• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the BER performance of turbo codes with short frame size based on union bound①

    2015-04-17 06:38:30ShaoXiaLiPingZhangWeidang
    High Technology Letters 2015年3期

    Shao Xia (邵 霞), Li Ping, Zhang Weidang

    (*Department of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, P.R.China)(**Department of Information Management, Shengda Trade Economics & Management College of Zhengzhou, 451191, P.R.China)(***School of Information Engineering, Zhengzhou University, Zhengzhou 450001, P.R.China)

    ?

    Improving the BER performance of turbo codes with short frame size based on union bound①

    Shao Xia (邵 霞)*, Li Ping**, Zhang Weidang②

    (*Department of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, P.R.China)(**Department of Information Management, Shengda Trade Economics & Management College of Zhengzhou, 451191, P.R.China)(***School of Information Engineering, Zhengzhou University, Zhengzhou 450001, P.R.China)

    In order to improve the bit error rate (BER) performance of turbo codes with short frame size at a wide range of signal to noise ratio (SNR), a new method by optimizing the bit energy is proposed. At first, a formula derived from the Union Bound is introduced. It describes the relations between the bit error rate distribution and the minimum weight distribution. And then, by mathematically optimizing the formula, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR region. At last, an adjustable parameter is employed to compensate the degradations of BER at low and moderate SNR regions. Case studies indicate that the improvements of BER for turbo codes with short frame size are significant at a wide range of SNR.

    channel coding, bit error rate (BER), energy allocation, turbo code

    0 Introduction

    How to improve the bit error rate (BER) performance of turbo codes[1]is the most important task. There are many methods toward this destination. One of them is to reallocate the energy of the bit in the bit stream of the codeword. These schemes have previously been proposed in Refs[2-8]. In Ref.[2], the author assigned less and less power to the parity bits as the noise level increased to avoid the traditional negative “coding gain” associated with all error correcting codes at high noise levels. Ref.[3] showed that the fraction of the total power that should be allocated to a systematic bit was usually lower than that of the parity bit. But the amount of improvement depends on the choice of component codes, interleaver length and signal to noise ratio. Ref.[4] also pointed out that if different energies were assigned to two outputs of a turbo encoder, the information bit and parity bit, then the performance would be changed according to the ratio of the information bit energy to the parity bit energy. The optimum point of the ratio may not be 1. As the rate of the turbo code is changed, the optimum point would also be changed. In Ref.[5], it concluded that for turbo codes with short frames operating in very low signal-to-noise environments, more energy should be assigned to the systematic bits so that the performance was improved. At higher signal-to-noise ratios, allocating less energy to the systematic bits improved the performance. Ref.[6] studied the effect of asymmetric energy allocations to the output bits of turbo codes. It showed that the error floor was improved as more energy was given to the non-systematic bits. However, due to the degradation in the convergence threshold of the code, tradeoff between the error floor and the convergence threshold appeared. Ref.[7] studied theoretically and empirically channels coding for nonuniform i.i.d. sequences using turbo codes with unequal energy allocation. It was shown that both systematic codes and non-systematic codes with unequal energy allocation were improved on equal energy allocation schemes. Ref.[8] introduced a method of reducing the error floor in parallel concatenated codes. It also pointed out that simple approaches based on modifying just the energy of the systematic and coded bits seemed very attractive. From the references listed above we can see that nearly all of them allocate the energies between the systematic bits and parity bits, but the merits of different strategies are sometimes not very clear, with different authors arriving to contradicting conclusions[6]. This is because that there is no theoretical base for the energy allocation between the information bits and parity check bits. The fraction of the total energy depends on the choice of the component codes, interleaver length, puncturing pattern and the signal to noise ratio.

    In Ref.[9], the authors allocated the bits’ energies among the codewords that have different weights instead of between the systematic and parity bits. In this scheme more energy is assigned to the codewords that have minimum (and second minimum) weight and the simulation results showed that the “error floor” of turbo codes was improved with no practical degradation in the waterfall region.

    In this work, a new method is presented to decrease the bit error rate (BER) by optimizing the bit energy. It is based on a formula, which describes the relationships between the bit error rate distribution and the minimum weight distribution, derived from the union bound. Through mathematical optimization, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR. Then by adding an adjustable parameter, the BER performance at low and moderate SNR regions is also improved.

    The paper is organized as follows. A formula to estimate the BER distributions based on the union bound is introduced in Section 1. In Section 2, we firstly derive a formula to optimize the bit energy based on the BER distribution. Then we introduce an adjustable parameter to modify the energy distribution so that it can be used at low and moderate SNR regions. In Section 3, more detailed optimizing procedures are provided and various types of turbo codes are simulated to show the efficiency of the scheme. Section 5 is the conclusion.

