels[1-3].Duplex stainless steel is a common structural material used in the oil and gas industries,and has special applications in chemical,wastewater treatment and marine engineering felds as well.Strength of DSS is higher than that of the single-phase austenitic stainless steel.DSS are far better than many single-phase austenitic or ferritic stainless steels in terms of resistance to localized corrosion as well as stress corrosion cracking(SCC)[4-6]. DSS can be used in defence applications instead of conventionally used Austenitic stainless steel for the fabrication of water bowsers for carrying portable fresh drinking water to military operational areas where good quality of drinking water is not available and needed.The use of DSS for fabrication of water bowsers in military applications will be very much useful because it will increase the payload capacity of the water bowsers.A major concern for duplex stainless steel is that welding can degrade the strength and corrosion resistance of the microstructures by producing unbalanced ferrite/ austenite content in the weld metal.The phase balance of the weld metal is critical to maintain the original chemical and physical properties of duplex stainless steel.Therefore,thetechniques that control the ferrite/austenite content of the weld metal are very important[7].In the heat-affected zone(HAZ), the phase ratio is strongly dependent on the weld thermal cycle[8,9].

    Welding process,fller metal additions,shielding gas and heat input are important factors that contribute to establish the equal proportion of austenite-ferrite phase ratio(1:1)in the weld metal region.However,in practice it is not possible to establish 1:1 austenite-to-ferrite ratio in all the zones of the welded joints.The advisable and desired ferrite content in the weld joint is 30-55%for better performance of the duplex stainless steel to serve the purpose for which it is intended. Welding procedures should be designed to produce this same structure in the weld metal and heat-affected zones.Most of the conventional welding processes,such as submerged arc welding(SAW),shielded metal arc welding(SMAW)and tungsten inert gas(TIG)welding,can be used for welding DSS[5,8,10].TIG welding process is one of the most popular technologies for welding thin materials in manufacturing industries because it produces high quality welds.However, compared with the metal inert gas welding process,the TIG welding has poor joint penetration when thick materials are welded in a single pass.Generally,the single pass TIG welding with argon as shielding gas is limited to a 3 mm depth for the butt-joint of stainless steels.Therefore,it is necessary to improve the penetration capability and manufacturing productivity of TIG welding[11-14].One of the most notable techniques is to use activating fux with TIG welding.To make an activating fux,powder ingredients such as oxides,chlorides,and fuorides are typically added to acetone or ethanol solvent to produce a paint-like constituent. Before welding,a thin layer of the fux was brushed on to the surface of the joint to be welded[15-19].The Paton Welding Institute of Kiev(Ukraine)was the frst to develop this process[19],called the activated TIG welding(ATIG)process. Activated TIG improves upon conventional GTAW,by increasing the single pass joining thickness from 6 to 10 mm for stainless steel[7,20].The activated TIG welding process typically results in a 200-300%increase in penetration capability,thereby reducing weld time and costs for manufacturers[21-24].

    The activated TIG(ATIG)process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.Higher width of the weld bead results in greater heat affected zone which is not desirable for any welded joint.A controlled weld thermal cycle of activated TIG(ATIG)welding process that gives deeper penetration and smaller width is very much appreciated for DSS joints.Therefore,it is essential to analyze both depth of penetration,D,and width of the weld bead,W.The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked infuence on its solidifcation cracking tendency.Therefore,it is necessary to explore the most infuencing ATIG welding process parameters that aid in controlling the aspect ratio of DSS joints and must be optimized to obtain desirable aspect ratio for DSS joints for structural integrity of the joints by using a systematic process optimization techniques.Taguchi method was developed as a process optimization technique by Genichi Taguchi.This approach provides the design engineers with a systematic and effcient method for determining nearoptimum design parameters for performance and cost. Additionally,the optimum working conditions determined from the laboratory work can be reproduced in the real production environment[25,26].Various steps of Taguchi method are shown in Fig.1.Hence,in this study,an attempt has been made to optimize the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds using Taguchi orthogonal array(OA)experimental design and other statistical tools such as Analysis of Variance(ANOVA) and Pooled ANOVA techniques[27].This investigation assumes signifcance,as no systematic study has been reported so far,to analyze the infuence of process parameters of ATIG welding to obtain desirable aspect ratio(ASR)of DSS joints.

    2.Experimental work

    2.1.Base metal

    The base metal used in this study is a duplex stainless steel (ASTM/UNS:S32205),which chemical composition is presented in Table 1.The microstructural feature of the base metal exhibits a dulplex structure with embedded grains of austenite(white)and ferrite(brown),as shown in Fig.2.

    2.2.Process parameters and their levels

    The independently controllable predominant process parameters of ATIG welding that control aspect ratio of DSS joints are identifed as electrode gap,travel speed,current andvoltage.The ranges of the parameters are decided based on the several experimental trials and are listed in Table 2.

    Fig.1.Various steps of Taguchi method.

    Table 1Chemical composition(wt%)of base metal.

    2.3.Taguchi design of experiments(DOE)

    Taguchi method is a systematic application of design and analysis of experiments for the purpose of designing and improving product quality.The Taguchi method uses a special OA to study all the designed factors with a minimum of experiments.Orthogonality means that each factor is independently evaluated and the effect of one factor does not interfere with the estimation of the infuence of another factor[28,29]. Table 2 shows the key four ATIG welding process parameters investigated at the three experimental levels.In the next step,a matrix was designed with the appropriate OAs for the selected parameters and their levels.

    The OA experimental design method was chosen to determine an experimental plan,L9(34)(Table 3),because it is the most suitable for the conditions being investigated;for the four parameters,each has three values[30].The L9(34),which indicates 9 experimental trials,is one of the standard orthogonal experimental plans of Taguchi.The order of the experiments was obtained by inserting the parameters into the columns of OA,L9(34),chosen as the experimental plan listed in Table 3,but the order of experiments was made randomly to avoid the noise sources which had not been considered initially and took place during an experiment and affected the results in a negative way.

    Taguchi method recommends the signal-to-noise(S/N) ratio,which is a performance characteristic,instead of the average value.Optimum conditions were determined using the S/N ratio from experimental results[27].There are three S/N ratios of common interest for the optimization of static problem,i.e.,the higher the better(HB),the lower the better(LB), and the nominal the better(NB).The larger S/N ratio represents to better performance characteristic.

