• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Initial growth and microstructure feature of Ag films prepared by very-high-frequency magnetron sputtering?

    2017-08-30 08:26:08YueZhang張悅ChaoYe葉超XiangYingWang王響英PeiFangYang楊培芳JiaMinGuo郭佳敏andSuZhang張?zhí)K
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張悅

    Yue Zhang(張悅),Chao Ye(葉超),2,?,Xiang-Ying Wang(王響英), Pei-Fang Yang(楊培芳),Jia-Min Guo(郭佳敏),and Su Zhang(張?zhí)K)

    1 College of Physics,Optoelectronics and Energy,Soochow University,Suzhou 215006,China

    2 Key Laboratory of Thin Films of Jiangsu Province,Soochow University,Suzhou 215006,China

    3 Medical College,Soochow University,Suzhou 215123,China

    Initial growth and microstructure feature of Ag films prepared by very-high-frequency magnetron sputtering?

    Yue Zhang(張悅)1,Chao Ye(葉超)1,2,?,Xiang-Ying Wang(王響英)3, Pei-Fang Yang(楊培芳)1,Jia-Min Guo(郭佳敏)1,and Su Zhang(張?zhí)K)3

    1 College of Physics,Optoelectronics and Energy,Soochow University,Suzhou 215006,China

    2 Key Laboratory of Thin Films of Jiangsu Province,Soochow University,Suzhou 215006,China

    3 Medical College,Soochow University,Suzhou 215123,China

    The initial growth and microstructure feature of Ag films formation were investigated,which were prepared by using the very-high-frequency(VHF)(60 MHz)magnetron sputtering.Because of the moderate energy and very low flux density of ions impinging on the substrate,the evolutions of initial growth for Ag films formation were well controlled by varying the sputtering power.It was found that the initial growth of Ag films followed the island(Volmer—Weber,VW)growth mode,but before the island nucleation,the adsorption of Ag nanoparticles and the formation of Ag clusters dominated the growth.Therefore,the whole initial stages of Ag films formation included the adsorption of nanoparticles,the formation of clusters,the nucleation by the nanoparticles and clusters simultaneously,the islands formation,and the coalescence of islands.

    Ag film,initial growth,very-high-frequency sputtering

    1.Introduction

    Recently,the Ag thin films and nanostructures have been paid more attention because of their unique optical and electrical properties,[1,2]a strong coupling of surface plasmons with the incident light,[3,4]and the application as the substrate for silicene epitaxial growth.[5–7]These applications are highly sensitive to the subtle difference in their shape,size,and distribution,thus the morphology of Ag thin films and nanostructures strongly govern these properties.Because the initial formation stages set the characteristic length scales during growth of Ag thin films from the vapor phase,they are decisive for the morphological and microstructural features of Agfilms and nanostructures.

    The initial stages of Ag films formation have been well investigated for a long time.[8–14]The examples include the initial formation of Ag films on MgF2substrates observed by transmission electron micrographs,[8]the view of the initial stages of polycrystalline Ag film formation on an amorphous substrate by scanning tunnelling microscopy,[9,10]as well as the optical and electrical monitoring on the initial stage of the Ag growth in Ar/N2magnetron sputtering.[11]In additional, a three-dimensional(3D)Monte Carlo model for simulating the growth of Ag thin film has also been developed to explore the initial growth of Ag films on an amorphous substrate.[12]These investigations showed that the initial stages of Ag films formation followed the island(Volmer–Weber,VW)growth mode,[13]which includes the island nucleation,island growth, and island coalescence.[14]However,these works focused on the island growth and coalescence,and little information on the nucleation stage has been reported.[9]Thus,the information on initial stages of Ag films formation is incomplete,and some educated guesses were given.[9]

    In order to carry out a good investigation on the initial growth of Ag films formation,the controllable preparation of samples is very important.The magnetron sputtering is an important technology for the films deposition[15–20]and an attractive alternative to prepare Ag films.[21–25]However,the common magnetron sputtering for the Ag films preparation is driven by the 13.56 MHz radio-frequency(RF)source.Because of the higher growth rate,the exact control on the initial growth of Ag films is more difficult.If the growth rate can be reduced as low as possible,the controllable preparation of samples can be achieved.Many investigations have shown that the growth and structure of sputtered Ag films were closely related to the energy and flux of ions impacting the substrate.[21–25]The previous works showed that the 60 MHz very-high-frequency(VHF)magnetron sputtering had a very low ions flux density and moderate ions energy.[26–29]If this VHF sputtering is used to deposit the Ag films,the initial growth of Ag films may be exactly controlled.Therefore,in this work,the initial growth and microstructure feature of Agfilms prepared by the 60 MHz VHF magnetron sputtering were investigated.

    2.Experimental details

    In the experiment,an unbalanced planar magnetron sputtering was used to deposit the Ag thin films,[26–28]which was driven by a 60 MHz VHF source in the power range of 50–250 W.In the cylindrical vacuum chamber,the water-cooled circular Ag target(99.999%pure,in diameter of 50 mm)was placed at the top,and the water-cooled,electrically floated stainless steel substrate holder(in diameter of100 mm)was set at the bottom,about 70 mm away from the target surface.The sputtering target was biased with a VHF voltage of 60 MHz through a corresponding matching box.The wall of the chamber was electrically grounded.The device was pumped down to a base pressure less than 5×10?4Pa before each deposition,with a 600 l/s turbo-molecular pump backed up with a mechanical pump.Argon with a fixed flow rate of 30 sccm was used as the discharge gas and the operating pressure was maintained at 5.0 Pa.The target was pre-sputtered in Ar for 10 min prior to each run.The deposition time was 60 min. The n-type(100)silicon wafers and quartz crystal wafers were used as the substrates.