    1 Union bound and the formulas of the BER distribution

    Let c=(c0, c1,…,cN-1) be a binary codeword, where N is the code length, cj=0 or 1 is called the j-th bit of the codeword. If a codeword is with ci=1, it is said that the i-th bit connects to this codeword, or this codeword connects to the i-th bit.

    For an Additive White Gaussian Noise (AWGN) channel, the BER is bounded by the union bound as[10]

    (1)

    where wiand diare the information weight and total Hamming weight, respectively, of the i-th codeword. k is the input length. Rcis the code rate. Ebis the bit energy of the codeword and N0is the noise power spectrum density.

    From Eq.(1), a formula to estimate the bit error rate for every position at higher SNR can be derived as[11,12]

    (2)

    where dmin(j) is the lowest weight of the codeword(s) that connects to the j-th bit and nmin(j) is its multiplicity, where j=0,1,…,N-1. We call the sequence (dmin(j), nmin(j), j=0,1,…,N-1) the distribution of minimum weight codewords.

    Eq.(2) shows that, generally, bit error rates pb(j) are not identical for different j. For example, if a bit in the codeword sequence connects to a lower weight codeword, it will have a weaker error protection so the bit error rate for this bit will be higher. The average bit error rate of the code is dominated by such bits that connect to the low weight codewords. Therefore, if the bits’ energy is changed so that more energy is allocated to the bits that connect to low weight codewords and less energy to the bits that connect to high weight codewords, the average bit error rate will be decreased.

    2 Optimizing the bit energy with an adjustable parameter

    In Eq.(2), constant bit energy Ebby Eb(j) is replaced that is the optimized bit energy for the j-th bit and pb(j) is replaced by pob(j) that is the new bit error rate for bit j relating to Eb(j), then Eq.(2) becomes

    (3)

    (4)

    Now the minimum value of average BER expressed by Eq.(4) will be found with the binding condition of energy conservation:

    (5)

    Using the Lagrange multiplier method, let λ be the multiplier, the formula of calculating the optimized bit energy Eb(j) can be derived and the result is

    (6)

    where

    (7)

    So Eb(j) expressed by Eq.(6) is the optimized energy for bit j. It is determined by the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Apparently, if dmin(j), as well as nmin(j), are constant, then Eb(j)=Eb. In this case, there is no need to modify the bit energy, such as the equal-weight codes that have perfect construction. But there are many codes, especially such as turbo codes, that don’t have such perfect construction. Their dmin(j)s usually expend to a wide range. In this case, there are much more spaces for the bit energy to be optimized and noticeable improvements can be achieved.

    To calculate optimized bit energy Eb(j), the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1) should be found. If the code length is not long, for example, it is no longer than thousands bits, the methods presented in Refs[13-15] and [16] are very efficient to calculate the minimum distance of turbo codes. Through modifications, they can be used to find the parameters of dmin(j) and nmin(j).

    (8)

    where ρ is the adjustable parameter.

    Without loss of generality, assuming Eb=1, Eq.(9) can be got:

    (9)

    (10)

    3 Optimization procedures and simulation results

    The followings give the optimization procedures and simulation results. There are four turbo codes used in this section. The generator matrix for the four codes is the same, which is g=(1, 10001/10011). But they have different code lengths, different interleavers and different puncturing patterns. Code 1 is a turbo code with a 8×8 block interleaver of size 64 and without puncturing. So the code rate is 1/3. Another turbo code, noted as code 2, is with a 32×32 block interleaver. The puncturing pattern for this code is p=(10; 01). So the code rate is 1/2. There are other two turbo codes. Both of them use random interleavers, but the sizes are 64 and 1024 separately. The turbo code of size 64, noted as code 3, is not punctured. The turbo code of size 1024, noted as code 4, is punctured with puncturing pattern p = (10; 01). For all the turbo codes, the decoding algorithm is BCJR, the number of iteration is 5 and the two encoder components are both terminated. Binary antipodal signalling is used with an AWGN channel model. The SNR is measured in terms of energy per information bit, Eb, over the single-sided noise power spectral density, N0.

    Based on code 3, which has the code length of N=(64+4)×3=204, the practical procedures of optimization will be given and used to show the efficiency of the proposed scheme.

    Firstly, the minimum weight distribution (dmin(j), nmin(j) is searched, j=0,1,2,…,N-1) of the code by the method presented in Ref.[10] is searched. Fig.1 shows the distribution of the minimum weight (dmin(j), nmin(j), j=0,1,2,…,N-1) of code 3.