    Fig.2.Microstructure of base metal(A:Austenite;F:Ferrite).

    The mean S/N ratio at each level for various factors was calculated.Moreover,the optimal level,that is the largest S/N ratio among all the levels of the factors,can be determined.A statistical analysis of variance(ANOVA)was also performed to indicate which process parameters are statistically signifcant;the optimal combination of the process parameters can then be reproduced.In order to validate the methodology,the confrmation experiments must be performed using optimal process parameters to verify the predicted results.If the predicted results are confrmed,the suggested optimum working conditions should be adopted[31].

    2.4.Conducting the experiments as per design matrix

    Rolled plate made from 6 mm thick base metal was sliced into small required plates(100 mm×150 mm)by abrasive cutters and then they were ground.Square butt joint confguration,as shown in Fig.3,is prepared to fabricate the joints by tungsten inert gas(TIG)welding using activated fux without addition of any fller material(autogenous welding).In this study,the autogenous welding was carried out using a typical branded activated fux:(Ador A-TIG Flux 1).The branded activated fux is a penetration enhancing activating fux.It is made of different kinds of inorganic oxide materials which change the surface activity and primarily reduces the heat energy required for penetration.Surface active elements in the weld pool ensure that the joint penetration increases drastically.Arc is constricted by the fux coated on the surface of the plate,and the concentrated arc energy increases weld penetration.The initial joint confguration was obtained by securing the plates in position using tack welding.The direction of welding was normal to the rolling direction.All necessary care was taken to avoid joint distortion,and the joints were made after the plates were clamped in a welding fxture.The welding was carried out using a TIG welding machine(Model:HF 3000 AD,Make:Ador Welding Limited).The electrode gap and the travel speed were controlled and maintained by using an automatic torch traveler (Model:E-cutpro(Panther NM),Make:Ador Welding Limited).The welding was carried out by using 3.2 mm nonconsumable tungsten electrode with high-purity argon (99.99%)with a fow rate of 18 L per minute.The welding was carried out in sequential order with the parameters shown in Table 3.

    2.5.Recording of responses

    Macro examination was carried out using a stereo microscope(Model:5737312,Make:LEICA)incorporated with an image analyzing software.The specimens for macro examination were sectioned according to the required sizes and werepolished using different grades of emery papers.Final polishing was done using the diamond compound(1μm particle size)in the disc polishing machine.The specimens were etched with 10%NaOH at 2-3 V and 6-10 V by using electrolytic etching method,respectively.From the obtained macrostructure depth of penetration,D,and the width of weld bead,W,were measured for all the joints,as shown in Fig.4. The aspect ratio(ASR)was calculated for all the joints and are listed in Table 4.D and W(Fig.5)were measured and the aspect ratio(ASR)was also calculated for the joint fabricated using the optimized parameters and is listed in Table 8. Further,the ferrite content(FN:ferrite number)was measured in the weld zone for the above joint by using a ferritescope (Model:MP 30 E,Make:Fischer)to check the austenite-ferrite balance and the average value is tabulated in Table 8.

    Table 2Process Parameters and their levels.

    2.6.Evaluating the signal-to-noise(S/N)ratios

    In this study,an L9(34)OAwith 4 columns and 9 rows was used.This array can handle three-level process parameters. Nine experiments were necessary to study the welding parameters using the L9(34)OA.In order to evaluate the infuence of each selected factor on the responses,the S/N ratios for each control factor was calculated.

    In the Taguchi method,the terms‘‘signal’’and‘‘noise’’represent the desirable and undesirable values for the output characteristic,respectively.Taguchi method uses the S/N ratio to measure the quality characteristic deviating from the desired value.The S/N ratios are different according to the type of characteristic.

    Suitable S/N ratio must be chosen using previous knowledge,expertise,and understanding of the process.When the target is fxed and there is a trivial or absent signal factor (static design),it is possible to choose the S/N ratio,depending on the goal of the design.

    As mentioned above,there are three categories of quality characteristics,i.e.,HB,LB,and NB.The performance statistics were chosen as the optimization criterion.In this study, aspect ratio(ASR)is treated as a characteristic value.Since the aspect ratio is intended to be maximized,they were both used for‘‘HB’’situations,and evaluated using the following equation[27,31].

    !

    where S/N,defned as the signal-to-noise ratio(S/N unit:dB); n is the number of repetitions for an experimental combination;and Yiis a performance value of the ith experiment.Table 4 shows the experimental results for aspect ratio and the corresponding S/N ratios calculated from Eq.(1).The total mean S/N ratio for aspect ratio is ηm=(total S/N ratio)/ (number of experimental runs)=2.67 dB.Moreover,the calculated heat inputs for each series of experiments are also listed in Table 4.

    It is then possible to separate out the effect of each parameter at the different levels since the experimental design is orthogonal[32].In fact,the average performance(mean S/N ratio)of a factor at certain level is the infuence of the factor at this level on the mean response of the experiments.In the case of aspect ratio,in order to compute the average performance of the factor B at Level 1(denoted as B1),the results for trialsincluding factor B1are added and then divided by the number of such trials:

    Table 3Experimental Layout using L9(34)orthogonal array(OA)with coded and original level values.

    Fig.3.Joint confguration.

    The mean S/N ratio for each level of the other parameters can be calculated in the same way.The mean S/N ratio for each level of the parameters is summarized,and the S/N response table for aspect ratio is listed in Table 5.

    Rank 1 in Table 5 shows that electrode gap has more signifcant effect on the aspect ratio,followed by current,voltage and travel speed.Also,it is inferred that travel speed does not have much infuence on the aspect ratio.However,the levels of the parameters have different infuences on the aspect ratio.

    2.7.Analysis of variance(ANOVA)

    The knowledge of the contribution of individual factors is critically important for the control of the fnal response.The ANOVA is a common statistical technique to determine the percent contribution of each factor for the experimental results [33].It is used to calculate the parameters known as sum of squares(SS),corrected sum of squares(SS'),degree of freedom(D),variance(V),and percentage of the contribution of each factor(P).Since the procedure of ANOVA is very complicated and employs a considerable number of statistical formulae,only a brief description is given as follows[27,34]:

    Fig.4 Macrostructure of the joints revealing the width of the weld bead and depth of penetration for DSS Joints as per L9(34)orthogonal array illustrated in Table 3 (WZ:weld zone;BMZ:base metal zone;UPBM:unpenetrated base metal).

