• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    APPLICATION OF HYBRID GENETIC ALGORITHM IN AEROELASTIC MULTIDISCIPLINARY DESIGN OPTIMIZATION OF LARGE AIRCRAFT

    2013-12-02 01:39:22TangChanghong唐長紅WanZhiqiang萬志強(qiáng)
    關(guān)鍵詞:志強(qiáng)

    Tang Changhong(唐長紅),Wan Zhiqiang(萬志強(qiáng))

    (1.School of Mechanical and Engineering,Northwestern Polytechnical University,Xi′an,710072,P.R.China;2.School of Aeronautic Science and Engineering,Beijing University of Aeronautics and Astronautics,Beijing,100191,P.R.China)

    Nomenclature

    B Dampling matrix

    b Reference half chord length

    GFACT Scalar normalization factor

    g Inequality constraint

    K Stiffness matrix

    k Reduced frequency

    M Mass matrix

    ndvNumber of design variables

    nconNumber of constraints

    ndispNumber of nodes

    nrootNumber of flutter roots

    nvNumber of user-specified velocities P Applied load vector

    p Eigenvalue in p-k method

    Q Aerodynamic influence coefficient matrix

    q Dynamic pressure

    u Displacement vector

    V Flow speed

    v Design variable vector

    ρ Local atmosphere density,or material density

    γ gvalue of flutter mode

    ζ Displacement limit superscripts and subscripts

    a Displacement vector set of a-set,i.e.analysis set,in which single point constrain and multipoint constrain have been omitted,and Guyan reduction has been performed

    h Modal analysis set,h-set

    I Imaginary part

    i Design variable identification

    j Constraint identification

    R Real part

    x Displacement vector set of x-set,i.e.″aerodynamic extra point″set

    other symbols

    ()lowerLower bound

    ()upperUpper bound

    ()fFlexible case

    ()rRigid case

    INTRODUCTION

    It has been well-known that the high-aspectratio swept wing is an important aerodynamic configuration because it has better aerodynamic performance available for civil airplane and military transport.Meanwhile,this aerodynamic configuration has been widely used by several airplanes such as Boeing 737,Airbus 320,C-17,C-5,IL-76and so on.The advanced aeroelastic optimization technology,as well as structure and aerodynamic optimization technology,has been developed sufficiently for the development of these aircraft[1-2].

    As a technology to improve the aeroelastic characteristics of aircraft,aeroelastic optimization technology takes advantage of the reasonable distribution of structural strength and stiffness to attain beneficial deformation increasing overall performance.In the past decades,a large amount of theoretical and experimental work was carried out in this field to meet the modern requirements for high performance together with a lightweight structure.

    Since the 1980s,a lot of large programs have been developed to tackle the optimization problem of weight minimization with aeroelastic constraints.Amongst them,TSO[3],F(xiàn)ASTOP[4],ADOP[5],MSC/NASTRAN[6],and ASTROS[7]have found wide recognition and application.Most recently,MSC/NASTRAN and ASTROS have become the international criteria of advanced design optimization with aeroelastic constraints[8].

    The optimization algorithms used in all the above mentioned programs are gradient-based.Though strong in local search and quick to converge,the gradient-based algorithm often falls into local optima,and,moreover,the initial values of design variables have great effects on the optimization results,e.g.different initial values of design variables can lead to different optimization results,which proves,therefore,to be the inherent demerit of the gradient-based optimization algorithm.To solve these problems,more sophisticated approaches are required,such as genetic algorithm and simulated annealing algorithm,of which the former is wider used.

    Genetic algorithm is an efficient global search that mimics the process of natural selection[9].As a well-known evolutionary computation technique,the genetic algorithm,unlike conventional algorithms,begins with a pool of points,usually known as individuals,followed by making iterative adaptations from the previous generation to the next on the base of the genetic operators and the fitness function.Since introduced by Hollandin[10],genetic algorithm has been used by many researchers as a tool for search and optimization,and it has been receiving serious consideration in aircraft multidisciplinary optimization[11-13].However,it is time-consuming and not well suited for localized optimization.

    In the past,the genetic algorithm was not adequately developed and widely applied to aircraft structure optimization because of the limited speed of computers,and the research work was mainly focused on the simple structures with a small amount of design variables and constraints.Recently,as a result of the rapid growth in speed,data transfer and storage capabilities in modern computers,it has become possible to use them in dealing with the optimization of complicated models with a large amount of design variables and constraints.

    In order to increase search speed of the ge-netic algorithm,in the past years,various methods of hybridization were suggested to overcome the above shortcomings[14].The role of the local search in the context of the genetic algorithm has been highly valued and many successful applications have shown strongly in favor of such a hybrid approach[15].Because it incorporates the merits of the genetic algorithms and the local algorithms,the hybrid algorithm often outperforms either of them operated alone.