    Fig.1 The minimum weight distribution (dmin(j), nmin(j), j=0, 1, 2, …,N-1) of code 3 calculated by the method presented in Ref.[10]

    Secondly, the optimized bit energy distribution can be got by Eq.(6) with the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Fig.2 shows the bit energy distributions before and after energy optimization. Before energy optimization, the bit energy is the same for all bits in the codewords. The bit energy is assumed Eb=1. So curve 1 is a straight line with amplitude 1. After energy optimization, the distribution of bit energy is not even. Compared with Fig.1, apparently, more energy is allocated to the bits that connect to the lowest weight codeword and less energy is allocated to the bits connecting to high weight codewords.

    Fig.2 The bit energy distributions before and after energy optimization for code 3

    Fig.3 The BER distributions before and after energy optimization for code 3 at SNR=4dB

    Table 1 shows the values of BER at different SNRs without and with bit energy optimization separately. By examining Table 1 we find that at high SNR region, such as 4dB and 5dB, the average BERs are improved obviously. But at low and moderate SNR regions, there even some degradations appeared.

    Table 1 The average BER without and with energy optimization for code 3 at different SNRs

    Finally, by modifying the optimized bit energy with adjustable ρ expressed by Eq.(8), the lowest BER at a wide range of SNR is got.

    Table 2 shows the valid ranges of ρ constrained by Eq.(10) at some specific SNRs. The best values of ρ that produce the lowest BER at specific SNRs and the corresponding BERs are also displayed in the table. The best values of ρ are obtained by grid search within the valid ranges, starting from step size of 2, down to the finest step size of 0.25. From the table we can see that after modification with ρ, the BER performance is improved not only at high SNR region, but also at low and moderate SNR regions.

    Table 2 The valid ranges of ρ at different SNRs, the best values of ρ and the corresponding values of BER for code 3

    The BER improvements in the two figures are obvious. From the figures it can be seen that after energy optimizing, the BER curves corresponding to Eq.(6) are lower than the curves before energy optimizing at

    Fig.4 The simulation BER curves before and after optimizing for code 1 and code 2

    Fig.5 The simulation BER curves before and after optimizing for code 3 and code 4

    high SNR regions. For example, the improvements are more than 1 order of magnitude at 4.5dB for turbo code 3 and at 2.5dB for turbo code 4. In the two figures that, with modification of Eq.(8), the BER performance at low and moderate SNR regions is improved and all the curves corresponding to Eq.(8) have the best performance.

    So, by optimizing the bit energy distributions to the codeword sequences, the BER performance is improved noticeably. In fact, this scheme changes the weight of the codewords. For example, the minimum weight for code 3 is 7 before energy optimizing. After optimizing, this codeword’s weight is changed to 12 at 5dB. For code 2, the minimum weight is changed from 7 to 10 after optimizing at 4dB.

    4 Conclusion

    A new method to optimize the bit energy is presented in this work. By changing the bit energy allocation in an optimized way, the deviation of the BER distribution is decreased; the minimum weight of the codewords is increased; and the average BER is minimized over a wide range of SNR. However, this scheme is based on the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Finding the minimum weight distribution consume time very much especially when the code size is not short. Therefore the proposed scheme is suitable for turbo coded with short size. How to optimize the bit energy for the code with large size is further work.

    [ 1] Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit error-correcting coding and decoding: Turbo codes. In: Proceedings of the IEEE International Conference Communications, Geneva, Switzerland, 1993. 1064-1070

    [ 2] Hokfelt J, Maseng T. Optimizing the energy of different bitstreams of turbo codes. In: Proceedings of the Turbo Coding Seminar, Lund, Sweden, 1998. 59-63

    [ 3] Duman T M, Salehi M. On optimal power allocation for turbo codes. ISIT 1997, Ulm, Germany, June-July: 104

    [ 4] Choi Y, Lee P. Analysis of turbo codes with asymmetric modulation, Electron. Lett., 1999, 35, (1): 35-36

    [ 5] Salah M M, Raines R A, Temple M A, et al. Energy allocation strategies for Turbo codes with short frames. In: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC 2000), Las Vegas, USA, 2000. 27-29

    [ 6] Cabarcas F, Garcia-Frias J. Asymmetric energy allocation strategies to improve Turbo codes performance. In: Proceedings of the Vehicular Technology Conference (VTC 2001 Fall). 2001, (3):1839-1842

    [ 7] Shamir G I, Souza R D, Garcia-Frias J. Unequal energy allocation with Turbo Codes for nonuniform sources. In: Proceedings of the Turbo-Coding-2006, Munich, Germany, 2006. 1-6

