• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Initial growth and microstructure feature of Ag films prepared by very-high-frequency magnetron sputtering?

    2017-08-30 08:26:08YueZhang張悅ChaoYe葉超XiangYingWang王響英PeiFangYang楊培芳JiaMinGuo郭佳敏andSuZhang張?zhí)K
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張悅

    Yue Zhang(張悅),Chao Ye(葉超),2,?,Xiang-Ying Wang(王響英), Pei-Fang Yang(楊培芳),Jia-Min Guo(郭佳敏),and Su Zhang(張?zhí)K)

    1 College of Physics,Optoelectronics and Energy,Soochow University,Suzhou 215006,China

    2 Key Laboratory of Thin Films of Jiangsu Province,Soochow University,Suzhou 215006,China

    3 Medical College,Soochow University,Suzhou 215123,China

    Initial growth and microstructure feature of Ag films prepared by very-high-frequency magnetron sputtering?

    Yue Zhang(張悅)1,Chao Ye(葉超)1,2,?,Xiang-Ying Wang(王響英)3, Pei-Fang Yang(楊培芳)1,Jia-Min Guo(郭佳敏)1,and Su Zhang(張?zhí)K)3

    1 College of Physics,Optoelectronics and Energy,Soochow University,Suzhou 215006,China

    2 Key Laboratory of Thin Films of Jiangsu Province,Soochow University,Suzhou 215006,China

    3 Medical College,Soochow University,Suzhou 215123,China

    The initial growth and microstructure feature of Ag films formation were investigated,which were prepared by using the very-high-frequency(VHF)(60 MHz)magnetron sputtering.Because of the moderate energy and very low flux density of ions impinging on the substrate,the evolutions of initial growth for Ag films formation were well controlled by varying the sputtering power.It was found that the initial growth of Ag films followed the island(Volmer—Weber,VW)growth mode,but before the island nucleation,the adsorption of Ag nanoparticles and the formation of Ag clusters dominated the growth.Therefore,the whole initial stages of Ag films formation included the adsorption of nanoparticles,the formation of clusters,the nucleation by the nanoparticles and clusters simultaneously,the islands formation,and the coalescence of islands.

    Ag film,initial growth,very-high-frequency sputtering

    1.Introduction

    Recently,the Ag thin films and nanostructures have been paid more attention because of their unique optical and electrical properties,[1,2]a strong coupling of surface plasmons with the incident light,[3,4]and the application as the substrate for silicene epitaxial growth.[5–7]These applications are highly sensitive to the subtle difference in their shape,size,and distribution,thus the morphology of Ag thin films and nanostructures strongly govern these properties.Because the initial formation stages set the characteristic length scales during growth of Ag thin films from the vapor phase,they are decisive for the morphological and microstructural features of Agfilms and nanostructures.

    The initial stages of Ag films formation have been well investigated for a long time.[8–14]The examples include the initial formation of Ag films on MgF2substrates observed by transmission electron micrographs,[8]the view of the initial stages of polycrystalline Ag film formation on an amorphous substrate by scanning tunnelling microscopy,[9,10]as well as the optical and electrical monitoring on the initial stage of the Ag growth in Ar/N2magnetron sputtering.[11]In additional, a three-dimensional(3D)Monte Carlo model for simulating the growth of Ag thin film has also been developed to explore the initial growth of Ag films on an amorphous substrate.[12]These investigations showed that the initial stages of Ag films formation followed the island(Volmer–Weber,VW)growth mode,[13]which includes the island nucleation,island growth, and island coalescence.[14]However,these works focused on the island growth and coalescence,and little information on the nucleation stage has been reported.[9]Thus,the information on initial stages of Ag films formation is incomplete,and some educated guesses were given.[9]

    In order to carry out a good investigation on the initial growth of Ag films formation,the controllable preparation of samples is very important.The magnetron sputtering is an important technology for the films deposition[15–20]and an attractive alternative to prepare Ag films.[21–25]However,the common magnetron sputtering for the Ag films preparation is driven by the 13.56 MHz radio-frequency(RF)source.Because of the higher growth rate,the exact control on the initial growth of Ag films is more difficult.If the growth rate can be reduced as low as possible,the controllable preparation of samples can be achieved.Many investigations have shown that the growth and structure of sputtered Ag films were closely related to the energy and flux of ions impacting the substrate.[21–25]The previous works showed that the 60 MHz very-high-frequency(VHF)magnetron sputtering had a very low ions flux density and moderate ions energy.[26–29]If this VHF sputtering is used to deposit the Ag films,the initial growth of Ag films may be exactly controlled.Therefore,in this work,the initial growth and microstructure feature of Agfilms prepared by the 60 MHz VHF magnetron sputtering were investigated.

    2.Experimental details

    In the experiment,an unbalanced planar magnetron sputtering was used to deposit the Ag thin films,[26–28]which was driven by a 60 MHz VHF source in the power range of 50–250 W.In the cylindrical vacuum chamber,the water-cooled circular Ag target(99.999%pure,in diameter of 50 mm)was placed at the top,and the water-cooled,electrically floated stainless steel substrate holder(in diameter of100 mm)was set at the bottom,about 70 mm away from the target surface.The sputtering target was biased with a VHF voltage of 60 MHz through a corresponding matching box.The wall of the chamber was electrically grounded.The device was pumped down to a base pressure less than 5×10?4Pa before each deposition,with a 600 l/s turbo-molecular pump backed up with a mechanical pump.Argon with a fixed flow rate of 30 sccm was used as the discharge gas and the operating pressure was maintained at 5.0 Pa.The target was pre-sputtered in Ar for 10 min prior to each run.The deposition time was 60 min. The n-type(100)silicon wafers and quartz crystal wafers were used as the substrates.