    Fig.4.(continued).

    where SSTis the total sum of squares;m is the total number of the experiments;and ηiis the S/N ratio at the ith test.

    where SSprepresents the sum of squares from the tested factors;p is the one of the tested factors,j is the level number of this specifc factor p;t is the repetition of each level of the factor p;and Sηjis the sum of S/N ratio involving this factor and the level j.

    Table 4Experimental results and corresponding S/N ratios and heat inputs.

    where Vpis the variance from the tested factors;and Dpis the degree of freedom for each factor.

    Basically,the degrees of freedom(DOF)for OA should be greater than or at least equal to those for the parameters[27]. For example,a fve-level design parameter counts for four-DOF.In this study,the experimental DOF is 8(number of trails minus one);while parameters-DOF is 2(number of parameter levels minus one).

    Fig.5.Macrostructure of the joints revealing the width of the weld bead and depth of penetration for DSS Joints fabricated using the optimized process parameters as illustrated in Table 8(WZ:weld zone;BMZ:base metal zone; UPBM:unpenetrated base metal).

    where Ppis the percentage of the contribution to the total variation of each individual factor.

    The ANOVA results are presented in Table 6.As seen in Table 6,the electrode gap is the most signifcant factor on aspect ratio with contribution of 53.99%,followed by current with contribution of 27.62%.The voltage and travel speed are insignifcantwith contribution of14.55% and 3.82%, respectively.

    2.8.Pooled ANOVA

    In the ANOVA analysis,if the contribution percent is high, the contribution of the factors to that particular response is more.Likewise,the smaller the contribution percent is,the lower the contribution of the factors on the measured response is.Therefore,another analysis is conducted by pooling the insignifcant factors to error(see Table 7).The process of disregarding an individual factorcontribution and then adjusting the contribution of the other factor is known as pooling[34].The results of ANOVA after pooling for aspect ratio are presented in Table 7.Pooled ANOVA values reveal that the electrode gap(44.80%)is a signifcant factor for the aspect ratio in the ATIG welding process.

    Once the optimal level of the design parameters is selected, the fnal step is to predict and verify the improvement of the quality characteristic using the optimal level of the design parameters[32,35].The S/N ratio predicted using the optimal level of the design parameters can be calculated[32]:

    where ηmis the total mean S/N ratio;ηiis the mean S/N ratio at the optimal level;and n is the number of the main designparameters that affect the quality characteristic.The S/N ratio predicted using the optimal ATIG parameters for aspect ratio can then be obtained and the corresponding aspect ratio can also be calculated using Eq.(1).

    Table 5S/N response table.

    Table 6Results of the ANOVA.

    Table 8 shows the comparison of the predicted aspect ratio with the experimental results using the optimal conditions. There is good agreement between the predicted and experimental aspect ratios being observed.However,the optimized parameters obtained for welding ASTM/UNS S32205 DSS in this study should be justifed for its use in real-time engineering application and are illustrated below.

    3.Discussion

    Solidifcation cracking generally occurs slightly above the melting temperature of the lowest melting constituent,which is sometimes referred to as the effective solidus temperature [36].At this point in the solidifcation process of weld,the adjacent dendrites impinge upon each other to form the solidifed bridges,which are surrounded by the regions containing lower-melting interdendritic liquid.These solid bridges are subject to the greatest shrinkage-induced strain as the surrounding material cools.A threshold amount of either lowmelting liquid or strain may cause the fracture of these solid bridges and the subsequent formation of a weld hot crack [37,38].Based on the correlation between cracking susceptibility and solidifcation behaviour developed for the austenitic stainless steels,the susceptibility of the duplex alloys to hot cracking would be expected to be low[39].The solidifcation cracking is generally produced during the fnal stages of solidifcation and very much depends on the geometrical factors, such as width of weld bead,W,and depth of penetration,D.W and D are two major factors in achieving a good weld and depend on the welding procedure to a large extent.The shape of a weld in terms of width-to-depth ratio known as aspect ratio(ASR)has a marked infuence on its solidifcation cracking tendency,which can be minimized by ensuring that ASR is between 1 and 1.4 and is illustrated in Fig.6[40].ASR is a predominant factor that affects solidifcation cracking in structural steel joints and is applicable to DSS joints also.In this study,ASR is found to be 1.24(W:7.12 mm;D:5.72 mm) for the joint fabricated using optimized process parameters: travel speed(130 mm/min),current(140 A),voltage(12 V) and electrode gap(1 mm).There is no evidence solidifcation cracking macroscopically and is evident from the macrograph for the above joint(Fig.5).

    Max heat input allowed for this grade is 2.5 kJ/mm.For TIG welding,it is desirable to have the heat input from 0.75 to1.5 kJ/mm.The optimized process parameters of activated GTA welding process in this study yielded a heat input of 0.778 kJ/mm which is within the recommended levels.The goal to weld any duplex stainless steel is to obtain fusion and heat-affected zones having the excellent corrosion resistance of the base metal and suffciently high impact toughness for application.ASTM/UNS S32205 grade base metal has an annealed structure with the equal proportion of austeniteferrite phases and is virtually free of intermetallic phases. Welding procedures should be designed to produce this same structure in the weld metal and the heat-affected zones.The weld thermal cycle,fller metal and protection atmosphere, can control this structure.Near the fusion temperature,the structure of duplex stainless steels is entirely ferritic.The desired 30-55%ferrite can be achieved only if the cooling rate is slow enough to allow austenite to re-form as the weld cools.If the cooling rate is too slow,however,embrittling intermetallic phases may form in spite of the presence of the optimum ferrite content.Extremely low heat input followed by rapid cooling may produce a predominant ferritic heat-affected zone with reduced toughness and corrosion resistance[41,42]. In this study,the average ferrite number(FN)in the weld zone for the joints fabricated using the optimized process parameters is 71.62,and the ferrite content is approximately 50.674% which is well within the acceptable range.Hence,the optimized process parameters are justifed for welding ASTM/ UNS S32205 grade DSS by ATIG welding process.