    The microstructure of Ag thin films grown on silicon wafers was observed using a Hitachi S-4700 FE-scanning electron microscope(SEM).The x-ray diffraction measurements of the Ag thin films grown on quartz crystal wafers were carried out using the D/MAX-2000PCx-ray diffractometer with Cu Kαradiation(λ=0.154051 nm).The surface morphology of Ag thin films grown on silicon wafers was also measured using a Bruker Dimension Icon atomic force microscopy(AFM)in AC mode.

    In order to understand the possible reason for the growth of Ag thin films,the energy and flux density of ions impinging on the substrate were measured at the substrate holder using the Semion HV-2500 retarding field energy analyzer(RFEA). Measurements of ion distribution,by retarding field devices, represent ion velocity distribution function(IVDF)in the forward direction,[30–33]described by[32,33]

    where m is the mass of ions,Tgis the total geometrical transparency of grids,A0is the total open area of the entrance orifice,Icis the detector current,and the ?ris applied retarding the grid potential.In our case,the total ion acceptance area A0was 21.5 mm2.For the 3 electrically isolated grids,the ions transparency of every grid was 50%,thus the total transparency Tgwas 0.125.The ion flux density Jiwas calculated as

    3.Results and discussion

    Because the growth of Ag films is closely related to the energy and flux density of ions impinging on the substrate, the ion energy and ion flux density were analyzed firstly.Figure 1 shows IVDF measured by RFEA.It can be found that at the power of 50 W,no obvious main peak can be seen, and only some small peaks are obtained.This indicates the random distribution of ion energy.As the power increased to 100 W,a main peak centered at the energy of 32.1 eV occurs except for other small peaks.This means that the interaction between VHF electric field and ions makes the most probable ion energy be about 32.1 eV.As the sputtering power further increases,the intensity of the main peaks increases,and the center position of peaks slightly shifts to higher energy.The full width at half maximum(FWHM)of these peaks also increases,from about 7.0 eV to 12.7 eV.Thus the ions impacting the substrate have more of a wide energy range.

    Fig.1.IVDFs of 60 MHz VHF magnetron sputtering at the sputtering power of 50–250 W.

    Fig.2.Variation of maximum ion energy E max and ion flux density J i with the sputtering power.

    Figure 2 shows the variation of maximum ion energy Emax(denoting the ion energy at the peak as shown in Fig.1) and ion flux density Jiwith the sputtering power.It can be seen that Emaxis about 21.8 eV at the power of 50 W,and then increases to the range of 32.1–34.5 eV as the power increased to 100–250 W.Jiincreases linearly from 0.0034 A/m2to 0.0145 A/m2.Because Emaxhas a small variation while Jiincreases rapidly as the power increases from 100 W to 250 W, the evolutions of initial growth behavior and microstructure feature of Ag films formation are mainly related to the ion flux.In additional,Emaxand Jiof 60 MHz magnetron sputtering are both lower than that of 13.56 MHz RF magnetron sputtering,which are in the range of 43.5—48.2 eV and 0.0057–0.0313 A/m2respectively at the sputtering power range of 50–250 W.Therefore,compared with the 13.56 MHz RF magnetron sputtering,the 60 MHz VHF magnetron sputtering can produce ions with lower energy and lower flux density.As a result,the growth of Ag films can be well controlled.

    Figure 3 shows the SEM images of Ag films deposited at the sputtering power of 50–250 W.At the power of 50 W (Fig.3(a)),only some small bright dots in diameter of 10– 20 nm distribute randomly on the substrate surface,which correspond to Ag nanoparticles.Thus,at this stage,only low density Ag nanoparticles adsorp on the substrate surface,and no island growth takes place.At the power of 100 W(Fig.3(b)), the small bright dots in diameter of 10–20 nm and the big bright dots in diameter of 60–100 nm distribute simultaneously on the substrate surface.The small bright dots correspond to the Ag nanoparticles,while the big bright dots correspond to the Ag clusters,which are from the aggregation of small Ag nanoparticles.Thus,at this stage,the aggregation of small Ag nanoparticles and the formation of big Ag clusters take place.At the power of 150 W(Fig.3(c)),the Ag nanoparticles and Ag clusters form the nucleations simultaneously at the surface of the substrate.The size of major nucleations is about 6–23 nm,and the size of big nucleations coming from the few Ag clusters is about 90 nm.Thus,at this stage,the nucleation of Ag nanoparticles and Ag clusters take place simultaneously.At the power of 200 W(Fig.3(d)), the high density islands and low density coalescence of islands are seen.Thus,at this stage,the island growth dominates the films growth.At the power of 250 W(Fig.3(e)),only the worm-like microstructure[34]is formed while no islands can be found.The formation of the worm-like microstructure is from the more islands coalescence.Thus,at this stage,the island coalescence dominates the films growth.

    Fig.3.(color online)SEM images of Ag films deposited at 50–250 W by the 60 MHz VHF magnetron sputtering.