    The microstructure of Ag thin films grown on silicon wafers was observed using a Hitachi S-4700 FE-scanning electron microscope(SEM).The x-ray diffraction measurements of the Ag thin films grown on quartz crystal wafers were carried out using the D/MAX-2000PCx-ray diffractometer with Cu Kαradiation(λ=0.154051 nm).The surface morphology of Ag thin films grown on silicon wafers was also measured using a Bruker Dimension Icon atomic force microscopy(AFM)in AC mode.

    In order to understand the possible reason for the growth of Ag thin films,the energy and flux density of ions impinging on the substrate were measured at the substrate holder using the Semion HV-2500 retarding field energy analyzer(RFEA). Measurements of ion distribution,by retarding field devices, represent ion velocity distribution function(IVDF)in the forward direction,[30–33]described by[32,33]

    where m is the mass of ions,Tgis the total geometrical transparency of grids,A0is the total open area of the entrance orifice,Icis the detector current,and the ?ris applied retarding the grid potential.In our case,the total ion acceptance area A0was 21.5 mm2.For the 3 electrically isolated grids,the ions transparency of every grid was 50%,thus the total transparency Tgwas 0.125.The ion flux density Jiwas calculated as

    3.Results and discussion

    Because the growth of Ag films is closely related to the energy and flux density of ions impinging on the substrate, the ion energy and ion flux density were analyzed firstly.Figure 1 shows IVDF measured by RFEA.It can be found that at the power of 50 W,no obvious main peak can be seen, and only some small peaks are obtained.This indicates the random distribution of ion energy.As the power increased to 100 W,a main peak centered at the energy of 32.1 eV occurs except for other small peaks.This means that the interaction between VHF electric field and ions makes the most probable ion energy be about 32.1 eV.As the sputtering power further increases,the intensity of the main peaks increases,and the center position of peaks slightly shifts to higher energy.The full width at half maximum(FWHM)of these peaks also increases,from about 7.0 eV to 12.7 eV.Thus the ions impacting the substrate have more of a wide energy range.

    Fig.1.IVDFs of 60 MHz VHF magnetron sputtering at the sputtering power of 50–250 W.

    Fig.2.Variation of maximum ion energy E max and ion flux density J i with the sputtering power.

    Figure 2 shows the variation of maximum ion energy Emax(denoting the ion energy at the peak as shown in Fig.1) and ion flux density Jiwith the sputtering power.It can be seen that Emaxis about 21.8 eV at the power of 50 W,and then increases to the range of 32.1–34.5 eV as the power increased to 100–250 W.Jiincreases linearly from 0.0034 A/m2to 0.0145 A/m2.Because Emaxhas a small variation while Jiincreases rapidly as the power increases from 100 W to 250 W, the evolutions of initial growth behavior and microstructure feature of Ag films formation are mainly related to the ion flux.In additional,Emaxand Jiof 60 MHz magnetron sputtering are both lower than that of 13.56 MHz RF magnetron sputtering,which are in the range of 43.5—48.2 eV and 0.0057–0.0313 A/m2respectively at the sputtering power range of 50–250 W.Therefore,compared with the 13.56 MHz RF magnetron sputtering,the 60 MHz VHF magnetron sputtering can produce ions with lower energy and lower flux density.As a result,the growth of Ag films can be well controlled.

    Figure 3 shows the SEM images of Ag films deposited at the sputtering power of 50–250 W.At the power of 50 W (Fig.3(a)),only some small bright dots in diameter of 10– 20 nm distribute randomly on the substrate surface,which correspond to Ag nanoparticles.Thus,at this stage,only low density Ag nanoparticles adsorp on the substrate surface,and no island growth takes place.At the power of 100 W(Fig.3(b)), the small bright dots in diameter of 10–20 nm and the big bright dots in diameter of 60–100 nm distribute simultaneously on the substrate surface.The small bright dots correspond to the Ag nanoparticles,while the big bright dots correspond to the Ag clusters,which are from the aggregation of small Ag nanoparticles.Thus,at this stage,the aggregation of small Ag nanoparticles and the formation of big Ag clusters take place.At the power of 150 W(Fig.3(c)),the Ag nanoparticles and Ag clusters form the nucleations simultaneously at the surface of the substrate.The size of major nucleations is about 6–23 nm,and the size of big nucleations coming from the few Ag clusters is about 90 nm.Thus,at this stage,the nucleation of Ag nanoparticles and Ag clusters take place simultaneously.At the power of 200 W(Fig.3(d)), the high density islands and low density coalescence of islands are seen.Thus,at this stage,the island growth dominates the films growth.At the power of 250 W(Fig.3(e)),only the worm-like microstructure[34]is formed while no islands can be found.The formation of the worm-like microstructure is from the more islands coalescence.Thus,at this stage,the island coalescence dominates the films growth.

    Fig.3.(color online)SEM images of Ag films deposited at 50–250 W by the 60 MHz VHF magnetron sputtering.