    Table 7Pooled ANOVA for aspect ratio.

    Table 8Evaluation of the predicted aspect ratio with the experimental results of the confrmation experiment using optimal condition.

    Fig.6.Effect of weld shape on solidifcation cracking tendency[40].

    4.Conclusions

    In this study,the ATIG welding process parameters were optimized for ASTM/UNS S32205 DSS joints to obtain desirable aspect ratio,and the results were analysed in detail. We can draw the following conclusions.

    1)The electrode gap is the predominant factor that affects the aspect ratio of DSS welds fabricated using ATIG welding process.

    2)The optimum welding parameters are found to be electrode gap of 1 mm,travel speed of 130 mm/min,current of 140 A,and voltage of 12 V.

    3)The confrmation experimental results for aspect ratio is in good agreement with the data analyzed by the Taguchi method

    1999年,愛彼進(jìn)入中國市場。在精簡的通路策略下,據(jù)統(tǒng)計(jì),到2018年6月,愛彼目前在中國大陸僅設(shè)有6家專賣店。在這種情況下,如何利用合適的線上渠道,廣泛但精準(zhǔn)的觸達(dá)更多中國新興中高產(chǎn)階級人群,是愛彼的第一層需求。

    4)The aspect ratio is found to be 1.24 for the joints fabricated using the optimized process parameters and is well within the acceptable range to avoid solidifcation cracking.

    5)Average ferrite number(FN)in the weld zone for the joints fabricated using the optimized process parameters is 71.62,and the ferrite content is approximately 50.674% which is well within the acceptable range.

    6)There is no evident solidifcation cracking macroscopically for the DSS joints fabricated using optimized ATIG welding process parameters.

    7)DSS can be used for fabrication of water bowsers for carrying portable fresh drinking water to military operational areas where good quality of drinking water is not available.

    Acknowledgement

    The authors are thankful to M/s Outokumpu Stainless Steel AB,Sweden for providing duplex stainless steel base metal and M/s Ador Welding Limited,Chennai,India for providing the fabrication facility and consumables for this investigation.

    [1]Davis JR.ASM specialty handbook-stainless steels.Materials Park,OH: ASM International;1996,ISBN 0-87170-503-6.

    [2]Farnoush H,Momeni A,Dehghani K,Aghazadeh Mohandesi J, Keshmiri H.Hot deformation characteristics of 2205 duplex stainless steelbased on thebehaviorofconstituentphases.MaterDes 2010;31(1):220-6.

    [3]Tavares SSM,Terra VF,Parada JM,Cindra Fonseca MP.Infuence of the microstructure on the toughness of a duplex stainless steel UNS S31803. J Mater Sci 2005;40(1):145-54.

    [4]Eriksson H,Bernhardsson S.The applicability of duplex stainless steels in sour environments.Corrosion 1991;47(9):719-27.

    [5]Muthupandi V,Bala Srinivasan P,Seshadri SK.Effect of Weld metal chemistry and heat input on the structure and properties of duplex stainless steel Weld.Mater Sci Eng A 2003;358(1-2):9-16.

    [6]Chern Tsann-Shyi,Tseng Kuang-Hung,Tsai Hsien-Lung.Study of the characteristics of duplex stainless steel activated tungsten inert gas welds. Mater Des 2011;32(1):255-63.

    [7]Hertzman Staffan,Ferreira Paulo J,Brolund Bengt.An experimental and theoretical study of heat-affected zone austenite reformation in three duplex stainless steels.Mettallurg Mater Trans A 1997;28A:277-85.

    [8]Iris Alvarez-Armas duplex stainless steels:brief history and some recent alloys recent patents on mechanical engineering1;2008.p.51-7.

    [9]Saeid T,Abdollah-Zadeh A,Assadi H,Ghaini FM.Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel.Mater Sci Eng A 2008;496(1-2):262-8.

    [10]Reddy GM,Rao KS.Microstructure and mechanical properties of similar and dissimilar stainless steel electron beam and friction welds.Int J Adv Manuf Technol 2009;45(9-10):875-88.

    [11]Parmar RS.Welding engineering and technology.2nd ed.New Delhi: Khanna Publishers;2003.

    [12]Huang HY,Shyu SW,Tseng KH,Chou CP.Evaluation of TIG fux welding on the characteristics of stainless steel.Sci Technol Weld Join 2005;10(5):566-73.

    [13]Shyu SW,Huang HY,Tseng KH,Chou CP.Study of the performance of stainless steel A-TIG welds.J Mater Eng Perform 2008;17(2):197-201. [14]Fujii H,Sato T,Lu SP,Nogi K.Development of an advanced A-TIG (AA-TIG)welding method by control of Marangoni convection.Mater Sci Eng A 2008;495(1-2):296-303.

    [15]Huang HY,Shyu SW,Tseng KH,Chou CP.Effects of the process parameters on austenitic stainless steel by TIG-fux welding.J Mater Sci Technol 2006;22(3):367-74.

    [16]Lu SP,Li DZ,Fujii H,Nogi K.Time dependant weld shape in Ar-O2 shielded stationary GTA welding. J Mater Sci Technol 2007;23(5):650-4.

    [17]Tseng Kuang-Hung,Hsu Chih-Yu.Performance of activated TIG process in austenitic stainless steel welds.J Mat Proc Tech 2011;211(3):503-12.

    [18]Chern TS,Tseng KH,Tsai HL.Study of the characteristics of duplex stainless steelactivated tungsten inertgaswelds.MaterDes 2011;32(1):255-63.

    [19]Gurevich SM,Zamkov VN,Kushnirenko NA.Improving the penetration of titanium alloys when they are welded by argon tungsten arc process. Avtom Svar 1965;9:1-4.

    [20]Leconte S,Paillard P,Chapelle P,Henrion G,Saindrenan J.Effect of oxide fuxes on activation mechanisms of tungsten inert gas process.Sci Technol Weld Join 2006;11(4):389-97.

    [21]Marya M,Edwards GR.Chloride contributions in fux-assisted GTA welding of magnesium alloys.Weld J 2002;81(12):291s-8s.

    [22]Heiple CR,Roper JR.Effect of selenium on GTAW fusion zone geometry.Weld J 1981;60(8):143s-5s.

