• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      惡性腫瘤的幫兇——纖維母細(xì)胞活化蛋白

      2013-12-23 05:11:56黃天明莫發(fā)榮羅國(guó)容
      生物技術(shù)通報(bào) 2013年5期
      關(guān)鍵詞:微血管膠原纖維細(xì)胞

      黃天明 莫發(fā)榮 羅國(guó)容

      (廣西醫(yī)科大學(xué)組織學(xué)與胚胎學(xué)教研室,南寧 530021)

      惡性腫瘤是嚴(yán)重危害人類健康的一種疾病,目前對(duì)其研究已深入到分子水平。然而隨著研究的深入,人們發(fā)現(xiàn)單純研究腫瘤細(xì)胞本身并不能解釋一些現(xiàn)象。如許多腫瘤相關(guān)抗原在體外試驗(yàn)時(shí)都能有效地激活抗腫瘤免疫,殺傷靶細(xì)胞,但用于活體試驗(yàn)時(shí)卻往往無(wú)效。這說(shuō)明在體內(nèi)存在著免疫抑制機(jī)制。Klein等[1]將具有免疫原性的異體細(xì)胞克隆移植到活體動(dòng)物的腫瘤中,正常情況下,由于異體排斥反應(yīng),這些克隆會(huì)被清除,但移植到腫瘤內(nèi)的這些克隆卻能繼續(xù)生長(zhǎng),說(shuō)明微環(huán)境對(duì)腫瘤的存活和生長(zhǎng)及免疫逃逸具有極其重要的影響。

      腫瘤微環(huán)境的構(gòu)成非常復(fù)雜,包含了細(xì)胞成分、細(xì)胞外基質(zhì)、各種細(xì)胞因子及其一些化學(xué)分子等。成纖維細(xì)胞活化蛋白(fibroblast activation protein,F(xiàn)AP)主要由腫瘤微環(huán)境中活化的成纖維細(xì)胞分泌,大量的研究表明,其與腫瘤的發(fā)生和發(fā)展密切相關(guān)。

      1 FAP的概況

      FAP在不同物種之間是高度保守的。人類的FAP基因定位于2q23,跨越73 kb的堿基,含有26個(gè)外顯子。FAP單體由760個(gè)氨基酸殘基構(gòu)成,分子量約97 kD,但通常情況下,F(xiàn)AP以二聚體形式存在,分子量約為170 kD[2,3]。

      完整的二聚體FAP是一種絲氨酸蛋白酶,屬Ⅱ型膜結(jié)合型糖蛋白,是脯氨酰基特異的絲氨酸寡肽酶家族(prolyl peptidase)成員之一,具有二肽酶和膠原酶的雙重活性[2,4]。另外,F(xiàn)AP與二肽酶家族成員DPPIV (DPPIV,dipeptidyl peptidase IV /CD26)具有52% 的同源性,因此也被認(rèn)為是DPPIV相似基因家族的一員,但其比DPPIV多了膠原酶活性[5]。

      FAP可結(jié)合于細(xì)胞膜表面或溶解于基質(zhì)中,利用其催化活性專一水解多肽中脯氨酸殘基的氨基端肽鍵,使明膠、I型膠原和α2抗纖維蛋白溶素?cái)嗔?,降解ECM[3]。此外,膜結(jié)合形式的FAP還可將其活性位點(diǎn)包括絲氨酸酶位點(diǎn)暴露于細(xì)胞膜表面,通過(guò)對(duì)信號(hào)分子的降解及修飾等發(fā)揮信號(hào)調(diào)節(jié)作用。二聚體形式和糖基化對(duì)FAP的蛋白水解酶活性是必須的,糖基化的FAP單體雖具有催化位點(diǎn),但仍不具備蛋白水解活性[3,6]。FAP還可與DPPIV形成具有活性的寡聚體,在體外試驗(yàn)時(shí),該寡聚體可明顯促進(jìn)肺成纖維細(xì)胞在膠原上的遷移[7]。而FAP與β1整合素形成的寡聚體則可抑制信號(hào)的傳導(dǎo),可能在FAP介導(dǎo)的細(xì)胞信號(hào)通路調(diào)節(jié)中發(fā)揮關(guān)鍵的作用[8,9]。