    In addition,some evolutions of initial growth can be clearly observed in the samples prepared by the RF magnetron sputtering at the low power.Figure 4(a)shows the SEM image of Ag films deposited at 50 W by the 27.12 MHz sputtering. In this case,the growth surface is covered mainly by the high density islands,including the big islands and small islands, and the fewer island coalescence.The big islands are from the nucleations of clusters,while the small islands are from the nucleations of nanoparticles.Therefore,the development of nucleations from the clusters and nanoparticles simultaneously leads to the islands growth and the difference in the islands size.Figure 4(b)shows the SEM image of Ag films deposited at 50 W by the 13.56 MHz sputtering.It can be seen that the density of islands coalescence has increased largely compared with that of Fig.3(d),but the worm-like microstructure is not as complete as that of Fig.3(e).Meanwhile,some islands can still be seen.Therefore,the coalescence of islands is developed gradually from the low density to the high density.

    Fig.4.SEM images of Ag films deposited at 50 W by(a)27.12 MHz and(b)13.56 MHz magnetron sputtering.

    For the initial stages of Ag film formation,according to the STM view of the initial stages of polycrystalline Ag film formation on an amorphous substrate,Polop makes a summary on the morphology evolution of the Ag films.[9]The initial stages of Ag films include the following stages:(i)the nucleation and island growth,(ii)the island coalescence,and (iii)the continuous film.However,no further information is reported in this summary on what happens before nucleation and after polycrystalline islands.From the above SEM observations in this work,it can be found that before the nucleation, the Ag nanoparticles firstly adsorp on the substrate,then forming Ag clusters by nanoparticles aggregation.After that,the Ag nanoparticles and clusters form the nucleations simultaneously for the islands formation,the islands coalescence,and the formation of Ag thin films.

    Figure 5 shows the variation of particles density(nanoparticle, nucleation,or island)with the sputtering power.At the beginning of Ag films formation,the density of Ag nanoparticles on the substrate surface is very low,only about 1.4× 1014–1.9×1014m?2,far lower than that of nuclei(≈1× 1016m?2).[8]Thus,the nucleation of adsorped Ag nanoparticles cannot take place.With the increase of adsorped Ag nanoparticles,the aggregation of some Ag nanoparticles forms Ag clusters.The Ag nanoparticlesand the Ag clustersform the nucleations simultaneously,and the density of nuclei increases to about 2.1×1015m?2.With the development of nucleation and the formation of islands,the density of island decreases to about 2.6×1014m?2.Therefore,the variation of particles density(nanoparticle,nucleation,or island)indicates the evolution of the adsorption of Ag nanoparticles,the nucleations, the formation of islands,and the coalescence of islands.

    Fig.5.Variation of particles density(nanoparticle,nucleation,or island)with sputtering power.

    Figure 6 shows the 3D AFM images of Ag films deposited at the sputtering power of 50–250 W.At the power of 50 W (Fig.6(a)),the adsorped Ag nanoparticles show some small lonely protrusions on the surface of the substrate.Atthe power of 100 W(Fig.6(b)),some big protrusions and high density small protrusions,corresponding to the Ag clusters and the Ag nanoparticles respectively,stand simultaneously on the surface of the substrate.At the power of 150 W(Fig.6(c)),the size of big protrusions increases,and the small protrusions of nucleations among the big protrusions can also be found.At the power of 200 W(Fig.6(d)),the islands all exhibit the shape of cone protrusions.At the power of 250 W(Fig.6(e)),the islands coalescence also exhibits the shape of cone protrusions, but the size of cone protrusions increases.

    From the AFM measurement,the RMS roughness of samples were calculated.Figure 7 shows the variation of RMS roughness with the sputtering power.It can be found that at the stages of nanoparticles adsorption,the coverage of small density nanoparticles on the substrate surface leads to a low RMS roughness.With the formation of Ag clusters by nanoparticles aggregation and nucleations,the lonely particles standing on the surface of the substrate leads to a coarse surface,thus the large RMS roughness is obtained.When the formation of islands and the coalescence of islands take place,the number of boundaries between particles decreases.As a result,the surface of samples becomes smooth again.Thus,the RMS roughness decreases.

    Fig.6.(color online)AFM images of Ag films deposited at 50–250 W by 60 MHz VHF magnetron sputtering.

    Fig.7.Variation of RMS roughness with sputtering power.

    The x-ray diffraction of the Ag thin films grown on quartz crystal wafers were further measured for determining the structural phases of the initial stages of Ag films formation,as shown in Fig.8.Here,in order to avoid the hiding of weak Ag diffraction peaks by the strong Si diffraction peaks, the quartz crystal wafers while not the silicon wafer was used as the substrate.It can be seen that at the stages of Ag nanoparticles adsorped on the substrate,the formation of Ag clusters by small Ag nanoparticles aggregation,and the nucleation of Ag nanoparticles,no diffraction peak can be found.However, at the stages of the island growth,the small diffraction peak of Ag(111)can be seen,indicating the formation of crystal microstructures.When the coalescence islands form the worm like microstructure,the small diffraction peak of Ag(220)can also be seen except for the obvious Ag(111)diffraction peak. This means the formation of the polycrystalline structures with the preferred plane(111).Thus,the formation of Ag crystalline structures takes place at the stage of the island growth and coalescence.

    Fig.8.(color online)X-ray difractogram for the initial stages of Agfilms formation.