    [23]Heiple CR,Roper JR.Mechanism for minor element effect on GTA fusion zone geometry.Weld J 1982;61(4):97s-102s.

    [24]Lucas W,Howse D.Activating fux-increasing the performance and productivity of the TIG and plasma processes.Weld Metal Fabr 1996;64(1):11-7.

    [25]Ozbay E,Oztas A,Baykasoglu A,Ozbebek H.Investigating mix proportions of high strength self compacting concrete by using Taguchi method.Constr Build Mater 2009;23(2):694-702.

    [26]Turkmen I,Gul R,Celik C,Demirboga R.Determination by Taguchi method of optimum conditions for mechanical properties of high strength concrete with admixtures of silica fume and blast furnace slag.Civ Eng Environ Syst 2003;20(2):105-18.

    [27]Yousefeh M,Shamanian M,Saatchi A.Optimization of the pulsed current gas tungsten arc welding(PCGTAW)parameters for corrosion resistance of super duplex stainless steel(UNS S32760)welds using the Taguchi method.J Alloys Compd 2011;509(3):782-8.

    [28]Ross P,Taguchi J.Techniques for quality engineering.McGraw-Hill International Editions,New York,give the press;1988.

    [29]Wang Y,Northwood DO.Optimization of the polypyrrole-coating parameters for proton exchange membrane fuel cell bipolar plates using the Taguchi method.J Power Sources 2008;185(1):226-32.

    [30]Madhav Phadke S.Quality engineering using robust design.Upper Saddle River,NJ:Prentice Hall;1989.

    [31]BerilGonder Z,Kaya Y,Vergili I,Barlas H.Optimization of fltration conditions for CIP wastewater treatment by nanofltration process using Taguchi approach.Sep Purif Technol 2010;70(3):265-73.

    [32]Yang WH,Tarng YS.Design optimization of cutting parameters for turning operations based on the Taguchi method.J Mater Process Technol 1998;84(1-3):122-9.

    [33]Yang k,Teo EC,Fuss FK.Application of Taguchi method in optimization of cervical ring cage.J Biomech 2007;40(14):3251-6.

    [34]Ma Y,Hu H,Northwood D,Nie X.Optimization of the electrolytic plasma oxidation processes for corrosion protection of magnesium alloy AM50 using the Taguchimethod.J Mater Process Technol 2007;182(1-3):58-64.

    [35]Kim KD,Han DN,Kim HT.Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method. Chem Eng J 2004;104(1-3):55-61.

    [36]Savage VVF,Tundin CD,Aronson AH.Weld metal solidifcation mechanics.Weld J 1965;44(4):175s-81s.

    [37]Savage WF,Nippes EF,Miller TVV.Microsegregation in 70Cu-30Ni weld metal.Weld J 1976;55(6):165s-73s.

    [38]Borland JC.Hot cracking in welds.Brit Weld J 1960;7(9):558-9.

    [39]Nelson DE,Baeslack III WA,Lippod JC.An investigation of Weld hot cracking in duplex stainless steels.Weld J 1987;66(8):214s-50s.

    [40]Neville.Gregory,why do welds crack.TWI Bull March/April 1991:1-8.

    [41]Outokumpu.How to weld type 2205 code plus two duplex Stainless steel, lack of basic info?www.outokumpu.com/stainless/na.

    [42]Outokumpu.Welding handbook.1st ed.Finland:Outokumpu Oyi;2010.

    Received 14 May 2014;revised 4 June 2014;accepted 5 June 2014Available online 25 July 2014

    *Corresponding author.Tel.:+91 4512480543.

    E-mail addresses:magudeeswaran@yahoo.com,gmagudeeswaran@gmail. com(G.MAGUDEESWARAN).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2014.06.006