      FAP表達(dá)于90% 以上上皮來(lái)源惡性腫瘤的基質(zhì)成纖維細(xì)胞及血管內(nèi)皮細(xì)胞、部分間葉組織來(lái)源的惡性腫瘤細(xì)胞、纖維化性疾病、關(guān)節(jié)炎、創(chuàng)傷愈合的肉芽組織及慢性丙型肝炎病人的肝細(xì)胞等;而在正常人組織、上皮來(lái)源的良性和癌前病變組織中通常不表達(dá),但在一些胎兒的間葉組織中可能會(huì)有短暫的表達(dá)。此外,生理情況下還可見(jiàn)于子宮愈合的創(chuàng)面及器官的生理性重建等[10-13]。

      2 FAP與惡性腫瘤的關(guān)系

      2.1 FAP在部分惡性腫瘤中的表達(dá)情況

      FAP在至少10種不同類型惡性腫瘤中有表達(dá),提示其在腫瘤的發(fā)生和發(fā)展中可能具有非常重要的作用。由表1可見(jiàn),在大多數(shù)的惡性腫瘤中,F(xiàn)AP主要由基質(zhì)成纖維細(xì)胞分泌,而在部分惡性腫瘤中,癌細(xì)胞也參與了FAP的表達(dá),如宮頸癌和胃癌等;FAP的表達(dá)通常與惡性腫瘤的侵襲性、進(jìn)展程度及分化程度等呈正相關(guān)關(guān)系,在胃癌中,F(xiàn)AP的表達(dá)還與其亞型有關(guān)[14];FAP的高表達(dá)通常伴隨不好的預(yù)后,但在乳腺癌中,情況剛好相反,Ariga等[15]認(rèn)為這可能與FAP在乳腺癌中所扮演的角色不同有關(guān)。

      表1 FAP在部分惡性腫瘤中的表達(dá)情況及其意義

      2.2 FAP的來(lái)源

      目前許多人認(rèn)為,惡性腫瘤中FAP陽(yáng)性的成纖維細(xì)胞絕大部分是由原組織中的成纖維細(xì)胞活化而來(lái)。此外,還可來(lái)源于周細(xì)胞、血管平滑肌細(xì)胞及骨髓來(lái)源或由上皮細(xì)胞轉(zhuǎn)化而來(lái)的間充質(zhì)干細(xì)胞(上皮-間充質(zhì)轉(zhuǎn)化,EMT)[16]。有人估計(jì),在炎癥介導(dǎo)的胃癌及胰腺癌中,約有20%-25%的FAP陽(yáng)性成纖維細(xì)胞來(lái)源于間充質(zhì)干細(xì)胞[17-19]。

      TGF-β在成纖維細(xì)胞的活化中發(fā)揮了非常重要的作用。成年人的TGF-β主要由損傷、炎癥或腫瘤組織產(chǎn)生[20],其與IL-1β都可通過(guò)旁分泌信號(hào)通路活化基質(zhì)中的成纖維細(xì)胞,而前者的作用似乎更為關(guān)鍵[21,22]。TGF-β還可直接上調(diào)EGR-1轉(zhuǎn)錄因子的表達(dá),而EGR-1是促使FAP合成最重要的轉(zhuǎn)錄因子[23]。TGF-β對(duì)成纖維細(xì)胞及FAP表達(dá)的誘導(dǎo)被認(rèn)為是改變腫瘤侵襲狀態(tài)的關(guān)鍵機(jī)制[22]。體外試驗(yàn)顯示,TGF-β誘導(dǎo)的FAP表達(dá)增多可顯著提高HO-8910PM卵巢癌細(xì)胞株的侵襲性[24]。