    [ 8] Garcia-Frias J, Cabarcas F. Reducing the error floor in turbo codes by using non-binary constituent encoders. In: Proceedings of the Vehicular Technology Conference, Boston, USA, 2000. 1230-1237

    [ 9] Zhang W, Wang X. Optimal energy allocations for turbo codes based on distributions of low weight codewords, Electronics Letters, 2004,19(40): 1205-1206

    [10] S. Benedetto, G. Montorsi, Unveiling turbo codes: Some results on parallel concatenated coding schemes, IEEE Trans. Inform. Theory, 1996,42(2): 1996. 409-428

    [11] Shao X, Zhang W D. Estimate the BER Distributions of Turbo Codes, Wireless and Microwave Technologies, 2012, 2:53-58

    [12] Zhang W D, Shao X, Torki M et al. Unequal error protection of JPEG2000 images using short block length turbo codes, Communications Letters, IEEE, 2011,15(6): 659-661

    [13] Roberto G, Paola P, Sergio B. Computing the free distance of turbo codes and serially concatenated codes with interleavers: algorithms and applications, IEEE Journal on Selected Areas in Commun, 2001,19(5): 800-812

    [14] Sandro S, Young-Jik K B, Harald E. A fast algorithm to estimate the distance spectrum of turbo codes. In: Proceedings of the 10th International Conference on Telecommunications (ICT 2003), Papeete, FR Polynesia, 2003. 90-95

    [15] Crozier S, Guinand P, Hunt A. Estimating the minimum distance of turbo codes using double and triple impulse methods, IEEE Communications Letters, 2005,(7): 631-633

    [16] Ould-Cheikh-Mouhamedou Y. Crozier S, Kabal P. Comparison of Distance Measurement Methods for Turbo codes. In: Proceedings of the 9th Canadian Workshop on Information Theory, Montreal, Canada, 2005. 36-39

    Shao Xia, born in 1970. She received her M.S. degree and B. S. degree from Zhengzhou University in 2007 and 1992 separately. Her research focuses on key techniques for telecommunication theory and engineering.

    10.3772/j.issn.1006-6748.2015.03.010

    ①Supported by the National High Technology Research and Development Programme of China (No. 2014AA01A705) and the National Natural Science Foundation of China (U1204607).

    ②To whom correspondence should be addressed. E-mail: zhangweidang@zzu.edu.cn Received on June 23, 2014***