    4.Conclusion

    The initial formation stages are decisive for morphological and microstructure features of Ag films,but the investigations on the initial stages of Ag films formation are incomplete due to a lack of information on the nucleation stage.In this work,using 60 MHz magnetron sputtering,because of the moderate ions energy and lower flux density,the exact control of the initial growth of Ag films was achieved by varying the sputtering power from 50 W to 250 W.From the SEM observations,it can be found that before the nucleation,the Ag nanoparticles firstly adsorp on the substrate,then forming Ag clusters by nanoparticles aggregation.After that,the Ag nanoparticles and clusters form the nucleations simultaneously.These stages provide the nucleation for the islands formation,the islands coalescence,and the Ag thin films are formed.Therefore,the whole initial growth of Ag films follows the island thin-film growth modes(Volmer–Weber,VW), which are(i)the Ag nanoparticles adsorped on the substrate, (ii)the formation of Ag clusters by Ag nanoparticles aggregation,(iii)the nucleation by Ag nanoparticles and Ag clusters simultaneously,(iv)the islands formation,and(v)the coalescence of islands and the formation of polycrystalline Ag films.

    [1]Guillén C and Herrero J 2015 Appl.Surf.Sci.324 245

    [2]Nakanishi Y,Kato K,Omoto H and Yonekura M 2013 Thin Solid Films 532 141

    [3]Kumar M,Jangid T,Panchal V,Kumar P and Pathak A 2016 Nanoscale Res.Lett.11 454

    [4]Guillén C and Herrero J 2013 J.Phys.D-Appl.Phys.46 295302

    [5]Sone J,Yamagami T,Aoki Y,Nakatsuji K and Hirayama H 2014 New J.Phys.16 095004

    [6]Liu Z L,Wang M X,Xu J P,Ge J F,Le Lay G,Vogt P,Qian D,Gao C L,Liu C and Jia J F 2014 New J.Phys.16 075006

    [7]Arafune R,Lin C L,Kawahara K,Tsukahara N,Minamitani E,Kim Y, Takagi N and Kawai M 2013 Surf.Sci.608 297

    [8]Koch R 1994 J.Phys.-Condens.Mat.6 9519

    [9]Polop C,Rosiepen C,Bleikamp S,Drese R,Mayer J,Dimyati A and Michely T 2007 New J.Phys.9 74

    [10]Placidi E,Fanfoni M,Arciprete F,Patella F,Motta N and Balzarotti A 2000 Mater.Sci.Eng.B 69–70 243

    [11]Bulí? J,Novotny M,Lan?ok J,Fekete L,Drahokoupil J and Musil J 2013 Surf.Coat.Technol.228 S86

    [12]Zhu G and Wang T L 2015 Appl.Surf.Sci.324 831

    [13]Bal J K and Hazra S 2009 Phys.Rev.B 79 155412

    [14]Elofsson V,L?B,Magnf?lt D,Münger E P and Sarakinos K 2014 J. Appl.Phys.116 044302

    [15]Guo J M,Ye C,Wang X Y,Yang P F and Zhang S 2017 Chin.Phys.B 26 065207

    [16]Gu J H,Si J L,Wang J X,Feng Y Y,Gao X Y and Lu J X 2015 Chin. Phys.B 24 117703

    [17]Jabbar S,Ahmad R and Chu P K 2017 Chin.Phys.B 26 010702

    [18]Huang S H and Liu J 2014 Chin.Phys.B 23 058105

    [19]Xiu X W and Zhao W J 2012 Chin.Phys.B 21 066802

    [20]Zhao Y,Gao W,Xu B,Li Y A,Li H D,Gu G R and Yin H 2016 Chin. Phys.B 25 106801

    [21]Kato K,Omoto H and Takamatsu A 2010 Vacuum 84 587

    [22]Kato K,Omoto H and Takamatsu A 2012 Thin Solid Films 520 4139

    [23]Kawamura M,Abe Y and Sasaki K 2006 Thin Solid Films 515 540

    [24]Novotny M,Bulí? J,Pokorny P,Lan?ok J,Fekete L,MusilJ and ?ekada M 2013 Surf.Coat.Technol.228 S466

    [25]Pongbordin U,Nurak G and Chaweewan S 2016 RSC Adv.6 7661

    [26]He H J,Ye C,Wang X Y,Huang F P and Liu Y 2014 ECS J.Solid State Sci.Technol.3 Q74

    [27]Gao M W,Ye C,Wang X Y,He Y S,Guo J M and Yang P F 2016 Chin. Phys.B 25 075202

    [28]Huang F P,Ye C,He H J,Liu Y,Wang X Y and Ning Z Y 2014 Plasma Sources Sci.Technol.23 015003

    [29]Ye C,He H J,Huang F P,Liu Y and Wang X Y 2014 Phys.Plasma 21 043509

    [30]Ellmer K,Wendt R and Wiesemann K 2003 Int.J.Mass Spectrom. 223–224 679

    [31]Seeger S,Harbauer K and Ellmer K 2009 J.Appl.Phys.105 053305

    [32]Stranak V,Drache S,Bogdanowicz R,Wulff H,Herrendorf A,Hubicka Z,Cada M,Tichy M and Hippler R 2012 Surf.Coat.Technol.206 2801

    [33]Stranak V,Wulff H,Bogdanowicz R,Drache S,Hubicka Z,Cada M, Tichy M and Hippler R 2011 Eur.Phys.J.D 64 427

    [34]Palanisamy S,Yan L Q and Zhang X H 2015 Anal.Methods 7 3438

    19 May 2017;revised manuscript

    12 June 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/095206

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11675118 and 11275136).