      此外,腫瘤基質(zhì)中的I型膠原及抗β1整合素抗體也都能引起FAP表達(dá)的增加及卵巢癌細(xì)胞侵襲性的增強(qiáng)。Kennedy等[25]推測(cè),膠原對(duì)FAP表達(dá)的誘導(dǎo)有可能是通過(guò)與β1整合素結(jié)合實(shí)現(xiàn)的。最近的研究還顯示,紫外線也可以誘導(dǎo)FAP在黑色素瘤細(xì)胞及皮膚成纖維細(xì)胞的表達(dá)[26]。

      2.3 FAP在惡性腫瘤中的作用機(jī)制

      2.3.1 對(duì)侵襲性的影響 試驗(yàn)表明,F(xiàn)AP-DPPIV復(fù)合體可以促進(jìn)成纖維細(xì)胞、內(nèi)皮細(xì)胞及卵巢癌細(xì)胞在I型膠原凝膠中的遷移[25,27,28]。FAP可由聚合的α1β6整合素誘導(dǎo)定位到腫瘤細(xì)胞偽足的質(zhì)膜上,通過(guò)其膠原酶活性裂解I型膠原和明膠,參與接觸并降解ECM,并能刺激細(xì)胞的運(yùn)動(dòng),對(duì)細(xì)胞的遷移、基質(zhì)的降解,以及細(xì)胞的侵襲行為產(chǎn)生很重要的影響[4,29,30]。將FAP去除后,可引起肺癌組織中I型膠原的急劇增加和積聚,繼而可以削弱細(xì)胞的運(yùn)動(dòng)能力,減緩腫瘤的生長(zhǎng)及血管的形成[31]。

      此外,F(xiàn)AP對(duì)ECM中蛋白質(zhì)的降解及活化還可改變其結(jié)構(gòu)和成分,使其利于腫瘤細(xì)胞的浸潤(rùn)及侵襲;而對(duì)細(xì)胞連接成分的降解,則有利于腫瘤細(xì)胞從原發(fā)部位脫離,利于其擴(kuò)散;通過(guò)解離與基質(zhì)蛋白結(jié)合的生長(zhǎng)因子,還可促進(jìn)腫瘤細(xì)胞的生長(zhǎng)和微血管的生成。同時(shí),F(xiàn)AP還可與膜結(jié)合信號(hào)傳導(dǎo)分子協(xié)同作用,利用其蛋白酶活性對(duì)信號(hào)分子或其他相關(guān)因子(如肽類生長(zhǎng)因子、趨化因子等)進(jìn)行化學(xué)修飾,調(diào)節(jié)與腫瘤生長(zhǎng)相關(guān)的興奮性信號(hào)傳導(dǎo),從而促進(jìn)腫瘤的侵襲。對(duì)FAP的蛋白酶活性進(jìn)行抑制,則可明顯削弱腫瘤細(xì)胞的遷移和侵襲能力[30]。

      2.3.2 對(duì)血管生成的影響 FAP高表達(dá)于腫瘤血管的內(nèi)皮細(xì)胞,被認(rèn)為與血管的生成密切相關(guān)[32]。動(dòng)物模型試驗(yàn)表明,有FAP表達(dá)的人乳腺癌腫塊中微血管密度是無(wú)FAP表達(dá)的3倍,且微血管的密度會(huì)伴隨FAP的升高而增加[33];Santos等[31]的試驗(yàn)顯示,通過(guò)基因刪除或藥物抑制FAP的蛋白酶活性可降低模型動(dòng)物肺癌的微血管密度表明,蛋白酶活性在FAP促血管生成方面具有非常重要的作用;而Huang等[34]對(duì)人乳腺癌異種移植模型的試驗(yàn)結(jié)果則顯示,用藥物抑制FAP的酶活性并不能抑制腫瘤的生長(zhǎng),而表達(dá)無(wú)催化活性的突變FAP也同樣能促進(jìn)腫瘤微血管的形成。由此可見(jiàn),F(xiàn)AP的促血管生成作用并不僅僅由其酶催化活性決定。