    午夜免费激情av| 视频在线观看一区二区三区| av欧美777| 国产成人欧美| 久久香蕉精品热| 一级毛片高清免费大全| 九色国产91popny在线| 欧美国产日韩亚洲一区| 一级,二级,三级黄色视频| www.999成人在线观看| 亚洲国产精品999在线| 18禁观看日本| 欧美精品啪啪一区二区三区| 精品一区二区三区av网在线观看| 首页视频小说图片口味搜索| 国产亚洲精品久久久久5区| 欧美日本中文国产一区发布| 日韩欧美一区视频在线观看| 老熟妇仑乱视频hdxx| 亚洲电影在线观看av| 少妇 在线观看| 一级毛片精品| 91精品国产国语对白视频| 91老司机精品| 亚洲成国产人片在线观看| 国产欧美日韩综合在线一区二区| 一级,二级,三级黄色视频| 夜夜爽天天搞| 日本a在线网址| 亚洲性夜色夜夜综合| 色综合站精品国产| 国产精品九九99| 19禁男女啪啪无遮挡网站| 少妇被粗大的猛进出69影院| 亚洲激情在线av| 免费少妇av软件| 在线视频色国产色| 色在线成人网| 日韩精品青青久久久久久| 女人被躁到高潮嗷嗷叫费观| 黄网站色视频无遮挡免费观看| 国语自产精品视频在线第100页| 精品国产国语对白av| 亚洲国产精品久久男人天堂| 女人被狂操c到高潮| 可以免费在线观看a视频的电影网站| 黄片大片在线免费观看| 一二三四社区在线视频社区8| 黄片小视频在线播放| 国产又爽黄色视频| 国产精品久久久久久亚洲av鲁大| 亚洲 欧美 日韩 在线 免费| 久久国产精品影院| 97人妻天天添夜夜摸| 亚洲色图综合在线观看| 精品久久久久久久人妻蜜臀av | 午夜成年电影在线免费观看| x7x7x7水蜜桃| 午夜福利视频1000在线观看 | 久久 成人 亚洲| 亚洲欧美日韩高清在线视频| 亚洲国产精品久久男人天堂| 免费久久久久久久精品成人欧美视频| 热99re8久久精品国产| 一夜夜www| 国产亚洲精品久久久久5区| 久久天躁狠狠躁夜夜2o2o| 大香蕉久久成人网| 国产麻豆69| 欧美日韩福利视频一区二区| 麻豆av在线久日| 琪琪午夜伦伦电影理论片6080| 亚洲精品在线观看二区| 黑人巨大精品欧美一区二区mp4| 怎么达到女性高潮| 精品国产超薄肉色丝袜足j| 桃红色精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 亚洲午夜理论影院| 国产精品久久电影中文字幕| 中亚洲国语对白在线视频| av在线天堂中文字幕| 亚洲av成人av| 亚洲国产看品久久| 此物有八面人人有两片| 久热爱精品视频在线9| 亚洲第一电影网av| 日日夜夜操网爽| 成人18禁高潮啪啪吃奶动态图| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲九九香蕉| 国产精品久久久人人做人人爽| av中文乱码字幕在线| 99久久久亚洲精品蜜臀av| 亚洲自偷自拍图片 自拍| 中文字幕av电影在线播放| 亚洲欧美日韩高清在线视频| 久久午夜综合久久蜜桃| 久久久久精品国产欧美久久久| 法律面前人人平等表现在哪些方面| 女人被狂操c到高潮| 国产成人欧美在线观看| 国产av又大| 人人妻人人澡人人看| 国产欧美日韩一区二区精品| 久久香蕉激情| 久久精品影院6| 欧美午夜高清在线| 久久天堂一区二区三区四区| 亚洲av成人av| 大陆偷拍与自拍| 制服丝袜大香蕉在线| 制服丝袜大香蕉在线| 亚洲av第一区精品v没综合| 欧美日本中文国产一区发布| 99国产综合亚洲精品| 老鸭窝网址在线观看| 青草久久国产| 如日韩欧美国产精品一区二区三区| 两性夫妻黄色片| 给我免费播放毛片高清在线观看| 国产国语露脸激情在线看| 免费在线观看亚洲国产| 精品国产一区二区久久| 日本撒尿小便嘘嘘汇集6| 中国美女看黄片| 黄频高清免费视频| www.www免费av| 日本撒尿小便嘘嘘汇集6| 中文字幕最新亚洲高清| 看黄色毛片网站| 色婷婷久久久亚洲欧美| 欧美+亚洲+日韩+国产| 国产在线观看jvid| 99国产精品免费福利视频| 国产成人精品无人区| 午夜福利视频1000在线观看 | 老司机深夜福利视频在线观看| 亚洲成人免费电影在线观看| 999精品在线视频| 女人被躁到高潮嗷嗷叫费观| 精品国产超薄肉色丝袜足j| 黑人巨大精品欧美一区二区蜜桃| 午夜福利欧美成人| 免费av毛片视频| 国产精品九九99| 日本 欧美在线| 18禁黄网站禁片午夜丰满| 日本在线视频免费播放| 91大片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成电影观看| 亚洲av熟女| 黄片大片在线免费观看| 