    In addition,some evolutions of initial growth can be clearly observed in the samples prepared by the RF magnetron sputtering at the low power.Figure 4(a)shows the SEM image of Ag films deposited at 50 W by the 27.12 MHz sputtering. In this case,the growth surface is covered mainly by the high density islands,including the big islands and small islands, and the fewer island coalescence.The big islands are from the nucleations of clusters,while the small islands are from the nucleations of nanoparticles.Therefore,the development of nucleations from the clusters and nanoparticles simultaneously leads to the islands growth and the difference in the islands size.Figure 4(b)shows the SEM image of Ag films deposited at 50 W by the 13.56 MHz sputtering.It can be seen that the density of islands coalescence has increased largely compared with that of Fig.3(d),but the worm-like microstructure is not as complete as that of Fig.3(e).Meanwhile,some islands can still be seen.Therefore,the coalescence of islands is developed gradually from the low density to the high density.

    Fig.4.SEM images of Ag films deposited at 50 W by(a)27.12 MHz and(b)13.56 MHz magnetron sputtering.

    For the initial stages of Ag film formation,according to the STM view of the initial stages of polycrystalline Ag film formation on an amorphous substrate,Polop makes a summary on the morphology evolution of the Ag films.[9]The initial stages of Ag films include the following stages:(i)the nucleation and island growth,(ii)the island coalescence,and (iii)the continuous film.However,no further information is reported in this summary on what happens before nucleation and after polycrystalline islands.From the above SEM observations in this work,it can be found that before the nucleation, the Ag nanoparticles firstly adsorp on the substrate,then forming Ag clusters by nanoparticles aggregation.After that,the Ag nanoparticles and clusters form the nucleations simultaneously for the islands formation,the islands coalescence,and the formation of Ag thin films.

    Figure 5 shows the variation of particles density(nanoparticle, nucleation,or island)with the sputtering power.At the beginning of Ag films formation,the density of Ag nanoparticles on the substrate surface is very low,only about 1.4× 1014–1.9×1014m?2,far lower than that of nuclei(≈1× 1016m?2).[8]Thus,the nucleation of adsorped Ag nanoparticles cannot take place.With the increase of adsorped Ag nanoparticles,the aggregation of some Ag nanoparticles forms Ag clusters.The Ag nanoparticlesand the Ag clustersform the nucleations simultaneously,and the density of nuclei increases to about 2.1×1015m?2.With the development of nucleation and the formation of islands,the density of island decreases to about 2.6×1014m?2.Therefore,the variation of particles density(nanoparticle,nucleation,or island)indicates the evolution of the adsorption of Ag nanoparticles,the nucleations, the formation of islands,and the coalescence of islands.

    Fig.5.Variation of particles density(nanoparticle,nucleation,or island)with sputtering power.

    Figure 6 shows the 3D AFM images of Ag films deposited at the sputtering power of 50–250 W.At the power of 50 W (Fig.6(a)),the adsorped Ag nanoparticles show some small lonely protrusions on the surface of the substrate.Atthe power of 100 W(Fig.6(b)),some big protrusions and high density small protrusions,corresponding to the Ag clusters and the Ag nanoparticles respectively,stand simultaneously on the surface of the substrate.At the power of 150 W(Fig.6(c)),the size of big protrusions increases,and the small protrusions of nucleations among the big protrusions can also be found.At the power of 200 W(Fig.6(d)),the islands all exhibit the shape of cone protrusions.At the power of 250 W(Fig.6(e)),the islands coalescence also exhibits the shape of cone protrusions, but the size of cone protrusions increases.

    From the AFM measurement,the RMS roughness of samples were calculated.Figure 7 shows the variation of RMS roughness with the sputtering power.It can be found that at the stages of nanoparticles adsorption,the coverage of small density nanoparticles on the substrate surface leads to a low RMS roughness.With the formation of Ag clusters by nanoparticles aggregation and nucleations,the lonely particles standing on the surface of the substrate leads to a coarse surface,thus the large RMS roughness is obtained.When the formation of islands and the coalescence of islands take place,the number of boundaries between particles decreases.As a result,the surface of samples becomes smooth again.Thus,the RMS roughness decreases.

    Fig.6.(color online)AFM images of Ag films deposited at 50–250 W by 60 MHz VHF magnetron sputtering.

    Fig.7.Variation of RMS roughness with sputtering power.

    The x-ray diffraction of the Ag thin films grown on quartz crystal wafers were further measured for determining the structural phases of the initial stages of Ag films formation,as shown in Fig.8.Here,in order to avoid the hiding of weak Ag diffraction peaks by the strong Si diffraction peaks, the quartz crystal wafers while not the silicon wafer was used as the substrate.It can be seen that at the stages of Ag nanoparticles adsorped on the substrate,the formation of Ag clusters by small Ag nanoparticles aggregation,and the nucleation of Ag nanoparticles,no diffraction peak can be found.However, at the stages of the island growth,the small diffraction peak of Ag(111)can be seen,indicating the formation of crystal microstructures.When the coalescence islands form the worm like microstructure,the small diffraction peak of Ag(220)can also be seen except for the obvious Ag(111)diffraction peak. This means the formation of the polycrystalline structures with the preferred plane(111).Thus,the formation of Ag crystalline structures takes place at the stage of the island growth and coalescence.

    Fig.8.(color online)X-ray difractogram for the initial stages of Agfilms formation.