      目前認(rèn)為,F(xiàn)AP能利用其二肽肽酶活性將NPY裂解為NPY3-36,后者可與Y2受體結(jié)合,激活內(nèi)皮細(xì)胞上Y2受體信號(hào)通路并阻斷Y1受體信號(hào)通路,從而刺激內(nèi)皮細(xì)胞的增殖[35,36]。同時(shí),F(xiàn)AP對(duì)ECM的降解及重建也有利于內(nèi)皮細(xì)胞的增殖和遷移,并為微血管網(wǎng)的形成創(chuàng)造條件。此外,F(xiàn)AP還能顯著抑制FAK及ERK的磷酸化及p21的表達(dá),使血管生成因子含量升高,促進(jìn)微血管的形成[31]。

      2.3.3 對(duì)免疫的影響 在妊娠期的子宮,慢性非感染性炎癥損傷等時(shí),F(xiàn)AP的表達(dá)可抑制免疫系統(tǒng)的攻擊,從而利于損傷的修復(fù)。Dvorak等[37]認(rèn)為,F(xiàn)AP同樣可將惡性腫瘤“偽裝”成傷口,從而避免了免疫攻擊。小鼠肺癌模型試驗(yàn)顯示,如果FAP陽(yáng)性的細(xì)胞被去除,即可引起腫塊的迅速壞死,這種壞死主要是由機(jī)體抗腫瘤免疫很重要的兩種細(xì)胞因子TNF-α及IFN-γ所介導(dǎo)[38]。

      另有研究顯示,抗FAP的DNA疫苗可引起CD8+T細(xì)胞殺傷FAP陽(yáng)性的成纖維細(xì)胞,進(jìn)而可導(dǎo)致免疫微環(huán)境從Th2向Th1極型的逆轉(zhuǎn),使IL-2和IL-7的表達(dá)增加,而巨噬細(xì)胞、骨髓來(lái)源的抑制細(xì)胞、調(diào)節(jié)性T細(xì)胞及腫瘤血管生成減少,從而解除微環(huán)境的免疫抑制[39]。此外,對(duì)FAP的抑制還可增強(qiáng)腫瘤細(xì)胞對(duì)化療的敏感性[40],可能與FAP對(duì)腫瘤細(xì)胞的保護(hù)解除有關(guān),但具體機(jī)制目前尚未闡明。

      2.4 FAP在惡性腫瘤防治中的應(yīng)用

      2.4.1 用小分子物質(zhì)抑制FAP的活性 Val-boroPro是目前較常用的FAP蛋白酶抑制劑,在體外可明顯但不完全抑制FAP的蛋白酶活性[41]。但對(duì)結(jié)腸癌患者的2期臨床試驗(yàn)顯示,單純使用Val-boroPro對(duì)腫瘤幾乎沒(méi)有療效[42]。此外,為檢測(cè)抑制FAP對(duì)化療藥物療效的影響,人們聯(lián)合使用紫杉萜與ValboroPro治療非小細(xì)胞肺癌,以及聯(lián)合使用順鉑與Val-boroPro治療黑色素瘤,也均未發(fā)現(xiàn)其療效有顯著提高[43,44]。

      目前認(rèn)為,出現(xiàn)上述問(wèn)題的原因主要是由于Val-boroPro在生理?xiàng)l件的pH值環(huán)境中極易發(fā)生環(huán)化,故到達(dá)腫瘤部位時(shí)可能已失效[45];為保護(hù)其活性位點(diǎn),確保對(duì)FAP的特異性抑制,人們加入FAP特異性裂解序列制成前體藥物Chg-Pro-ValboroPro。在小鼠試驗(yàn)中,該藥物可特異的被DPPIV裂解并活化,隨后表現(xiàn)出持久的酶抑制活性,而毒性則比單獨(dú)使用Val-boroPro時(shí)要?。?6]。將FAP特異性裂解序列與熒光物質(zhì)結(jié)合制成前體藥物,還可用于指示FAP的位置和活性,從而有可能用于惡性腫瘤的指示和診斷[47,48]。