    ?Corresponding author.E-mail:cye@suda.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張悅
    張悅
    外公的飯盒
    安邸AD(2020年3期)2020-07-14 08:39:35
    熟悉的陌生人
    小身體大力量,13歲女孩攀巖奪冠
    莫愁(2018年27期)2018-09-19 06:16:52
    小身體大力量,13歲女孩攀巖奪冠
    張悅作品
    王慶英、張鵬、張雪成、張悅作品
    Women in leadership
    張悅:養(yǎng)生貴在堅(jiān)持
    益壽寶典(2017年8期)2017-09-15 13:03:53
    国产成人午夜福利电影在线观看| 亚洲一级一片aⅴ在线观看| xxx大片免费视频| 久久6这里有精品| 久久精品夜色国产| 精品一区二区三卡| 永久免费av网站大全| 亚洲伊人久久精品综合| 欧美性感艳星| 中文精品一卡2卡3卡4更新| 国产一区有黄有色的免费视频| 久久精品国产鲁丝片午夜精品| 久久久久久久国产电影| 亚洲精品国产av蜜桃| 丝袜喷水一区| 国产色婷婷99| 少妇 在线观看| 国产日韩一区二区三区精品不卡 | 岛国毛片在线播放| 99久久精品一区二区三区| tube8黄色片| 三上悠亚av全集在线观看 | 少妇人妻一区二区三区视频| 色视频在线一区二区三区| 亚洲欧美日韩另类电影网站| 久久亚洲国产成人精品v| a级毛片在线看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 91午夜精品亚洲一区二区三区| 又粗又硬又长又爽又黄的视频| 国产在视频线精品| 精品亚洲乱码少妇综合久久| 欧美三级亚洲精品| 亚州av有码| 日韩免费高清中文字幕av| 伊人久久国产一区二区| 免费观看在线日韩| 国产成人精品婷婷| 在线免费观看不下载黄p国产| 99久久精品一区二区三区| 成人毛片a级毛片在线播放| 久久久国产一区二区| 99久国产av精品国产电影| 日本91视频免费播放| 黄色日韩在线| 国产欧美另类精品又又久久亚洲欧美| 欧美 亚洲 国产 日韩一| videos熟女内射| 欧美最新免费一区二区三区| 久久久久视频综合| 黄色视频在线播放观看不卡| 高清毛片免费看| 中文字幕亚洲精品专区| 久热这里只有精品99| 永久免费av网站大全| 一边亲一边摸免费视频| 欧美xxxx性猛交bbbb| 赤兔流量卡办理| 男女啪啪激烈高潮av片| 一级毛片久久久久久久久女| 亚洲国产成人一精品久久久| 熟女电影av网| 国产精品三级大全| 热re99久久精品国产66热6| 麻豆成人av视频| 深夜a级毛片| 国产日韩一区二区三区精品不卡 | 亚洲国产精品专区欧美| 亚州av有码| 9色porny在线观看| 水蜜桃什么品种好| 日本欧美视频一区| 少妇高潮的动态图| 国产精品国产三级专区第一集| 免费观看a级毛片全部| 国产一区二区在线观看日韩| 国产黄色免费在线视频| 久久青草综合色| 国产精品蜜桃在线观看| 大陆偷拍与自拍| 亚洲av男天堂| 日韩免费高清中文字幕av| 99热这里只有是精品50| 日韩欧美 国产精品| 欧美另类一区| 极品教师在线视频| 久久久久久久久久久免费av| 黑人高潮一二区| 成年人午夜在线观看视频| 国产欧美日韩精品一区二区| 国产 一区精品| 国精品久久久久久国模美| 中文字幕免费在线视频6| 亚洲经典国产精华液单| 啦啦啦在线观看免费高清www| 成年人午夜在线观看视频| 成人午夜精彩视频在线观看| 午夜av观看不卡| 亚洲,一卡二卡三卡| 欧美成人午夜免费资源| 欧美日韩一区二区视频在线观看视频在线| 欧美另类一区| 中文字幕亚洲精品专区| 亚洲国产精品一区二区三区在线| 欧美性感艳星| 高清在线视频一区二区三区| 亚洲欧美一区二区三区黑人 | 91精品一卡2卡3卡4卡| 国产精品福利在线免费观看| 一区二区三区免费毛片| 国产欧美日韩精品一区二区| 3wmmmm亚洲av在线观看| 2021少妇久久久久久久久久久| 大又大粗又爽又黄少妇毛片口| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产色婷婷电影| 色视频www国产| 成年人免费黄色播放视频 | 国产一级毛片在线| 日本免费在线观看一区| 成人漫画全彩无遮挡| 嘟嘟电影网在线观看| 国产白丝娇喘喷水9色精品| 久久久久久久久大av| 国产精品熟女久久久久浪| 99久久精品一区二区三区| 只有这里有精品99| 最后的刺客免费高清国语| 久久国产精品男人的天堂亚洲 | 欧美日韩一区二区视频在线观看视频在线| 国产精品一区二区在线不卡| 亚洲av在线观看美女高潮| 一级毛片黄色毛片免费观看视频| 国产亚洲最大av| 欧美 日韩 精品 国产| 欧美最新免费一区二区三区| 丰满乱子伦码专区| 九九爱精品视频在线观看| 肉色欧美久久久久久久蜜桃| 亚洲精品国产成人久久av| 国产精品伦人一区二区| 国产免费福利视频在线观看| 亚洲情色 制服丝袜| 国产91av在线免费观看| 午夜福利在线观看免费完整高清在| 日本猛色少妇xxxxx猛交久久| 麻豆精品久久久久久蜜桃| 欧美日本中文国产一区发布| 日日撸夜夜添| 热re99久久精品国产66热6| 成人亚洲精品一区在线观看| 一级毛片电影观看| 日日啪夜夜爽| 亚洲激情五月婷婷啪啪| 久久午夜福利片| 男人添女人高潮全过程视频| 99热国产这里只有精品6| 春色校园在线视频观看| 欧美激情国产日韩精品一区| xxx大片免费视频| a级毛色黄片| 少妇高潮的动态图| 有码 亚洲区| 国产精品伦人一区二区| 欧美精品一区二区大全| 在线观看美女被高潮喷水网站| 黑人巨大精品欧美一区二区蜜桃 | 黄色日韩在线| 色哟哟·www| 极品教师在线视频| 天天躁夜夜躁狠狠久久av| 少妇裸体淫交视频免费看高清| 国产在线一区二区三区精| 人妻夜夜爽99麻豆av| 国产综合精华液| 精品亚洲乱码少妇综合久久| 蜜臀久久99精品久久宅男| 91精品伊人久久大香线蕉| 成人综合一区亚洲| 人人妻人人澡人人看| 亚洲国产色片| 成人亚洲精品一区在线观看| 丰满迷人的少妇在线观看| 亚洲精品乱码久久久v下载方式| 日本黄大片高清| 9色porny在线观看| 日韩精品免费视频一区二区三区 | 黄色配什么色好看| 国产一区亚洲一区在线观看| 国产精品蜜桃在线观看| 日韩av在线免费看完整版不卡| 日日摸夜夜添夜夜爱| 精品久久久噜噜| 国产 一区精品| 高清欧美精品videossex| 亚洲欧美成人精品一区二区| 国产精品国产三级国产av玫瑰| 少妇人妻精品综合一区二区| 国产av精品麻豆| av天堂久久9| 十八禁高潮呻吟视频 | 欧美成人午夜免费资源| 美女大奶头黄色视频| 久久97久久精品| 国产淫语在线视频| 色婷婷av一区二区三区视频| 另类精品久久| 天天躁夜夜躁狠狠久久av| 91精品伊人久久大香线蕉| 亚洲三级黄色毛片| 亚洲性久久影院| 国产日韩欧美视频二区| 国产亚洲av片在线观看秒播厂| 国产精品麻豆人妻色哟哟久久| 精品少妇黑人巨大在线播放| 你懂的网址亚洲精品在线观看| 69精品国产乱码久久久| 美女xxoo啪啪120秒动态图| 中文字幕精品免费在线观看视频 | 日韩大片免费观看网站| 高清不卡的av网站| 韩国av在线不卡| 欧美97在线视频| 国产高清不卡午夜福利| 亚洲美女视频黄频| 嫩草影院新地址| 97精品久久久久久久久久精品| av在线app专区| 亚洲av二区三区四区| 国产精品欧美亚洲77777| 成年av动漫网址| 日韩人妻高清精品专区| 春色校园在线视频观看| .国产精品久久| 久久ye,这里只有精品| 精品人妻一区二区三区麻豆| 国产亚洲5aaaaa淫片| 亚洲欧美清纯卡通| 久久久久久久久久久免费av| 黄色怎么调成土黄色| 夜夜爽夜夜爽视频| 久久久久久伊人网av| 精品一区二区三区视频在线| 国产色爽女视频免费观看| 久久久久久久久久人人人人人人| 26uuu在线亚洲综合色| 国产黄片视频在线免费观看| 久久久久国产精品人妻一区二区| 亚洲精品一二三| 成人毛片60女人毛片免费| 国产欧美日韩综合在线一区二区 | 午夜福利影视在线免费观看| 国产深夜福利视频在线观看| 色网站视频免费| 精品久久久久久电影网| 久久99热这里只频精品6学生| 女的被弄到高潮叫床怎么办| 岛国毛片在线播放| 又大又黄又爽视频免费| 亚洲va在线va天堂va国产| 男人添女人高潮全过程视频| 国产亚洲5aaaaa淫片| 精品少妇久久久久久888优播| 国产一级毛片在线| 久久鲁丝午夜福利片| 国内揄拍国产精品人妻在线| 日韩成人av中文字幕在线观看| 精品亚洲乱码少妇综合久久| 26uuu在线亚洲综合色| 久久精品国产亚洲网站| 亚洲激情五月婷婷啪啪| 欧美日韩av久久| 久久久久久久久久人人人人人人| 久久国产亚洲av麻豆专区| 少妇被粗大的猛进出69影院 | 欧美日韩综合久久久久久| 亚洲情色 制服丝袜| 国产淫语在线视频| 国产男人的电影天堂91| 99热这里只有是精品50| 十分钟在线观看高清视频www | 在线看a的网站| 99久久综合免费| 亚洲国产精品999| 精品午夜福利在线看| 99久久人妻综合| 如日韩欧美国产精品一区二区三区 | 