    4.Conclusion

    The initial formation stages are decisive for morphological and microstructure features of Ag films,but the investigations on the initial stages of Ag films formation are incomplete due to a lack of information on the nucleation stage.In this work,using 60 MHz magnetron sputtering,because of the moderate ions energy and lower flux density,the exact control of the initial growth of Ag films was achieved by varying the sputtering power from 50 W to 250 W.From the SEM observations,it can be found that before the nucleation,the Ag nanoparticles firstly adsorp on the substrate,then forming Ag clusters by nanoparticles aggregation.After that,the Ag nanoparticles and clusters form the nucleations simultaneously.These stages provide the nucleation for the islands formation,the islands coalescence,and the Ag thin films are formed.Therefore,the whole initial growth of Ag films follows the island thin-film growth modes(Volmer–Weber,VW), which are(i)the Ag nanoparticles adsorped on the substrate, (ii)the formation of Ag clusters by Ag nanoparticles aggregation,(iii)the nucleation by Ag nanoparticles and Ag clusters simultaneously,(iv)the islands formation,and(v)the coalescence of islands and the formation of polycrystalline Ag films.

    [1]Guillén C and Herrero J 2015 Appl.Surf.Sci.324 245

    [2]Nakanishi Y,Kato K,Omoto H and Yonekura M 2013 Thin Solid Films 532 141

    [3]Kumar M,Jangid T,Panchal V,Kumar P and Pathak A 2016 Nanoscale Res.Lett.11 454

    [4]Guillén C and Herrero J 2013 J.Phys.D-Appl.Phys.46 295302

    [5]Sone J,Yamagami T,Aoki Y,Nakatsuji K and Hirayama H 2014 New J.Phys.16 095004

    [6]Liu Z L,Wang M X,Xu J P,Ge J F,Le Lay G,Vogt P,Qian D,Gao C L,Liu C and Jia J F 2014 New J.Phys.16 075006

    [7]Arafune R,Lin C L,Kawahara K,Tsukahara N,Minamitani E,Kim Y, Takagi N and Kawai M 2013 Surf.Sci.608 297

    [8]Koch R 1994 J.Phys.-Condens.Mat.6 9519

    [9]Polop C,Rosiepen C,Bleikamp S,Drese R,Mayer J,Dimyati A and Michely T 2007 New J.Phys.9 74

    [10]Placidi E,Fanfoni M,Arciprete F,Patella F,Motta N and Balzarotti A 2000 Mater.Sci.Eng.B 69–70 243

    [11]Bulí? J,Novotny M,Lan?ok J,Fekete L,Drahokoupil J and Musil J 2013 Surf.Coat.Technol.228 S86

    [12]Zhu G and Wang T L 2015 Appl.Surf.Sci.324 831

    [13]Bal J K and Hazra S 2009 Phys.Rev.B 79 155412

    [14]Elofsson V,L?B,Magnf?lt D,Münger E P and Sarakinos K 2014 J. Appl.Phys.116 044302

    [15]Guo J M,Ye C,Wang X Y,Yang P F and Zhang S 2017 Chin.Phys.B 26 065207

    [16]Gu J H,Si J L,Wang J X,Feng Y Y,Gao X Y and Lu J X 2015 Chin. Phys.B 24 117703

    [17]Jabbar S,Ahmad R and Chu P K 2017 Chin.Phys.B 26 010702

    [18]Huang S H and Liu J 2014 Chin.Phys.B 23 058105

    [19]Xiu X W and Zhao W J 2012 Chin.Phys.B 21 066802

    [20]Zhao Y,Gao W,Xu B,Li Y A,Li H D,Gu G R and Yin H 2016 Chin. Phys.B 25 106801

    [21]Kato K,Omoto H and Takamatsu A 2010 Vacuum 84 587

    [22]Kato K,Omoto H and Takamatsu A 2012 Thin Solid Films 520 4139

    [23]Kawamura M,Abe Y and Sasaki K 2006 Thin Solid Films 515 540

    [24]Novotny M,Bulí? J,Pokorny P,Lan?ok J,Fekete L,MusilJ and ?ekada M 2013 Surf.Coat.Technol.228 S466

    [25]Pongbordin U,Nurak G and Chaweewan S 2016 RSC Adv.6 7661

    [26]He H J,Ye C,Wang X Y,Huang F P and Liu Y 2014 ECS J.Solid State Sci.Technol.3 Q74

    [27]Gao M W,Ye C,Wang X Y,He Y S,Guo J M and Yang P F 2016 Chin. Phys.B 25 075202

    [28]Huang F P,Ye C,He H J,Liu Y,Wang X Y and Ning Z Y 2014 Plasma Sources Sci.Technol.23 015003

    [29]Ye C,He H J,Huang F P,Liu Y and Wang X Y 2014 Phys.Plasma 21 043509

    [30]Ellmer K,Wendt R and Wiesemann K 2003 Int.J.Mass Spectrom. 223–224 679

    [31]Seeger S,Harbauer K and Ellmer K 2009 J.Appl.Phys.105 053305

    [32]Stranak V,Drache S,Bogdanowicz R,Wulff H,Herrendorf A,Hubicka Z,Cada M,Tichy M and Hippler R 2012 Surf.Coat.Technol.206 2801

    [33]Stranak V,Wulff H,Bogdanowicz R,Drache S,Hubicka Z,Cada M, Tichy M and Hippler R 2011 Eur.Phys.J.D 64 427

    [34]Palanisamy S,Yan L Q and Zhang X H 2015 Anal.Methods 7 3438

    19 May 2017;revised manuscript

    12 June 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/095206

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11675118 and 11275136).