      此外,也有人認(rèn)為,F(xiàn)AP的促腫瘤效應(yīng)并不單純依賴其蛋白酶活性或其催化作用,可被其他酶所代償,從而在FAP蛋白酶活性被抑制的情況下仍有可能對(duì)腫瘤的生長(zhǎng)起到促進(jìn)作用[34],如要全面抑制FAP對(duì)腫瘤的作用,則需開(kāi)發(fā)更高效全能的抑制劑。

      2.4.2 殺傷FAP陽(yáng)性細(xì)胞 主要通過(guò)細(xì)胞毒藥物殺傷靶細(xì)胞,從而達(dá)到抑制FAP表達(dá)的目的。Lebeau等[49]對(duì)原蜂毒溶血肽進(jìn)行修飾,加入FAP特異性裂解位點(diǎn),制成前體藥物。在體外試驗(yàn)時(shí),這種經(jīng)過(guò)修飾的藥物能選擇性的殺傷FAP陽(yáng)性的細(xì)胞,但對(duì)FAP陰性的細(xì)胞則幾乎沒(méi)有影響;采用腫瘤內(nèi)注射給藥用于人類前列腺癌、乳腺癌的異種移植模型時(shí),這種藥物表現(xiàn)出明顯的腫瘤抑制效應(yīng)。但對(duì)于其靜脈注射給藥的安全性,目前仍存在許多爭(zhēng)議。

      西羅珠單抗(sibrotuzumab)是一種針對(duì)FAP的人源化F19抗體,其可用于靜脈注射而毒性很小,可特異的富集于腫瘤組織中[50]。單純使用西羅珠單抗并不足以產(chǎn)生抗體依賴的細(xì)胞毒效應(yīng),但可通過(guò)其對(duì)FAP陽(yáng)性細(xì)胞進(jìn)行準(zhǔn)確定位[51]。

      將西羅珠單抗與細(xì)胞毒前體藥物結(jié)合,則可利用抗原-抗體反應(yīng)及特異性裂解位點(diǎn)雙重定位靶細(xì)胞,更能確保治療的安全性和有效性。目前相關(guān)的實(shí)驗(yàn)室研究仍在進(jìn)行中。

      通過(guò)siRNA干擾或針對(duì)FAP的DNA疫苗也可以抑制FAP的表達(dá)及殺傷FAP陽(yáng)性的細(xì)胞,從而達(dá)到抑制腫瘤生長(zhǎng)侵襲的目的。然而由于特異性較差,作用時(shí)間短暫等,目前主要用于實(shí)驗(yàn)室研究。

      3 結(jié)語(yǔ)

      在惡性腫瘤中,F(xiàn)AP陽(yáng)性的成纖維細(xì)胞僅占腫瘤細(xì)胞總數(shù)的2%,但當(dāng)其被去除后,癌細(xì)胞及基質(zhì)細(xì)胞都會(huì)發(fā)生迅速的壞死[38]。由此可以看出,F(xiàn)AP對(duì)惡性腫瘤的發(fā)生和發(fā)展具有非常重要的作用,而在腫瘤治療方面則具有廣闊的應(yīng)用前景。但目前其作用機(jī)制尚未完全闡明,在抑制FAP的表達(dá)及活性方面還存在許多技術(shù)難題。但隨著研究的深入及技術(shù)水平的提高,這些問(wèn)題都有望獲得解決,而針對(duì)FAP的治療將有可能成為抗腫瘤治療的一個(gè)重要手段。

      [1] Klein G, Sjogren HO, Klein E, et al. Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host[J]. Cancer Res, 1960, 20:1561-1572.

