AC + A"/>
題目如圖1所示,在△ABC中,∠A = 2∠B,CD平分∠ACB,則下列關(guān)系式成立的是()
A. AD = CD
B. BC > AC + AD
C. BC = AC + AD
D. BC < AC + AD
解法1:如圖2所示,延長CA到E,使AE = AD,
∴∠E =∠ADE,
∴∠CAD = 2∠E.
∵∠CAD = 2∠B,
∴∠E =∠B.
∴△CED≌△CBD,
∴BC = CE.
∴BC = AC + AD.故應(yīng)選C.
解法2:如圖3所示,延長BA到E,使
∴∠E =∠ECA,
∴∠CAD = 2∠E.
∵∠CAD = 2∠B,
∴∠E =∠B,
∴CE = BC.
∴∠ECD =∠ECA +∠ACD,∠CDE=∠B +∠BCD,∠ACD =∠BCD,
∴∠ECD =∠EDC,
∴CE = DE.
∴BC = DE = AE + AD = AC + AD.
故應(yīng)選C.
解法3:如圖4所示.
∵∠A >∠B,
∴BC > AC.
在BC上截取CE = AC,
∴△ACD≌△ECD,
∴AD = DE.
∴∠B =∠EDB,
∴DE = BE.
∴BC = CE + EB = AC + AD.
故應(yīng)選C.
解法4:如圖5所示,作DB的中垂線交BC于E,則有DE = BE.∴∠EDB =∠B,∴∠DEC = 2∠B.∵∠A = 2∠B,∠DEC =∠A,
∴△CAD≌△CED,
∴CE = AC,DE = AD.
∴BC = CE + EB = AC + DE = AC + AD.
故應(yīng)選C.
以下再給出五種解題思路,求解過程請同學(xué)們試著完成.
如圖6所示,作∠A的平分線交BC于E,交CD于F,則有AE = BE.因為EF < AE,所以在EB上截取EG = EF,根據(jù)角的關(guān)系可得AF = AD,以及△ACF≌△GCF,進(jìn)而得AC = CG,所以BC = BE + CE = AE + CE = AF + FE + CE = AD + CG = AD + AC,得解.如圖7所示,作∠ABE =∠ABC,且使BE = BC,不難得CD = DE,∠2 =∠3 =∠1,在BE上截取EF = AC,則有△ACD≌△EFD,于是AD = DF,∠A =∠DFE,據(jù)∠A = 2∠B,∠DFE =∠FBD +∠FDB,可得DF = BF,進(jìn)而得AD = BF,所以BC = BE = EF + BF = AC + AD.如圖8所示,作∠CBE =∠ABC,且使BD = BE,不難得CD = CE,∠1 =∠2=∠3,在CB上截取CF = CA,則有
△ACD≌△FCE,從而得到AD = EF,∠A =∠CFE,利用角的關(guān)系,得EF = BF,從而有BC = CF + BF = AC + EF = AC + AD.
如圖9所示,作DE⊥AC于E,DF⊥BC于F,因∠1 =∠2,得DE = DF,CE = CF,因為BF > AE,所以在FB上取FG= AE,從而有Rt△AED≌Rt△DFG,從而有AD = DG,∠A =∠FGD,利用∠A = 2∠B和外角∠FGD =∠B +∠GDB,可得DG = BG,從而得BC = CF + FG + BG = CE + AE + AD= AC + AD.
如圖10所示,用特殊值法,因為∠A = 2∠B,不妨設(shè)∠A = 60°,∠B = 30°,作DE⊥AC,DF⊥BC,∠1 =∠2,有DE = DF,CE = CF.設(shè)AE = k,則AD = 2k,DE =DF =3姨 k,BF =3 k,BC= CF + BF = 3k + CF,AC + AD = CE + AE + AD = 3k + CE,即BC = AC + AD.
綜上所述,通過一題多解,從不同角度、不同方位進(jìn)行思考,可提高同學(xué)們的思維能力和創(chuàng)新能力,提高解題技能與技巧.
(作者單位:安徽省靈璧縣黃灣中學(xué))