    2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    猜你喜歡
    精簡專賣店階級
    時(shí)常精簡多余物品
    特別健康(2018年2期)2018-06-29 06:14:00
    階級話語與翻譯:以英譯《暴風(fēng)驟雨》為例(1949~1966)
    翻譯界(2018年2期)2018-03-05 07:55:26
    一種面向應(yīng)用的流量監(jiān)測精簡架構(gòu)設(shè)計(jì)
    電子制作(2017年17期)2017-12-18 06:40:47
    “偏離”與“回歸”:京郊土改中的路徑依賴與階級劃分(1949—1950)
    衣.戀專賣店室內(nèi)設(shè)計(jì)
    商情(2017年21期)2017-07-27 20:51:39
    服裝專賣店室內(nèi)照明設(shè)計(jì)
    燈與照明(2016年4期)2016-06-05 09:01:45
    應(yīng)用于SAN的自動精簡配置架構(gòu)設(shè)計(jì)與實(shí)現(xiàn)
    被遺忘階級的困頓與救贖——關(guān)于影片《鋼的琴》的分析
    歡笑專賣店
    精簡(漫畫)
    欧美xxxx性猛交bbbb| 此物有八面人人有两片| 88av欧美| 久久久久国内视频| 老司机午夜十八禁免费视频| 少妇的逼水好多| 亚洲一区二区三区色噜噜| www.色视频.com| 两个人视频免费观看高清| 老司机午夜十八禁免费视频| 欧美激情国产日韩精品一区| 精品人妻1区二区| 精品久久久久久久久av| 美女cb高潮喷水在线观看| 高清在线国产一区| 久久国产精品影院| 亚洲av免费在线观看| 国产精品久久久久久人妻精品电影| 少妇人妻精品综合一区二区 | 久久久成人免费电影| 亚洲七黄色美女视频| 色视频www国产| 亚洲成av人片在线播放无| 国产乱人视频| 噜噜噜噜噜久久久久久91| 能在线免费观看的黄片| 99久久99久久久精品蜜桃| 亚洲第一区二区三区不卡| 香蕉av资源在线| 亚洲黑人精品在线| 国产在视频线在精品| 亚洲av二区三区四区| 午夜福利欧美成人| 午夜福利在线观看吧| 一卡2卡三卡四卡精品乱码亚洲| 熟妇人妻久久中文字幕3abv| 在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 成人高潮视频无遮挡免费网站| 欧美+亚洲+日韩+国产| 国产亚洲欧美在线一区二区| 国产视频内射| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩无卡精品| 亚洲aⅴ乱码一区二区在线播放| 99久国产av精品| 国产探花极品一区二区| 一区福利在线观看| 久久天躁狠狠躁夜夜2o2o| 中文字幕免费在线视频6| 国产伦一二天堂av在线观看| 欧美bdsm另类| 午夜免费激情av| 国产大屁股一区二区在线视频| 波野结衣二区三区在线| 精品午夜福利在线看| 国产精品嫩草影院av在线观看 | 日本黄色片子视频| 色视频www国产| 欧美另类亚洲清纯唯美| 日韩欧美国产在线观看| 精品国内亚洲2022精品成人| 91九色精品人成在线观看| 成人精品一区二区免费| 18+在线观看网站| 一本综合久久免费| 免费看光身美女| 亚洲 欧美 日韩 在线 免费| 一区二区三区激情视频| 好男人电影高清在线观看| 亚洲片人在线观看| 国产精品嫩草影院av在线观看 | 成人永久免费在线观看视频| av欧美777| 男女视频在线观看网站免费| 色综合欧美亚洲国产小说| 一个人看视频在线观看www免费| 日韩成人在线观看一区二区三区| 最近最新免费中文字幕在线| 啦啦啦观看免费观看视频高清| 我的老师免费观看完整版| 哪里可以看免费的av片| 热99re8久久精品国产| 中文字幕av在线有码专区| 国产av在哪里看| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 午夜免费男女啪啪视频观看 | 国产高清视频在线播放一区| 国产黄色小视频在线观看| 精品日产1卡2卡| 国产毛片a区久久久久| 美女免费视频网站| 高清毛片免费观看视频网站| 18+在线观看网站| 久久国产乱子伦精品免费另类| 最近中文字幕高清免费大全6 | 免费观看精品视频网站| 成人三级黄色视频| 久久久久九九精品影院| 亚洲成av人片在线播放无| 成人三级黄色视频| 毛片女人毛片| 欧美激情国产日韩精品一区| 香蕉av资源在线| 亚洲欧美日韩高清专用| 久久久久久久久久成人| 亚洲av.av天堂| 久9热在线精品视频| 国产精品野战在线观看| 国产男靠女视频免费网站| 51午夜福利影视在线观看| 欧美成人免费av一区二区三区| 白带黄色成豆腐渣| 我的女老师完整版在线观看| 国产欧美日韩一区二区精品| 亚洲人成网站在线播| 日韩欧美在线乱码| 男人舔女人下体高潮全视频| 国模一区二区三区四区视频| 中文字幕高清在线视频| 亚洲国产精品999在线| 亚洲欧美日韩卡通动漫| 成人一区二区视频在线观看| 91av网一区二区| 精品久久久久久久末码| 午夜视频国产福利| 热99在线观看视频| 一进一出抽搐动态| 国产熟女xx| avwww免费| 久久久久九九精品影院| 国产精品亚洲美女久久久| 男女下面进入的视频免费午夜| 国模一区二区三区四区视频| 欧美日本视频| 男女下面进入的视频免费午夜| www.www免费av| 欧美最黄视频在线播放免费| 一a级毛片在线观看| 一边摸一边抽搐一进一小说| 在线国产一区二区在线| 日韩欧美一区二区三区在线观看| 51国产日韩欧美| 欧美绝顶高潮抽搐喷水| 亚州av有码| 18禁黄网站禁片午夜丰满| 一个人看视频在线观看www免费| 精品一区二区免费观看| xxxwww97欧美| 成人特级黄色片久久久久久久| 变态另类丝袜制服| 午夜福利成人在线免费观看| ponron亚洲| 免费观看人在逋| 99久久成人亚洲精品观看| 国产高清视频在线播放一区| 99久久无色码亚洲精品果冻| 精品久久久久久久人妻蜜臀av| 亚洲精品日韩av片在线观看| 亚洲av免费高清在线观看| 亚洲成av人片在线播放无| 久久精品夜夜夜夜夜久久蜜豆| 久久九九热精品免费| 可以在线观看毛片的网站| 精品久久久久久,| 18禁裸乳无遮挡免费网站照片| 丁香六月欧美| 嫩草影视91久久| 久久久久久久午夜电影| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品在线观看二区| 日韩免费av在线播放| www.