      [2] Mathew S, Scanlan MJ, Mohan Raj BK, et al. The gene for fibroblast activation protein alpha(FAP), a putative cell surface-bound serine protease expressed in cancer stroma and wound healing, maps to chromosome band 2q23[J]. Genomics, 1995, 25:335-337.

      [3] Pi?eiro-Sánchez ML, Goldstein LA, Dodt J, et al. Identification of the 170-kDa melanoma membrane-bound gelatinase (seprase) as a serine integral membrane protease [J]. J Biol Chem, 1997, 272(12):7595-7601.

      [4] Cheng JD, Valianou M, Canutescu AA, et al. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth[J].Mol Cancer Ther, 2005, 4(3):351-360.

      [5] Gorrell MD, Gysbers V, McCaughan GW. CD26:a multifunctional integral membrane and secreted protein of activated lymphocytes[J]. Scand J Immunol, 2001, 54(3):249-264.

      [6] Kelly T. Evaluation of seprase activity[J]. Clin Exp Metastasis, 1999, 17(1):57-62.

      [7] Chen WT, Kelly T. Seprase complexes in cellular invasiveness[J].Cancer Metastasis Rev, 2003, 22(2-3):259-269.

      [8] Artym VV, Kindzelskii AL, Chen WT, et al. Molecular proximity of seprase and the urokinase-type plasminogen activator receptor on malignant melanoma cell membranes:dependence on beta1 integrins and the cytoskeleton[J]. Carcinogenesis, 2002, 23(10):1593-1601.

      [9] Mueller SC, Ghersi G, Akiyama SK, et al. A novel protease-docking function of integrin at invadopodia[J]. J Biol Chem, 1999, 274(35):24947-24952.

      [10] Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers[J]. Proc Natl Acad Sci USA, 1990, 87(18):7235-7239.

      [11] Rosenblum JS, Kozarich JW. Prolyl peptidases:a serine protease subfamily with high potential for drug discovery[J]. Curr Opin Chem Biol, 2003, 7(4):496-504.

      [12] Milner JM, Kevorkian L, Young DA, et al. Fibroblast activation protein alpha is expressed by chondrocytes following a proinflammatory stimulus and is elevated in osteoarthritis[J].Arthritis Res Ther, 2006, 8(1):23.

      [13] Liotta LA, Kohn EC. The microenvironment of the tumour-host interface[J]. Nature, 2001, 411(6835):375-379.

      [14] Okada K, Chen WT, Iwasa S, et al. Seprase, a membrane-type serine protease, has different expression patterns in intestinal- and diffuse-type gastric cancer[J]. Oncology, 2003, 65(4):363-370.

      [15] Ariga N, Sato E, Ohuchi N, et al. Stromal expression of fibroblast activation protein/seprase, a cell membrane serine proteinase and gelatinase, is associated with longer survival in patients with invasive ductal carcinoma of breast[J]. Int J Cancer, 2001, 95(1):67-72.

      [16] Mikheeva SA, Mikheev AM, Petit A, et al. TWIST1 promotes invasion through mesenchymal change in human glioblastoma[J]. Mol Cancer, 2010, 9:194.

      [17] Direkze NC, Hodivala-Dilke K, Jeffery R, et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts[J].Cancer Res, 2004, 64(23):8492-8495.

      [18] Direkze NC, Jeffery R, Hodivala-Dilke K, et al. Bone marrowderived stromal cells express lineage-related messenger RNA species[J]. Cancer Res, 2006, 66(3):1265-1269.

      [19] Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth[J]. Cancer Cell, 2011, 19(2):257-272.

      [20] De Wever O, Demetter P, Mareel M, et al. Stromal myofibroblasts are drivers of invasive cancer growth[J]. Int J Cancer, 2008, 123(10):2229-2238.

      [21] Chen H, Yang WW, Wen QT, et al. TGF-beta induces fibroblast activation protein expression;fibroblast activation protein expression increases the proliferation, adhesion, and migration of HO-8910PM [corrected][J]. Exp Mol Pathol, 2009, 87(3):189-194.