精品欧美国产一区二区三| 午夜老司机福利片| 久久精品国产99精品国产亚洲性色 | 精品一区二区三区四区五区乱码| 极品人妻少妇av视频| 日本三级黄在线观看| 亚洲天堂国产精品一区在线| 中文字幕av电影在线播放| 黄色毛片三级朝国网站| 大码成人一级视频| 精品午夜福利视频在线观看一区| 如日韩欧美国产精品一区二区三区| 老司机午夜十八禁免费视频| svipshipincom国产片| 我的亚洲天堂| 久久人妻av系列| 日韩欧美在线二视频| 一进一出好大好爽视频| 91成年电影在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲国产日韩欧美精品在线观看 | 97人妻天天添夜夜摸| 欧美午夜高清在线| 亚洲色图 男人天堂 中文字幕| 人人澡人人妻人| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品在线电影| 亚洲精品久久国产高清桃花| 夜夜爽天天搞| 中文字幕人妻熟女乱码| 欧美色视频一区免费| 成人三级做爰电影| 女人被狂操c到高潮| 在线播放国产精品三级| 久久久久久久久免费视频了| 国产99久久九九免费精品| 搡老熟女国产l中国老女人| 搞女人的毛片| 激情在线观看视频在线高清| 亚洲欧美精品综合一区二区三区| 亚洲 欧美 日韩 在线 免费| 久久久久久人人人人人| 亚洲伊人色综图| 天天躁狠狠躁夜夜躁狠狠躁| 好男人电影高清在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲国产看品久久| 99在线人妻在线中文字幕| 亚洲av第一区精品v没综合| 欧美成人性av电影在线观看| cao死你这个sao货| 99精品久久久久人妻精品| 中文字幕色久视频| 久久人妻av系列| 久久精品国产综合久久久| 一级a爱视频在线免费观看| 免费在线观看影片大全网站| 999久久久国产精品视频| 亚洲第一av免费看| 色在线成人网| 国产又色又爽无遮挡免费看| 国产精品久久久久久精品电影 | 大型黄色视频在线免费观看| 久久久国产欧美日韩av| 国产成人系列免费观看| 亚洲av美国av| 长腿黑丝高跟| 国产成人精品无人区| 波多野结衣一区麻豆| 日本在线视频免费播放| 国产亚洲精品综合一区在线观看 | 欧美日韩亚洲综合一区二区三区_| 老鸭窝网址在线观看| 极品人妻少妇av视频| 久久热在线av| 韩国av一区二区三区四区| 亚洲电影在线观看av| 97人妻精品一区二区三区麻豆 | 亚洲国产欧美日韩在线播放| 一进一出好大好爽视频| 亚洲狠狠婷婷综合久久图片| 亚洲人成电影观看| 色av中文字幕| 国产精品野战在线观看| 激情视频va一区二区三区| 亚洲av成人不卡在线观看播放网| 久久狼人影院| 亚洲成av片中文字幕在线观看| 91av网站免费观看| 在线观看日韩欧美| 亚洲国产精品久久男人天堂| 99久久99久久久精品蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 热re99久久国产66热| 国语自产精品视频在线第100页| 精品电影一区二区在线| 19禁男女啪啪无遮挡网站| 夜夜爽天天搞| 欧美黄色淫秽网站| 国产1区2区3区精品| 一区二区三区激情视频| 波多野结衣av一区二区av| 亚洲视频免费观看视频| 成人免费观看视频高清| 在线观看日韩欧美| 伦理电影免费视频| 精品国产国语对白av| 日韩欧美国产一区二区入口| 国产私拍福利视频在线观看| 制服丝袜大香蕉在线| 一区在线观看完整版| 成人亚洲精品av一区二区| 99国产精品一区二区三区| av中文乱码字幕在线| 亚洲成人国产一区在线观看| 日日干狠狠操夜夜爽| 性欧美人与动物交配| 免费在线观看日本一区| 欧美日韩精品网址| 国产男靠女视频免费网站| 日本精品一区二区三区蜜桃| 一级片免费观看大全| av视频免费观看在线观看| 久久国产精品男人的天堂亚洲| 久久香蕉国产精品| 亚洲色图 男人天堂 中文字幕| 免费观看精品视频网站| 午夜福利18| 国产成人精品无人区| av天堂久久9| 国产午夜福利久久久久久| 女性生殖器流出的白浆| 日本撒尿小便嘘嘘汇集6| 黄色a级毛片大全视频| 亚洲一区中文字幕在线| 久久久久亚洲av毛片大全| 91精品三级在线观看| 国产成人影院久久av| 国产激情久久老熟女| 激情在线观看视频在线高清| 搡老岳熟女国产| 午夜福利免费观看在线| 久久性视频一级片| 最新美女视频免费是黄的| 一二三四在线观看免费中文在| 精品国产一区二区三区四区第35| 国产一区二区三区在线臀色熟女| 黄色片一级片一级黄色片| 国产精品一区二区免费欧美| 在线观看免费视频日本深夜| 亚洲,欧美精品.