色视频.com| 国产高清有码在线观看视频| 91麻豆av在线| netflix在线观看网站| 国产乱人视频| 亚洲黑人精品在线| 国产精品不卡视频一区二区 | 中文字幕久久专区| 日本与韩国留学比较| 日本 欧美在线| 日日夜夜操网爽| www日本黄色视频网| 久久性视频一级片| 特级一级黄色大片| 国产黄a三级三级三级人| 99久国产av精品| 色哟哟哟哟哟哟| 国内毛片毛片毛片毛片毛片| 免费人成在线观看视频色| 搡老岳熟女国产| 禁无遮挡网站| 久久精品国产亚洲av涩爱 | 国产三级中文精品| 噜噜噜噜噜久久久久久91| 久久精品国产亚洲av天美| 国产乱人视频| 给我免费播放毛片高清在线观看| 亚洲欧美日韩东京热| 久久久久久久久久黄片| 免费看日本二区| 夜夜看夜夜爽夜夜摸| or卡值多少钱| 99热这里只有是精品50| av欧美777| bbb黄色大片| av福利片在线观看| 亚洲七黄色美女视频| 人妻丰满熟妇av一区二区三区| 色在线成人网| 热99re8久久精品国产| 黄色日韩在线| 欧美日韩乱码在线| 免费一级毛片在线播放高清视频| 亚洲av.av天堂| 夜夜夜夜夜久久久久| 欧美三级亚洲精品| 性插视频无遮挡在线免费观看| 免费人成在线观看视频色| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人久久爱视频| 国产黄片美女视频| 日本 av在线| 嫁个100分男人电影在线观看| 可以在线观看毛片的网站| avwww免费| 三级毛片av免费| 免费av不卡在线播放| 嫩草影院精品99| 国产大屁股一区二区在线视频| 2021天堂中文幕一二区在线观| 青草久久国产| 老熟妇乱子伦视频在线观看| 国产精品精品国产色婷婷| 久久人妻av系列| 日韩成人在线观看一区二区三区| 中文字幕精品亚洲无线码一区| h日本视频在线播放| 亚洲av电影在线进入| 乱码一卡2卡4卡精品| 国产真实伦视频高清在线观看 | 啦啦啦观看免费观看视频高清| 少妇被粗大猛烈的视频| 一进一出抽搐动态| 两个人的视频大全免费| 18禁裸乳无遮挡免费网站照片| 国产精品99久久久久久久久| 欧美性猛交黑人性爽| 中文在线观看免费www的网站| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 精品福利观看| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 精品久久久久久久久av| 欧美一级a爱片免费观看看| 欧美bdsm另类| 久久久国产成人精品二区| 每晚都被弄得嗷嗷叫到高潮| 亚洲五月婷婷丁香| 在线观看66精品国产| 日本免费a在线| 国产精品电影一区二区三区| 天堂动漫精品| 亚洲人成网站高清观看| 国产91精品成人一区二区三区| 中出人妻视频一区二区| 最好的美女福利视频网| 午夜精品久久久久久毛片777| 波野结衣二区三区在线| 久久亚洲真实| 日韩精品中文字幕看吧| av在线天堂中文字幕| 亚洲三级黄色毛片| 国产精品一区二区三区四区久久| 国产色爽女视频免费观看| 精品久久久久久久久亚洲 | 麻豆一二三区av精品| 少妇丰满av| 国产视频内射| 91久久精品电影网| 成年人黄色毛片网站| 国产精品98久久久久久宅男小说| 岛国在线免费视频观看| 少妇熟女aⅴ在线视频| 亚洲av日韩精品久久久久久密| 国产 一区 欧美 日韩| 美女大奶头视频| 美女 人体艺术 gogo| 日本黄大片高清| 一区二区三区免费毛片| .国产精品久久| 日日干狠狠操夜夜爽| 色综合婷婷激情| 十八禁网站免费在线| 99久久成人亚洲精品观看| 美女免费视频网站| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 少妇人妻精品综合一区二区 | 亚洲欧美清纯卡通| 国产精品亚洲一级av第二区| 亚洲精品久久国产高清桃花| 亚洲精品一卡2卡三卡4卡5卡| 91在线精品国自产拍蜜月| 亚洲国产日韩欧美精品在线观看| 琪琪午夜伦伦电影理论片6080| av在线老鸭窝| 欧美黑人欧美精品刺激| www.熟女人妻精品国产| 他把我摸到了高潮在线观看| 又爽又黄a免费视频| 久久精品国产自在天天线| 麻豆av噜噜一区二区三区| 亚洲 国产 在线| 日韩亚洲欧美综合| 国产高潮美女av| 嫁个100分男人电影在线观看| 亚洲经典国产精华液单 | 欧美三级亚洲精品| 久久天躁狠狠躁夜夜2o2o| 日韩精品中文字幕看吧| 亚洲国产精品成人综合色| 亚洲无线观看免费| 99国产综合亚洲精品| 色综合婷婷激情| 国产一区二区激情短视频| 人妻丰满熟妇av一区二区三区| 色吧在线观看| 亚洲人成网站高清观看| 国产高清视频在线观看网站| 亚洲三级黄色毛片| 国产一区二区激情短视频| 免费观看精品视频网站| 三级男女做爰猛烈吃奶摸视频| 免费看美女性在线毛片视频| netflix在线观看网站| 国产一区二区亚洲精品在线观看| 成人欧美大片| 国产亚洲欧美在线一区二区| 精品久久久久久久人妻蜜臀av| 亚洲av成人av| 高潮久久久久久久久久久不卡| 美女黄网站色视频| 观看免费一级毛片| 欧美黄色片欧美黄色片| 亚洲av成人精品一区久久| 亚洲激情在线av| 直男gayav资源| 国产不卡一卡二| 亚洲精品456在线播放app | 亚洲av一区综合| 看黄色毛片网站| 床上黄色一级片| 久久久精品大字幕| 精品午夜福利在线看| av在线老鸭窝| 国产国拍精品亚洲av在线观看| 午夜精品一区二区三区免费看| 亚洲av美国av| 夜夜躁狠狠躁天天躁| 五月玫瑰六月丁香| 日日摸夜夜添夜夜添小说| 国产精品久久久久久精品电影| 国产人妻一区二区三区在| 色5月婷婷丁香| 色噜噜av男人的天堂激情| 麻豆av噜噜一区二区三区| 久久人人精品亚洲av| 成年免费大片在线观看| 欧美在线黄色| 直男gayav资源| 丰满的人妻完整版| 久久人妻av系列| 丰满人妻一区二区三区视频av| 精品人妻一区二区三区麻豆 | 亚洲精品在线美女| 国产欧美日韩一区二区精品| 91午夜精品亚洲一区二区三区 | 国产熟女xx| 国产精品女同一区二区软件 | 婷婷色综合大香蕉| 亚洲美女搞黄在线观看 | 亚洲精品成人久久久久久| 成年女人毛片免费观看观看9| 亚洲精品日韩av片在线观看| 内地一区二区视频在线| 