      [22] Denys H, Derycke L, Hendrix A, et al. Differential impact of TGFbeta and EGF on fibroblast differentiation and invasion reciprocally promotes colon cancer cell invasion[J]. Cancer Lett, 2008, 266:263-274.

      [23] Zhang J, Valianou M, Cheng JD. Identification and characterization of the promoter of fibroblast activation protein[J]. Front Biosci (Elite ed), 2010, 2:1154-1163.

      [24] 溫秋婷, 孫玉榮, 李春紅, 等.成纖維細(xì)胞激活蛋白對(duì)卵巢癌細(xì)胞增殖、遷移和侵襲的影響[J].中國(guó)癌癥雜志, 2011, 21(6):441-445.

      [25] Kennedy A, Dong H, Chen D, et al. Elevation of seprase expression and promotion of an invasive phenotype by collagenous matrices in ovarian tumor cells[J]. Int J Cancer, 2009, 124(1):27-35.

      [26] W?ster P, Rosdahl I, Gilmore BF, et al. Ultraviolet exposure of melanoma cells induces fibroblast activation protein-α in fibroblasts:Implications for melanoma invasion[J]. Int J Oncol, 2011, 39(1):193-202.

      [27] Ghersi G, Dong H, Goldstein LA, et al. Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex[J]. J Biol Chem, 2002, 277(32):29231-29241.

      [28] Ghersi G, Zhao Q, Salamone M, et al. The protease complex consisting of dipeptidyl peptidase IV and seprase plays a role in the migration and invasion of human endothelial cells in collagenous matrices[J]. Cancer Res, 2006, 66(9):4652-4661.

      [29] Nakahara H, Nomizu M, Akiyama SK, et al. A mechanism for regulation of melanoma invasion. Ligation of alpha6beta1 integrin by laminin G peptides[J]. J Biol Chem, 1996, 271(44):27221-27224.

      [30] Lee HO, Mullins SR, Franco-Barraza J, et al. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells[J]. BMC Cancer, 2011, 11:245.

      [31] Santos AM, Jung J, Aziz N, et al. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice[J]. J Clin Invest, 2009, 119(12):3613-3625.

      [32] Ghilardi C, Chiorino G, Dossi R, et al. Identification of novel vascular markers through gene expression profiling of tumor-derived endothelium[J]. BMC Genomics, 2008, 9:201.

      [33] Huang Y, Wang S, Kelly T. Seprase promotes rapid tumor growth and increased microvessel density in a mouse model of human breast cancer[J]. Cancer Res, 2004, 64(8):2712-2716.

      [34] Huang Y, Simms AE, Mazur A, et al. Fibroblast activation protein-α promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions[J]. Clin Exp Metastasis, 2011, 28(6):567-579.

      [35] Keane FM, Nadvi NA, Yao TW, et al. Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein-α[J]. FEBS J, 2011, 278(8):1316-1332.

      [36] Zukowska Z, Pons J, Lee EW, et al. Neuropeptide Y:a new mediator linking sympathetic nerves, blood vessels and immune system[J]. Can J Physiol Pharmacol, 2003, 81(2):89-94.

      [37] Dvorak HF. Tumors:wounds that do not heal. Similarities between tumor stroma generation and wound healing[J]. N Engl J Med, 1986, 315(26):1650-1659.

      [38] Kraman M, Bambrough PJ, Arnold JN, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha[J]. Science, 2010, 330 (6005):827-830.

      [39] Liao D, Luo Y, Markowitz D, et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model[J]. PLoS One, 2009, 4(11):e7965.

      [40] Loeffler M, Krüger JA, Niethammer AG, et al. Targeting tumorassociated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake[J]. J Clin Invest, 2006, 116(7):1955-1962.