    ?Corresponding author.E-mail:cye@suda.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張悅
    張悅
    外公的飯盒
    安邸AD(2020年3期)2020-07-14 08:39:35
    熟悉的陌生人
    小身體大力量,13歲女孩攀巖奪冠
    莫愁(2018年27期)2018-09-19 06:16:52
    小身體大力量,13歲女孩攀巖奪冠
    張悅作品
    王慶英、張鵬、張雪成、張悅作品
    Women in leadership
    張悅:養(yǎng)生貴在堅(jiān)持
    益壽寶典(2017年8期)2017-09-15 13:03:53
    黄色视频在线播放观看不卡| 自拍欧美九色日韩亚洲蝌蚪91| videosex国产| 精品亚洲成国产av| 少妇熟女欧美另类| 国产日韩一区二区三区精品不卡 | 国产一区亚洲一区在线观看| 天天操日日干夜夜撸| 国产精品.久久久| 秋霞在线观看毛片| av在线播放精品| 免费不卡的大黄色大毛片视频在线观看| 九九在线视频观看精品| 成人二区视频| 国产精品久久久久久av不卡| 国产精品人妻久久久影院| 欧美日韩视频精品一区| 国产精品.久久久| 男女无遮挡免费网站观看| 亚洲国产精品国产精品| 99热全是精品| 国产男人的电影天堂91| 亚洲精品久久久久久婷婷小说| av有码第一页| 日韩在线高清观看一区二区三区| 精品亚洲乱码少妇综合久久| 国产亚洲欧美精品永久| 岛国毛片在线播放| 香蕉精品网在线| 日本欧美国产在线视频| 老司机亚洲免费影院| 日日摸夜夜添夜夜爱| 天美传媒精品一区二区| 少妇人妻 视频| 精品人妻在线不人妻| 国产乱人偷精品视频| 欧美日韩亚洲高清精品| 日本欧美国产在线视频| 啦啦啦在线观看免费高清www| 制服诱惑二区| 亚洲精品第二区| 亚洲成人手机| 美女xxoo啪啪120秒动态图| 五月玫瑰六月丁香| 国产熟女午夜一区二区三区 | 亚洲精品自拍成人| 黄色配什么色好看| 又黄又爽又刺激的免费视频.| 久久精品夜色国产| 一区二区三区免费毛片| av天堂久久9| 女人精品久久久久毛片| 欧美亚洲 丝袜 人妻 在线| 夫妻性生交免费视频一级片| 免费看不卡的av| 十八禁高潮呻吟视频| 亚洲精品第二区| 人妻人人澡人人爽人人| 久久综合国产亚洲精品| 日韩中文字幕视频在线看片| 成人黄色视频免费在线看| a级毛片在线看网站| 亚洲在久久综合| 赤兔流量卡办理| 免费黄频网站在线观看国产| 超碰97精品在线观看| av电影中文网址| 黑人猛操日本美女一级片| 日韩中字成人| av播播在线观看一区| 国产高清不卡午夜福利| 欧美激情 高清一区二区三区| 亚洲丝袜综合中文字幕| av在线app专区| 国产精品久久久久久精品电影小说| 日韩成人av中文字幕在线观看| 国产成人91sexporn| 亚洲精品,欧美精品| 欧美精品一区二区大全| av视频免费观看在线观看| 少妇精品久久久久久久| 日韩一区二区三区影片| 老司机亚洲免费影院| 简卡轻食公司| 精品国产国语对白av| 亚洲成色77777| 日韩在线高清观看一区二区三区| 成人午夜精彩视频在线观看| 国产日韩欧美亚洲二区| 欧美精品亚洲一区二区| 午夜老司机福利剧场| 精品少妇久久久久久888优播| 精品久久久久久久久av| 五月玫瑰六月丁香| 我的女老师完整版在线观看| 亚洲伊人久久精品综合| 制服诱惑二区| 亚洲天堂av无毛| 亚洲欧美一区二区三区黑人 | 久久久久久久久大av| 午夜av观看不卡| 亚洲一区二区三区欧美精品| 天堂中文最新版在线下载| 色94色欧美一区二区| 久久精品国产亚洲av涩爱| 午夜视频国产福利| 少妇精品久久久久久久| 丝瓜视频免费看黄片| 香蕉精品网在线| 国产精品国产三级国产专区5o| 久久久久精品性色| 春色校园在线视频观看| 男男h啪啪无遮挡| 黄色怎么调成土黄色| 校园人妻丝袜中文字幕| 日日撸夜夜添| av福利片在线| 国产一区二区在线观看av| 国产精品三级大全| 99久久综合免费| 狂野欧美白嫩少妇大欣赏| 最近中文字幕高清免费大全6| av天堂久久9| 97超视频在线观看视频| 亚洲国产欧美在线一区| 久久久精品94久久精品| 亚洲伊人久久精品综合| 亚洲欧洲国产日韩| 亚洲国产av影院在线观看| 成人国产av品久久久| 在线观看国产h片| 天美传媒精品一区二区| 青春草亚洲视频在线观看| 一级片'在线观看视频| 97超视频在线观看视频| 精品国产一区二区久久| 