| 视频在线观看一区二区三区| 亚洲天堂国产精品一区在线| 又紧又爽又黄一区二区| 久久精品国产亚洲av香蕉五月| 亚洲黑人精品在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲午夜精品一区,二区,三区| 免费少妇av软件| 一级片免费观看大全| 精品久久久久久成人av| 欧美日本视频| 日韩欧美国产一区二区入口| 国产成人精品在线电影| x7x7x7水蜜桃| 91在线观看av| 一进一出抽搐gif免费好疼| 老汉色av国产亚洲站长工具| 琪琪午夜伦伦电影理论片6080| 一级作爱视频免费观看| 看片在线看免费视频| 国产高清视频在线播放一区| 搡老岳熟女国产| 91av网站免费观看| 人人妻人人澡人人看| 久久久久久久久免费视频了| 精品卡一卡二卡四卡免费| 成人av一区二区三区在线看| 欧美黑人欧美精品刺激| 久久香蕉激情| 久久午夜综合久久蜜桃| 国产免费男女视频| 999久久久精品免费观看国产| 丰满的人妻完整版| 欧美成人一区二区免费高清观看 | 深夜精品福利| 久久中文字幕一级| 一区在线观看完整版| 亚洲情色 制服丝袜| 在线观看66精品国产| 美女大奶头视频| 国产亚洲欧美在线一区二区| 国产av又大| 91大片在线观看| 夜夜看夜夜爽夜夜摸| 天堂动漫精品| 欧美乱妇无乱码| 99精品在免费线老司机午夜| 免费在线观看影片大全网站| 宅男免费午夜| 久久久久九九精品影院| 极品人妻少妇av视频| 一级毛片精品| 悠悠久久av| 99精品欧美一区二区三区四区| 亚洲精品久久国产高清桃花| 国产人伦9x9x在线观看| 国产一级毛片七仙女欲春2 | 国产男靠女视频免费网站| 91精品三级在线观看| 大香蕉久久成人网| 久久 成人 亚洲| 亚洲伊人色综图| 久久久久久久精品吃奶| 久久久国产成人精品二区| 亚洲中文日韩欧美视频| 免费在线观看影片大全网站| 免费女性裸体啪啪无遮挡网站| 日韩欧美国产在线观看| 在线观看免费视频日本深夜| avwww免费| 18禁美女被吸乳视频| av片东京热男人的天堂| 搞女人的毛片| 精品国产一区二区三区四区第35| cao死你这个sao货| 色av中文字幕| 亚洲av五月六月丁香网| 欧美在线黄色| 日韩欧美免费精品| 免费在线观看亚洲国产| 午夜日韩欧美国产| 亚洲成人精品中文字幕电影| 欧美日韩乱码在线| 国产成人av教育| 亚洲国产中文字幕在线视频| 欧美激情久久久久久爽电影 | 日韩成人在线观看一区二区三区| 久久久久久久午夜电影| 一级,二级,三级黄色视频| 国产激情久久老熟女| 亚洲一区二区三区色噜噜| 亚洲人成77777在线视频| 母亲3免费完整高清在线观看| 亚洲天堂国产精品一区在线| 国产亚洲精品久久久久久毛片| 国产成年人精品一区二区| 亚洲人成伊人成综合网2020| 手机成人av网站| 中文字幕人成人乱码亚洲影| 这个男人来自地球电影免费观看| 精品久久久久久久久久免费视频| 男人舔女人的私密视频| 99国产综合亚洲精品| 欧美成人免费av一区二区三区| 亚洲熟女毛片儿| 国产精品爽爽va在线观看网站 | 黄片小视频在线播放| 麻豆国产av国片精品| 91在线观看av| av在线播放免费不卡| 久久久久九九精品影院| 中文字幕久久专区| 国产男靠女视频免费网站| 大型av网站在线播放| 制服人妻中文乱码| 老汉色∧v一级毛片| 欧美日韩亚洲综合一区二区三区_| 成人亚洲精品av一区二区| 激情视频va一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美精品永久| 好男人电影高清在线观看| 亚洲精华国产精华精| 国产亚洲精品av在线| 午夜福利,免费看| 午夜福利成人在线免费观看| 亚洲一区二区三区色噜噜| 69av精品久久久久久| 国产精品电影一区二区三区| 99re在线观看精品视频| 99精品久久久久人妻精品| 激情在线观看视频在线高清| 亚洲精品国产精品久久久不卡| 欧美另类亚洲清纯唯美| 亚洲 国产 在线| 狠狠狠狠99中文字幕| 成人18禁在线播放| 99久久久亚洲精品蜜臀av| 国产av精品麻豆| 在线播放国产精品三级| 女人被躁到高潮嗷嗷叫费观| 日韩欧美免费精品| 午夜福利免费观看在线| 久久草成人影院| 亚洲国产高清在线一区二区三 | 91在线观看av| 美女免费视频网站| 久久性视频一级片| 欧美日本视频| 精品一品国产午夜福利视频| 亚洲色图 男人天堂 中文字幕| 色播在线永久视频| 亚洲片人在线观看| 波多野结衣一区麻豆| 搞女人的毛片| 欧美激情 高清一区二区三区| 国产成人一区二区三区免费视频网站| 久久精品亚洲精品国产色婷小说| 精品国产一区二区三区四区第35| 久久性视频一级片| 国产亚洲精品一区二区www| 亚洲,欧美精品.