国产黄片视频在线免费观看| 人妻一区二区av| 色哟哟·www| av在线老鸭窝| 十分钟在线观看高清视频www | 国产精品成人在线| 国产乱来视频区| 天天操日日干夜夜撸| 插阴视频在线观看视频| 免费大片黄手机在线观看| av天堂久久9| 在线观看免费视频网站a站| 精品久久久久久电影网| 特大巨黑吊av在线直播| 69精品国产乱码久久久| 晚上一个人看的免费电影| 婷婷色麻豆天堂久久| 女性被躁到高潮视频| 夫妻性生交免费视频一级片| 热re99久久国产66热| 亚洲在久久综合| 搡老乐熟女国产| 精品一品国产午夜福利视频| 有码 亚洲区| 亚洲国产毛片av蜜桃av| 极品人妻少妇av视频| 午夜精品国产一区二区电影| 国产极品粉嫩免费观看在线 | tube8黄色片| 极品人妻少妇av视频| 国产爽快片一区二区三区| 成人黄色视频免费在线看| 国产乱来视频区| 在线观看av片永久免费下载| 国产美女午夜福利| 亚洲精品亚洲一区二区| 一级黄片播放器| 精品人妻偷拍中文字幕| 亚洲欧美中文字幕日韩二区| av网站免费在线观看视频| 大香蕉97超碰在线| 久久人妻熟女aⅴ| 性色avwww在线观看| av有码第一页| 91久久精品国产一区二区成人| 内射极品少妇av片p| 久久影院123| 国产色婷婷99| 精品久久久久久久久av| av专区在线播放| 国产国拍精品亚洲av在线观看| 久久久久久久亚洲中文字幕| 国产欧美另类精品又又久久亚洲欧美| 中文在线观看免费www的网站| 精品一区二区免费观看| 精品亚洲成国产av| 精品国产一区二区久久| 十八禁高潮呻吟视频 | a级一级毛片免费在线观看| 2018国产大陆天天弄谢| a级一级毛片免费在线观看| 九色成人免费人妻av| 国产日韩欧美在线精品| 少妇的逼好多水| 日韩电影二区| 精品久久国产蜜桃| 另类亚洲欧美激情| 中国国产av一级| 18+在线观看网站| 免费久久久久久久精品成人欧美视频 | 国产精品欧美亚洲77777| 久久精品熟女亚洲av麻豆精品| 欧美精品国产亚洲| a级一级毛片免费在线观看| 色哟哟·www| 人妻 亚洲 视频| 精品久久国产蜜桃| 亚洲精华国产精华液的使用体验| 美女xxoo啪啪120秒动态图| h视频一区二区三区| 一级毛片 在线播放| av在线app专区| 一级毛片 在线播放| 精品亚洲成国产av| 大片电影免费在线观看免费| 国产av一区二区精品久久| 一级a做视频免费观看| 日韩精品免费视频一区二区三区 | 亚洲精品视频女| 欧美精品亚洲一区二区| 国产亚洲5aaaaa淫片| 一级黄片播放器| 亚洲精品久久久久久婷婷小说| 97精品久久久久久久久久精品| 亚洲精品自拍成人| 青春草国产在线视频| 国产亚洲5aaaaa淫片| 丰满饥渴人妻一区二区三| 欧美日韩在线观看h| 男人狂女人下面高潮的视频| 99热国产这里只有精品6| 成年av动漫网址| 国产一区二区在线观看av| 97在线人人人人妻| 啦啦啦在线观看免费高清www| 精品视频人人做人人爽| 伦理电影免费视频| 大又大粗又爽又黄少妇毛片口| 极品人妻少妇av视频| 国产69精品久久久久777片| 最近手机中文字幕大全| 免费在线观看成人毛片| 黄色欧美视频在线观看| 最黄视频免费看| 一级黄片播放器| 亚洲精品aⅴ在线观看| 国产精品久久久久久av不卡| 欧美变态另类bdsm刘玥| 各种免费的搞黄视频| 免费黄网站久久成人精品| 在线观看免费日韩欧美大片 | 成人无遮挡网站| 欧美激情国产日韩精品一区| 亚洲内射少妇av| 香蕉精品网在线| 伊人亚洲综合成人网| 国模一区二区三区四区视频| 国产精品国产av在线观看| 欧美bdsm另类| 国产中年淑女户外野战色| 男女免费视频国产| 人妻人人澡人人爽人人| 99国产精品免费福利视频| 精华霜和精华液先用哪个| a 毛片基地| 成人亚洲欧美一区二区av| av在线播放精品| 新久久久久国产一级毛片| 日本av免费视频播放| 男人爽女人下面视频在线观看| 成年人免费黄色播放视频 | 国产精品伦人一区二区| 久久99精品国语久久久| 丝袜脚勾引网站| 永久网站在线| 毛片一级片免费看久久久久| 亚洲性久久影院| 七月丁香在线播放| 亚洲综合色惰| 国产欧美另类精品又又久久亚洲欧美| 丝袜喷水一区| 国产欧美另类精品又又久久亚洲欧美| av黄色大香蕉| 色婷婷av一区二区三区视频| 99热这里只有精品一区| 亚洲精品久久久久久婷婷小说| 欧美xxxx性猛交bbbb| 欧美精品一区二区大全| videossex国产| 国产在线视频一区二区| 国产成人精品婷婷| 日日啪夜夜爽| 日韩中字成人| 日韩欧美精品免费久久| 国产午夜精品一二区理论片| 精品午夜福利在线看| 亚洲美女搞黄在线观看| 