菩萨蛮人人尽说江南好唐韦庄| 亚州av有码| 各种免费的搞黄视频| 欧美精品一区二区大全| 亚洲精品aⅴ在线观看| 只有这里有精品99| 欧美bdsm另类| 天天躁夜夜躁狠狠久久av| 两个人的视频大全免费| 国产免费一级a男人的天堂| 成人毛片60女人毛片免费| 国产永久视频网站| 国产精品国产三级专区第一集| 久久99蜜桃精品久久| 永久网站在线| 亚洲精品视频女| 男女啪啪激烈高潮av片| 国产精品一区二区在线观看99| 免费大片黄手机在线观看| 岛国毛片在线播放| 黄色配什么色好看| 五月开心婷婷网| 女人久久www免费人成看片| 少妇高潮的动态图| 久久久久久久久久久免费av| 成人免费观看视频高清| 久久久国产精品麻豆| 人人妻人人澡人人爽人人夜夜| 久久久久国产网址| 色94色欧美一区二区| 成人亚洲欧美一区二区av| 色网站视频免费| 日本-黄色视频高清免费观看| 亚洲第一区二区三区不卡| 亚洲国产日韩一区二区| 日日摸夜夜添夜夜添av毛片| 91精品一卡2卡3卡4卡| 99re6热这里在线精品视频| 国产精品国产av在线观看| 国产淫语在线视频| 新久久久久国产一级毛片| 18禁动态无遮挡网站| 亚洲图色成人| 国产亚洲精品第一综合不卡 | 亚洲国产色片| 亚洲国产欧美日韩在线播放| 亚洲美女搞黄在线观看| 一本大道久久a久久精品| 亚洲成人手机| 少妇猛男粗大的猛烈进出视频| 亚洲精品日本国产第一区| 麻豆精品久久久久久蜜桃| 99久久人妻综合| 亚洲精品一区蜜桃| 80岁老熟妇乱子伦牲交| 国产不卡av网站在线观看| 免费看不卡的av| 欧美激情国产日韩精品一区| av.在线天堂| 国产精品 国内视频| 99精国产麻豆久久婷婷| 亚洲精品一二三| 成人亚洲精品一区在线观看| 日韩一本色道免费dvd| 久久热精品热| 91久久精品电影网| 黄片无遮挡物在线观看| 极品人妻少妇av视频| 国产精品三级大全| 亚洲精品av麻豆狂野| 2021少妇久久久久久久久久久| 久久人人爽人人片av| 欧美日韩亚洲高清精品| 精品亚洲成a人片在线观看| 欧美+日韩+精品| 日韩熟女老妇一区二区性免费视频| 精品少妇黑人巨大在线播放| 黄色一级大片看看| 中文字幕人妻丝袜制服| 97超视频在线观看视频| 国产视频首页在线观看| 国产成人av激情在线播放 | 街头女战士在线观看网站| 中文天堂在线官网| 天天躁夜夜躁狠狠久久av| 亚洲av国产av综合av卡| 日韩精品有码人妻一区| 男女国产视频网站| 好男人视频免费观看在线| 国产成人免费无遮挡视频| 免费日韩欧美在线观看| 午夜免费鲁丝| 国产老妇伦熟女老妇高清| 狠狠精品人妻久久久久久综合| tube8黄色片| 午夜免费观看性视频| 欧美日本中文国产一区发布| 日韩人妻高清精品专区| 亚洲欧洲国产日韩| 免费不卡的大黄色大毛片视频在线观看| 日韩大片免费观看网站| 激情五月婷婷亚洲| 视频中文字幕在线观看| 国产精品99久久99久久久不卡 | 丝袜美足系列| 三级国产精品片| 新久久久久国产一级毛片| 午夜免费观看性视频| 人人妻人人澡人人爽人人夜夜| 免费人妻精品一区二区三区视频| 午夜激情久久久久久久| 观看美女的网站| 观看美女的网站| 欧美日韩国产mv在线观看视频| 亚洲精品第二区| 免费黄频网站在线观看国产| 男女无遮挡免费网站观看| 久久久久久久久久成人| 成年美女黄网站色视频大全免费 | 精品一区二区三区视频在线| 狠狠精品人妻久久久久久综合| 精品人妻在线不人妻| .国产精品久久| 欧美日韩在线观看h| 99热国产这里只有精品6| 2018国产大陆天天弄谢| 久久精品久久精品一区二区三区| 久久久久久久精品精品| 老司机亚洲免费影院| 香蕉精品网在线| 免费人成在线观看视频色| 黄色一级大片看看| 天天躁夜夜躁狠狠久久av| 国产精品秋霞免费鲁丝片| 97在线视频观看| 中文字幕精品免费在线观看视频 | 国产亚洲一区二区精品| 在线 av 中文字幕| 国产亚洲一区二区精品| 在线观看免费视频网站a站| 全区人妻精品视频| 亚洲精品乱码久久久久久按摩| 欧美精品一区二区免费开放| 一边亲一边摸免费视频| xxxhd国产人妻xxx| 热re99久久精品国产66热6| 考比视频在线观看| 两个人的视频大全免费| 欧美日韩成人在线一区二区| 久久久久久久久大av| 国精品久久久久久国模美| 国产视频内射| 久久久a久久爽久久v久久| 青春草视频在线免费观看| 国产在线视频一区二区| 我的老师免费观看完整版| 精品久久久久久电影网| 综合色丁香网| 啦啦啦啦在线视频资源| 成人午夜精彩视频在线观看| 全区人妻精品视频| 草草在线视频免费看| 久久午夜综合久久蜜桃| 