| 首页视频小说图片口味搜索| 精品国产超薄肉色丝袜足j| 日本免费a在线| 窝窝影院91人妻| 天天躁狠狠躁夜夜躁狠狠躁| 好男人在线观看高清免费视频 | 日韩大尺度精品在线看网址 | 99在线视频只有这里精品首页| 色婷婷久久久亚洲欧美| 国产私拍福利视频在线观看| 欧美色欧美亚洲另类二区 | 香蕉丝袜av| 久久午夜综合久久蜜桃| 亚洲精品一区av在线观看| 最近最新免费中文字幕在线| 色综合婷婷激情| 久久亚洲精品不卡| 国产欧美日韩综合在线一区二区| 久久久久国产精品人妻aⅴ院| 长腿黑丝高跟| 美女扒开内裤让男人捅视频| 老熟妇仑乱视频hdxx| 夜夜爽天天搞| 脱女人内裤的视频| 男女下面进入的视频免费午夜 | 1024香蕉在线观看| 久久久久久亚洲精品国产蜜桃av| 免费在线观看影片大全网站| 18禁裸乳无遮挡免费网站照片 | 老司机午夜十八禁免费视频| 黄色 视频免费看| 老鸭窝网址在线观看| 国产精品亚洲美女久久久| 欧美日本中文国产一区发布| 天堂影院成人在线观看| 乱人伦中国视频| 青草久久国产| 色老头精品视频在线观看| 国产精品九九99| 国产日韩一区二区三区精品不卡| 女人高潮潮喷娇喘18禁视频| 午夜免费激情av| netflix在线观看网站| 人人妻人人爽人人添夜夜欢视频| 十分钟在线观看高清视频www| 亚洲精品在线美女| 亚洲欧美一区二区三区黑人| 窝窝影院91人妻| 久久婷婷人人爽人人干人人爱 | 一级黄色大片毛片| www.999成人在线观看| 日本vs欧美在线观看视频| 国产99白浆流出| 高清黄色对白视频在线免费看| 一级毛片高清免费大全| 十八禁网站免费在线| 日本在线视频免费播放| 无遮挡黄片免费观看| 欧美日韩福利视频一区二区| 国产一级毛片七仙女欲春2 | 久久久久久大精品| 国产aⅴ精品一区二区三区波| 97人妻精品一区二区三区麻豆 | 十八禁网站免费在线| 亚洲男人的天堂狠狠| 欧美日本亚洲视频在线播放| 一区在线观看完整版| 又紧又爽又黄一区二区| 免费观看人在逋| 精品久久久久久久人妻蜜臀av | 国产高清有码在线观看视频 | 老汉色∧v一级毛片| 色精品久久人妻99蜜桃| 又黄又爽又免费观看的视频| 久久中文字幕一级| 亚洲av片天天在线观看| 国产一区二区三区综合在线观看| 正在播放国产对白刺激| 欧美在线黄色| 亚洲免费av在线视频| 伊人久久大香线蕉亚洲五| 给我免费播放毛片高清在线观看| av免费在线观看网站| 性色av乱码一区二区三区2| 黑人操中国人逼视频| 女生性感内裤真人,穿戴方法视频| 最新美女视频免费是黄的| 久热这里只有精品99| 国产成人欧美在线观看| 日韩欧美国产一区二区入口| 好男人在线观看高清免费视频 | 女人爽到高潮嗷嗷叫在线视频| 日本精品一区二区三区蜜桃| 高清在线国产一区| 精品国产一区二区三区四区第35| 国产97色在线日韩免费| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 午夜两性在线视频| 久久精品91无色码中文字幕| 亚洲专区国产一区二区| 母亲3免费完整高清在线观看| 超碰成人久久| 免费观看人在逋| 咕卡用的链子| 免费高清在线观看日韩| 99国产精品99久久久久| 日韩三级视频一区二区三区| 夜夜躁狠狠躁天天躁| 国产私拍福利视频在线观看| www.精华液| 在线观看一区二区三区| 精品欧美一区二区三区在线| 精品久久久久久,| 在线av久久热| 久久国产乱子伦精品免费另类| 久久久精品国产亚洲av高清涩受| 纯流量卡能插随身wifi吗| 一区在线观看完整版| 亚洲中文字幕一区二区三区有码在线看 | 国产一区二区三区视频了| 高清毛片免费观看视频网站| 国产精品98久久久久久宅男小说| cao死你这个sao货| 亚洲最大成人中文| 狠狠狠狠99中文字幕| 少妇熟女aⅴ在线视频| 黄频高清免费视频| 欧美 亚洲 国产 日韩一| 日韩欧美免费精品| 国产成+人综合+亚洲专区| 91av网站免费观看| 欧美激情久久久久久爽电影 | 欧美最黄视频在线播放免费| 亚洲熟妇中文字幕五十中出| 亚洲在线自拍视频| 天堂动漫精品| 怎么达到女性高潮| 在线天堂中文资源库| 一级毛片女人18水好多| 啦啦啦 在线观看视频| 中文字幕久久专区| 在线天堂中文资源库| 麻豆一二三区av精品| 90打野战视频偷拍视频| 亚洲国产日韩欧美精品在线观看 | 女人爽到高潮嗷嗷叫在线视频|