黄片小视频在线播放| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| 免费一级毛片在线播放高清视频| 黄色视频,在线免费观看| 欧美+日韩+精品| 男女之事视频高清在线观看| 一个人看的www免费观看视频| 欧美成人一区二区免费高清观看| 成年女人看的毛片在线观看| 国产美女午夜福利| 免费看a级黄色片| 老司机午夜福利在线观看视频| 亚洲欧美日韩无卡精品| 亚洲美女搞黄在线观看 | 亚洲精品成人久久久久久| 欧美日韩亚洲国产一区二区在线观看| 欧美午夜高清在线| 欧美最黄视频在线播放免费| 亚洲性夜色夜夜综合| 色5月婷婷丁香| 国产高清有码在线观看视频| 小说图片视频综合网站| 成年人黄色毛片网站| 国产高清视频在线播放一区| 两人在一起打扑克的视频| 久久国产乱子免费精品| 高清在线国产一区| 国产av不卡久久| 波多野结衣巨乳人妻| 听说在线观看完整版免费高清| 国产免费男女视频| 免费人成视频x8x8入口观看| 一个人看的www免费观看视频| 99riav亚洲国产免费| 国内精品美女久久久久久| 亚洲成人久久爱视频| 自拍偷自拍亚洲精品老妇| 欧美成人免费av一区二区三区| 久久婷婷人人爽人人干人人爱| 国产在视频线在精品| 亚洲av成人av| 久久久久免费精品人妻一区二区| 欧美zozozo另类| 日本成人三级电影网站| 精品熟女少妇八av免费久了| 久久国产乱子伦精品免费另类| 一卡2卡三卡四卡精品乱码亚洲| 国产欧美日韩一区二区三| 国产成人a区在线观看| 麻豆国产97在线/欧美| 18+在线观看网站| 日日干狠狠操夜夜爽| 久久国产精品影院| 国产人妻一区二区三区在| 免费看a级黄色片| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美三级三区| 人人妻人人看人人澡| 观看美女的网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成av人片免费观看| 国产精品影院久久| 蜜桃久久精品国产亚洲av| 亚洲av免费在线观看| 赤兔流量卡办理| 国产黄色小视频在线观看| 国产精品1区2区在线观看.| 给我免费播放毛片高清在线观看| 午夜福利在线在线| 精品99又大又爽又粗少妇毛片 | 毛片女人毛片| 国产av在哪里看| 99热这里只有精品一区| 欧美精品国产亚洲| 国产成+人综合+亚洲专区| 亚洲精华国产精华精| av在线蜜桃| 久久99热6这里只有精品| 久久亚洲精品不卡| 日韩大尺度精品在线看网址| 在线观看av片永久免费下载| 成年免费大片在线观看| 九九久久精品国产亚洲av麻豆| 亚洲在线自拍视频| 国内毛片毛片毛片毛片毛片| 麻豆成人av在线观看| 1024手机看黄色片| 久久国产乱子伦精品免费另类| 国产精品永久免费网站| 国产一区二区亚洲精品在线观看| 亚洲最大成人中文| 在现免费观看毛片| 最好的美女福利视频网| 久久久久精品国产欧美久久久| 精品久久久久久久久av| 欧美日韩瑟瑟在线播放| 亚洲欧美日韩高清专用| 亚洲国产精品sss在线观看| av黄色大香蕉| 午夜福利免费观看在线| 一个人看的www免费观看视频| 久9热在线精品视频| 国产真实伦视频高清在线观看 | 亚洲精品在线美女| 最新在线观看一区二区三区| 宅男免费午夜| 搡老熟女国产l中国老女人| 久久天躁狠狠躁夜夜2o2o| 午夜福利高清视频| 欧美另类亚洲清纯唯美| 国产成人福利小说| 人妻制服诱惑在线中文字幕| 成年人黄色毛片网站| 亚洲乱码一区二区免费版| 国产在视频线在精品| a级毛片a级免费在线| 精品福利观看| 18禁黄网站禁片午夜丰满| 国产不卡一卡二| 精品国内亚洲2022精品成人| 亚洲av熟女| 免费在线观看影片大全网站| 久久草成人影院| 日韩欧美三级三区| 亚洲,欧美,日韩| 日本一二三区视频观看| 色在线成人网| 久久久久久久亚洲中文字幕 | 欧美区成人在线视频| 热99re8久久精品国产| 久久亚洲精品不卡| 亚洲中文日韩欧美视频| 一区二区三区免费毛片| 欧美又色又爽又黄视频| 色尼玛亚洲综合影院| 国产三级黄色录像| 看十八女毛片水多多多| 国产成人aa在线观看| 亚洲片人在线观看| 赤兔流量卡办理| 最近最新免费中文字幕在线| 久久欧美精品欧美久久欧美| 别揉我奶头 嗯啊视频| 国产成人福利小说| 成年版毛片免费区| 热99re8久久精品国产| 天堂动漫精品| 两性午夜刺激爽爽歪歪视频在线观看| 久久久色成人| 午夜福利欧美成人| 真人做人爱边吃奶动态| 啪啪无遮挡十八禁网站| 久久精品人妻少妇| 精品久久久久久久久久久久久| 亚洲av日韩精品久久久久久密| 一个人看的www免费观看视频| 亚洲人与动物交配视频| www.色视频.com| 欧美日本视频| 免费观看的影片在线观看| 国产野战对白在线观看| 淫妇啪啪啪对白视频| 欧美成人性av电影在线观看| 日韩免费av在线播放| 日本三级黄在线观看| 午夜福利免费观看在线| 九九在线视频观看精品| 久久久国产成人精品二区| 亚洲熟妇中文字幕五十中出| 少妇高潮的动态图| bbb黄色大片| 精品一区二区免费观看| 国产午夜精品论理片| 成年人黄色毛片网站| 国产一区二区在线观看日韩| 麻豆一二三区av精品| 欧美成人a在线观看| 欧美又色又爽又黄视频| 十八禁国产超污无遮挡网站| 91在线精品国自产拍蜜月| 日韩免费av在线播放| 在线播放国产精品三级| av在线天堂中文字幕| 日本黄大片高清| 亚洲久久久久久中文字幕| 露出奶头的视频| 成人特级黄色片久久久久久久| 久久草成人影院| 深夜精品福利| 在线国产一区二区在线| 一区二区三区四区激情视频 | www日本黄色视频网| 欧美潮喷喷水| 成人无遮挡网站| 深夜a级毛片| 可以在线观看毛片的网站| 精品久久久久久久末码| 亚洲自拍偷在线| 窝窝影院91人妻| 成人无遮挡网站| 亚洲国产精品999在线| 99久久精品一区二区三区| 午夜老司机福利剧场| 色在线成人网| 美女被艹到高潮喷水动态| 中国美女看黄片| 久久国产乱子免费精品| 麻豆一二三区av精品| 亚洲欧美清纯卡通| 精品久久久久久久久亚洲 | 人人妻人人澡欧美一区二区| 淫妇啪啪啪对白视频| 毛片一级片免费看久久久久 | 国产91精品成人一区二区三区| 99国产精品一区二区三区| 国产美女午夜福利| 精品乱码久久久久久99久播| 好看av亚洲va欧美ⅴa在| 一级作爱视频免费观看| 香蕉av资源在线| 国内精品一区二区在线观看| 国内精品久久久久久久电影| 波多野结衣高清作品| 在线观看66精品国产| 国产v大片淫在线免费观看|