      [41] Adams S, Miller GT, Jesson MI, et al. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism[J]. Cancer Res, 2004, 64 (15):5471-5480.

      [42] Narra K, Mullins SR, Lee HO, et al. Phase II trial of single agent Val-boroPro (Talabostat) inhibiting Fibroblast Activation Protein in patients with metastatic colorectal cancer[J]. Cancer Biol Ther, 2007, 6(11):1691-1699.

      [43] Eager RM, Cunningham CC, Senzer N, et al. Phase II trial of talabostat and docetaxel in advanced non-small cell lung cancer[J]. Clin Oncol (R Coll Radiol), 2009, 21(6):464-472.

      [44] Eager RM, Cunningham CC, Senzer NN, et al. Phase II assessment of talabostat and cisplatin in second-line stage IV melanoma[J]. BMC Cancer, 2009, 9:263.

      [45] Kelly TA, Adams J, Bachovchin WW, et al. Immunosuppresive boronic acid dipeptides:correlation between conformation and activity[J]. J Am Chem Soc, 1993, 115(26):12637-12638.

      [46] Poplawski SE, Lai JH, Sanford DG, et al. Pro-soft Val-boroPro:a strategy for enhancing in vivo performance of boronic acid inhibitors of serine proteases[J]. J Med Chem, 2011, 54(7):2022-2028.

      [47] Lai KS, Ho NH, Cheng JD, et al. Selective fluorescence probes for dipeptidyl peptidase activity-fibroblast activation protein and dipeptidyl peptidase IV[J]. Bioconjug Chem, 2007, 18(4):1246-1250.

      [48] Lo PC, Chen J, Stefflova K, et al. Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblasts for diagnosis and treatment of epithelial cancers[J]. J Med Chem, 2009, 52(2):358-368.

      [49] LeBeau AM, Brennen WN, Aggarwal S, et al. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin[J]. Mol Cancer Ther, 2009, 8(5):1378-1386.

      [50] Scott AM, Wiseman G, Welt S, et al. A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer[J]. Clin Cancer Res, 2003, 9(5):1639-1647.

      [51] Hofheinz RD, al-Batran SE, Hartmann F, et al. Stromal antigen targeting by a humanised monoclonal antibody:an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer[J]. Onkologie, 2003, 26(1):44-48.

      猜你喜歡
      微血管膠原纖維細(xì)胞
      Tiger17促進(jìn)口腔黏膜成纖維細(xì)胞的增殖和遷移
      乙型肝炎病毒與肝細(xì)胞癌微血管侵犯的相關(guān)性
      滇南小耳豬膽道成纖維細(xì)胞的培養(yǎng)鑒定
      膠原無(wú)紡布在止血方面的應(yīng)用
      胃癌組織中成纖維細(xì)胞生長(zhǎng)因子19和成纖維細(xì)胞生長(zhǎng)因子受體4的表達(dá)及臨床意義
      紅藍(lán)光聯(lián)合膠原貼治療面部尋常痤瘡療效觀察
      兩種制備大鼠胚胎成纖維細(xì)胞的方法比較
      IMP3在不同宮頸組織中的表達(dá)及其與微血管密度的相關(guān)性
      上皮性卵巢癌組織中miR-126、EGFL7的表達(dá)與微血管密度的檢測(cè)
      顯微血管減壓術(shù)治療面肌痙攣的臨床觀察
      德庆县| 黄梅县| 克山县| 武安市| 比如县| 阿勒泰市| 江陵县| 璧山县| 平乐县| 冷水江市| 安康市| 鱼台县| 博客| 叶城县| 新宾| 武定县| 新竹县| 隆林| 台前县| 民丰县| 和田县| 永川市| 沙湾县| 澄迈县| 贡觉县| 靖远县| 靖州| 保靖县| 防城港市| 英超| 探索| 东方市| 兴海县| 桐庐县| 泰来县| 石城县| 泰宁县| 九龙城区| 资阳市| 苍南县| 平江县|