在线 av 中文字幕| 国产精品麻豆人妻色哟哟久久| 国产精品一区二区在线观看99| 一区在线观看完整版| 欧美少妇被猛烈插入视频| 日日爽夜夜爽网站| 女性被躁到高潮视频| 国产成人精品一,二区| 九九在线视频观看精品| 久久99精品国语久久久| 国产精品国产三级国产av玫瑰| 久久国产亚洲av麻豆专区| 热re99久久精品国产66热6| 午夜免费男女啪啪视频观看| 91久久精品电影网| 大码成人一级视频| 美女cb高潮喷水在线观看| 亚洲av在线观看美女高潮| 国产精品不卡视频一区二区| 我的老师免费观看完整版| 国产成人精品婷婷| 婷婷色综合www| 蜜桃国产av成人99| 一区二区日韩欧美中文字幕 | 99热全是精品| 欧美日本中文国产一区发布| 26uuu在线亚洲综合色| 插阴视频在线观看视频| 中文字幕制服av| 久久av网站| 亚洲激情五月婷婷啪啪| 午夜激情久久久久久久| 最近手机中文字幕大全| 国产深夜福利视频在线观看| 伦精品一区二区三区| 亚洲av中文av极速乱| 国产男人的电影天堂91| 一本久久精品| 国产色爽女视频免费观看| 精品视频人人做人人爽| 最黄视频免费看| 国产亚洲午夜精品一区二区久久| 九色亚洲精品在线播放| av视频免费观看在线观看| 汤姆久久久久久久影院中文字幕| 亚洲一级一片aⅴ在线观看| 一本大道久久a久久精品| 乱码一卡2卡4卡精品| 伦理电影大哥的女人| 精品国产一区二区久久| 一区二区三区乱码不卡18| 日本91视频免费播放| 美女脱内裤让男人舔精品视频| 日日撸夜夜添| 日韩免费高清中文字幕av| 亚洲欧美色中文字幕在线| 成人毛片a级毛片在线播放| 777米奇影视久久| 国产精品久久久久成人av| 中文字幕人妻熟人妻熟丝袜美| 亚洲中文av在线| 男人操女人黄网站| 亚洲精品av麻豆狂野| 亚洲美女搞黄在线观看| 欧美日韩综合久久久久久| 一级毛片 在线播放| 亚洲综合精品二区| av在线老鸭窝| 美女脱内裤让男人舔精品视频| 桃花免费在线播放| 日韩亚洲欧美综合| 国产成人午夜福利电影在线观看| 国产精品一国产av| 国产免费一区二区三区四区乱码| 亚洲不卡免费看| 看十八女毛片水多多多| 日本午夜av视频| av卡一久久| 午夜影院在线不卡| 午夜日本视频在线| 观看美女的网站| 国产乱来视频区| 人人妻人人爽人人添夜夜欢视频| 黄片无遮挡物在线观看| 啦啦啦中文免费视频观看日本| 亚洲美女搞黄在线观看| 一级毛片黄色毛片免费观看视频| 日韩中文字幕视频在线看片| 男人爽女人下面视频在线观看| 精品一品国产午夜福利视频| 男女啪啪激烈高潮av片| 校园人妻丝袜中文字幕| 国产欧美日韩一区二区三区在线 | 久久久久久伊人网av| 夜夜骑夜夜射夜夜干| 国产精品麻豆人妻色哟哟久久| 制服丝袜香蕉在线| 日本猛色少妇xxxxx猛交久久| 亚洲欧美一区二区三区国产| 另类亚洲欧美激情| 久久99蜜桃精品久久| 免费观看性生交大片5| 国产欧美日韩一区二区三区在线 | 国产综合精华液| 特大巨黑吊av在线直播| 国产有黄有色有爽视频| 99久久中文字幕三级久久日本| 女性被躁到高潮视频| 一区二区日韩欧美中文字幕 | 国产精品不卡视频一区二区| 国产精品偷伦视频观看了| 亚洲精品久久午夜乱码| 自线自在国产av| 精品国产一区二区三区久久久樱花| 国产成人精品婷婷| 天堂俺去俺来也www色官网| 亚洲成色77777| 亚洲av福利一区| 麻豆乱淫一区二区| 精品酒店卫生间| 久久人人爽人人爽人人片va| 亚洲成人一二三区av| 欧美日韩综合久久久久久| 男女边吃奶边做爰视频| 久久人人爽人人片av| 日本黄色日本黄色录像| 精品国产一区二区久久| 国产亚洲精品久久久com| 80岁老熟妇乱子伦牲交| 亚洲欧洲国产日韩| 国产 精品1| 女性生殖器流出的白浆| 又粗又硬又长又爽又黄的视频| 在线观看www视频免费| 成年人免费黄色播放视频| av免费在线看不卡| 51国产日韩欧美| 久久久久国产网址| 一本色道久久久久久精品综合| 性色av一级| 久久人妻熟女aⅴ| 亚洲av电影在线观看一区二区三区| 国产乱人偷精品视频| 两个人的视频大全免费| 99九九线精品视频在线观看视频| 中文字幕制服av| 伊人亚洲综合成人网| 日日爽夜夜爽网站| h视频一区二区三区| 最黄视频免费看| 最近2019中文字幕mv第一页| 国产成人一区二区在线| 七月丁香在线播放| 三级国产精品片| 99国产综合亚洲精品| av天堂久久9| 精品亚洲乱码少妇综合久久| 午夜日本视频在线| 国产免费一区二区三区四区乱码| 80岁老熟妇乱子伦牲交| 人人妻人人澡人人看| 下体分泌物呈黄色| 