最新的欧美精品一区二区| 国产在视频线精品| 国产白丝娇喘喷水9色精品| 国产亚洲最大av| 成年女人在线观看亚洲视频| 亚洲伊人久久精品综合| 国产欧美日韩一区二区三区在线 | 亚洲av欧美aⅴ国产| 欧美日韩av久久| 国产午夜精品久久久久久一区二区三区| 晚上一个人看的免费电影| 人人妻人人澡人人看| 国产高清三级在线| 久久久久人妻精品一区果冻| 久久久国产精品麻豆| 一本大道久久a久久精品| 天天躁夜夜躁狠狠久久av| 一级av片app| 亚洲av男天堂| 人人妻人人看人人澡| 国精品久久久久久国模美| 全区人妻精品视频| 免费黄色在线免费观看| 国产一区二区在线观看日韩| 精品久久久噜噜| 成人18禁高潮啪啪吃奶动态图 | 成人毛片60女人毛片免费| 韩国高清视频一区二区三区| 国产成人91sexporn| 亚洲三级黄色毛片| 久久久久久久精品精品| 精品熟女少妇av免费看| 日韩一区二区三区影片| 精品国产一区二区久久| 久热这里只有精品99| 啦啦啦中文免费视频观看日本| 最近中文字幕2019免费版| 欧美精品亚洲一区二区| 最新中文字幕久久久久| 久久精品熟女亚洲av麻豆精品| 在线观看美女被高潮喷水网站| 国产高清不卡午夜福利| 亚洲精品第二区| 欧美bdsm另类| 一级毛片aaaaaa免费看小| 久久久久久久精品精品| 欧美xxⅹ黑人| 一级av片app| 爱豆传媒免费全集在线观看| 日日摸夜夜添夜夜添av毛片| 99九九在线精品视频 | 久久久久久人妻| 五月玫瑰六月丁香| 国产探花极品一区二区| 午夜福利影视在线免费观看| av在线观看视频网站免费| 久久精品国产a三级三级三级| 有码 亚洲区| 岛国毛片在线播放| 下体分泌物呈黄色| 国产极品粉嫩免费观看在线 | 国产成人freesex在线| 夜夜骑夜夜射夜夜干| 最新的欧美精品一区二区| 亚洲av在线观看美女高潮| 多毛熟女@视频| 女人久久www免费人成看片| 成年人午夜在线观看视频| 成人黄色视频免费在线看| 在线观看一区二区三区激情| 青青草视频在线视频观看| 中文字幕人妻丝袜制服| 国产69精品久久久久777片| 99久久中文字幕三级久久日本| 97超碰精品成人国产| 国产免费一区二区三区四区乱码| 亚洲av国产av综合av卡| 新久久久久国产一级毛片| 我要看日韩黄色一级片| 全区人妻精品视频| 国产美女午夜福利| 只有这里有精品99| 日韩亚洲欧美综合| 高清毛片免费看| 国产熟女午夜一区二区三区 | 精品一区二区免费观看| www.色视频.com| 极品少妇高潮喷水抽搐| 99久久中文字幕三级久久日本| 一个人免费看片子| av又黄又爽大尺度在线免费看| 日韩视频在线欧美| 色哟哟·www| kizo精华| 搡老乐熟女国产| 不卡视频在线观看欧美| 日日爽夜夜爽网站| 波野结衣二区三区在线| 亚洲精品国产av成人精品| 人妻夜夜爽99麻豆av| 最近2019中文字幕mv第一页| 只有这里有精品99| 欧美 日韩 精品 国产| 国产伦精品一区二区三区视频9| 久久精品国产鲁丝片午夜精品| 日韩大片免费观看网站| 国产色婷婷99| 午夜免费鲁丝| 交换朋友夫妻互换小说| 亚洲不卡免费看| 久久久久人妻精品一区果冻| av.在线天堂| 嘟嘟电影网在线观看| 免费久久久久久久精品成人欧美视频 | 精品国产国语对白av| 久久99精品国语久久久| 日本欧美视频一区| 一二三四中文在线观看免费高清| 日韩人妻高清精品专区| av在线app专区| 色视频在线一区二区三区| 国产成人精品无人区| 欧美成人午夜免费资源| 我要看日韩黄色一级片| 永久网站在线| 免费黄网站久久成人精品| 噜噜噜噜噜久久久久久91| 伦理电影大哥的女人| 婷婷色综合www| 永久免费av网站大全| videossex国产| 国产视频内射| 国产午夜精品久久久久久一区二区三区| 欧美丝袜亚洲另类| 欧美日韩在线观看h| 免费黄网站久久成人精品| 国内揄拍国产精品人妻在线| 国产91av在线免费观看| 国产成人91sexporn| 男人添女人高潮全过程视频| 国产精品一区二区在线不卡| 亚洲国产日韩一区二区| 欧美日韩国产mv在线观看视频| 三级国产精品欧美在线观看| 国产精品一二三区在线看| 亚洲av成人精品一二三区| 国产免费又黄又爽又色| 噜噜噜噜噜久久久久久91| 岛国毛片在线播放| 亚洲四区av| 久久99精品国语久久久| 高清毛片免费看| 免费久久久久久久精品成人欧美视频 | www.av在线官网国产| 美女cb高潮喷水在线观看| 亚洲精品日韩在线中文字幕| 晚上一个人看的免费电影| 日韩中文字幕视频在线看片| 国产精品不卡视频一区二区| 王馨瑶露胸无遮挡在线观看| 欧美精品一区二区大全|