欧美+日韩+精品| 丝袜脚勾引网站| 国产又色又爽无遮挡免| 欧美人与性动交α欧美精品济南到 | 少妇高潮的动态图| 亚洲综合色网址| 丝袜在线中文字幕| 永久免费av网站大全| 久久 成人 亚洲| 午夜免费观看性视频| 日韩精品有码人妻一区| 日韩亚洲欧美综合| 一个人看视频在线观看www免费| 国产一区亚洲一区在线观看| 如何舔出高潮| 亚洲av欧美aⅴ国产| 午夜福利视频精品| av视频免费观看在线观看| 精品久久久久久久久亚洲| 亚洲av免费高清在线观看| 日韩成人伦理影院| 亚洲综合色惰| 在线观看www视频免费| 高清黄色对白视频在线免费看| 亚洲欧美日韩卡通动漫| 免费人成在线观看视频色| 久久精品久久久久久噜噜老黄| 国产精品一区www在线观看| www.av在线官网国产| 大片电影免费在线观看免费| 欧美xxxx性猛交bbbb| 女性生殖器流出的白浆| 欧美少妇被猛烈插入视频| 在线观看人妻少妇| 精品国产乱码久久久久久小说| 久久人人爽人人片av| 一级毛片黄色毛片免费观看视频| 黑人欧美特级aaaaaa片| 亚洲不卡免费看| 91国产中文字幕| 亚洲欧美清纯卡通| av有码第一页| 一级二级三级毛片免费看| 一个人免费看片子| 国产黄频视频在线观看| 五月天丁香电影| 国产精品一区二区在线观看99| 成人漫画全彩无遮挡| 国产淫语在线视频| av免费在线看不卡| 在线亚洲精品国产二区图片欧美 | 插阴视频在线观看视频| 91精品三级在线观看| 欧美另类一区| 老女人水多毛片| 亚洲色图 男人天堂 中文字幕 | 亚洲怡红院男人天堂| 一边摸一边做爽爽视频免费| 亚洲第一区二区三区不卡| 日日摸夜夜添夜夜爱| 欧美老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 亚洲少妇的诱惑av| 欧美日韩视频精品一区| 九色亚洲精品在线播放| av.在线天堂| 毛片一级片免费看久久久久| 国产伦理片在线播放av一区| 久久久国产一区二区| 国产日韩欧美亚洲二区| 美女主播在线视频| 一边摸一边做爽爽视频免费| 在线看a的网站| 99九九在线精品视频| 欧美日本中文国产一区发布| 91久久精品国产一区二区三区| 国产日韩欧美在线精品| 亚洲伊人久久精品综合| 国产精品久久久久久久久免| 欧美精品人与动牲交sv欧美| 春色校园在线视频观看| 黄色一级大片看看| 日本爱情动作片www.在线观看| 久久婷婷青草| av免费在线看不卡| 国产欧美日韩一区二区三区在线 | 大片免费播放器 马上看| 人妻 亚洲 视频| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕人妻熟人妻熟丝袜美| 日韩中字成人| 日本黄色片子视频| 18在线观看网站| 最近的中文字幕免费完整| 免费观看av网站的网址| 国语对白做爰xxxⅹ性视频网站| 成人亚洲精品一区在线观看| 久久人人爽av亚洲精品天堂| 国产午夜精品一二区理论片| 日韩三级伦理在线观看| 18禁观看日本| 一区二区三区精品91| 国产成人aa在线观看| 交换朋友夫妻互换小说| 欧美日韩国产mv在线观看视频| 岛国毛片在线播放| 亚洲欧美日韩卡通动漫| 日韩,欧美,国产一区二区三区| 青春草亚洲视频在线观看| 国产精品国产av在线观看| 97在线视频观看| 日韩一区二区视频免费看| 中文精品一卡2卡3卡4更新| 国产亚洲精品第一综合不卡 | 只有这里有精品99| 国产精品一区www在线观看| 欧美三级亚洲精品| 能在线免费看毛片的网站| 色网站视频免费| 最后的刺客免费高清国语| 国产熟女欧美一区二区| 一本大道久久a久久精品| 久久人妻熟女aⅴ| 老司机亚洲免费影院| 大话2 男鬼变身卡| 一本大道久久a久久精品| 日本免费在线观看一区| 人妻人人澡人人爽人人| 一级毛片黄色毛片免费观看视频| 最后的刺客免费高清国语| 你懂的网址亚洲精品在线观看| 国产精品嫩草影院av在线观看| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| 久久99一区二区三区| a级毛片黄视频| 亚洲精品久久久久久婷婷小说| 如何舔出高潮| av免费在线看不卡| 新久久久久国产一级毛片| 五月玫瑰六月丁香| 欧美变态另类bdsm刘玥| 在线观看国产h片| 亚洲在久久综合| 一二三四中文在线观看免费高清| videosex国产| 婷婷色综合www| 欧美精品一区二区大全| 亚洲精品成人av观看孕妇| 中文欧美无线码| 在线亚洲精品国产二区图片欧美 | 国产精品一二三区在线看| 亚洲天堂av无毛| 国产深夜福利视频在线观看|