    Being a common form of the hybrid genetic algorithms,the combination of the genetic algorithm and the gradient-based one[15],known as genetic/gradient-based hybrid algorithm,is an effective measure to achieve the global optimum thanks to combining the merits of the two elements.It can remarkably increase the convergence speed of search[16]and overcome the demerits of either.In the hybrid algorithm,the genetic algorithm is used to perform a global search to avoid local optima and to make the search direction point to an excellent zone at the initial stage or after some generations.The gradient-based algorithm is further used to fine-tune the excellent individuals of every generation optimized by the genetic algorithm to achieve the local optima and to further the global optima.

    In comparison with general structural optimization,aeroelastic optimization has the characteristics of complicated research object,high calculation cost,multiple disciplines,a lot of design variables and complex constraints,etc.especially in the process of aeroelastic optimization for the composite structure.At present,genetic/gradient-based hybrid algorithms have been used in aeroelastic optimization of some aircraft structure with large amount of design variables and constraints.However,the comprehensive application examples of genetic/gradient-based hybrid algorithms have hardly been seen in the field of aeroelastic optimization for large aircraft.

    In this paper,agenetic/gradient-based hybrid algorithm is introduced for aeroelastic optimization of large airplane wings in initial design stage as well as in detailed design stage.In the al-gorithm,the program of the genetic element is developed by the authors while that of the gradient-based one borrows from the modified method for feasible direction in MSC/NASTRAN software.The consistence of optimization results of different models is also discussed,while sensitivities of constrains with respect to all kinds of design variables are analyzed.

    1 FORMULATIONS OF DESIGN STUDIES

    1.1 Multidisciplinary optimizaton

    In the paper,the design studies prove to be a standard problem in finding values of design variables v which

    Minimize

    Subject to

    where F(v)is an objective function meaning the weight of the structure here.Eq.(2)is used to define the inequality constraints.Eq.(3)is used to specify upper and lower bounds (side constraints)on each of the design variables.

    1.2 Equation for static aeroelastic response

    The basic equation of static aeroelastic response analysis[6,17]is generally stated as follows

    When correlative derivation and calculation are performed by Eq.(4),elastic stability derivatives,elastic control derivatives and corresponding trim can be obtained directly.The same goes for deformation,stress and strain of structure.The detailed solution procedure can be seen in Refs.[7,17].

    1.3 Equations for flutter and divergence

    The p-k method is more suitable for optimization analysis,for the results acquired are closer to the experiments.The flutter stability analysis is based on the p-k method[6]with an equation of the following form

    Eq.(5)can also be used to calculate divergence speed when the frequency decreases to zero[7].

    1.4 Constraints

    In the paper,flutter constraints and three static aeroelastic response constraints have been considered.The static aeroelastic response constraints include those of aileron effectiveness,deformation and strength[17].

    (1)Aileron effectiveness constraints

    The aileron effectiveness is represented as[17]

    where?Cmx/?δais the rolling moment due to aileron deflection,andεailethe aileron effectiveness,respectively.

    (2)Deformation and strength constraints

    The upper and lower limit of the deformation constraints are represented by

    where Ajlare user-specified weight factors on structural deformation.With appropriate weightused to define torsional deformation of structure,e.g.twist of wing tip,and stress or strain of elements.

    (3)Flutter constraints

    While optimizing with flutter constraints,flutter speed cannot be calculated directly;rather,it must be obtained from the V-g figure.Therefore,flutter constraint is generally formulated to satisfy the requirtements for the gvalues of flutter mode at a series of user-specified velocities

    where GFACT is a ratio factor which converts the damping values into a range,preferably from 0.1 to 0.5,consistent with other constraints in the design task.

    2 OPTIMIZATION ALGORITHM

    2.1 Modified method for feasible direction algorithm

    The basic modified feasible direction optimization algorithm[18],with some variation,assumes the following form

    where vt+1and vtare the design variable vectors in two consecutive cycles of iteration,t is the cycle identification,τthe scalar parameter,and Dthe feasible search direction.

    The procedure begins with an initial design vector v0,i.e.t=0.At the same time as t is increased in a manner of t=t+1,the objective functions F(vt-1)and the constraints gj(vt-1)(j=1,…,k+p)are evaluated.A set of critical or active constraints Jis identified,and the gradients of the objective function▽F(vt-1)and those of the constraints▽gj(vt-1)for all jin Jare calculated.The active constraints are the most violated ones and those within a prescribed tolerance of them.A search direction Dtis to be determined through analyzing,andτtis to be found through a one-dimensional search.Eq.(10)is then used to determine vt+1.The preceding procedure is unceasingly repeated with the ever-renewing design variables until the design satisfies the optimal conditions or some other termination criteria.The essential parts of the optimization algorithm consist of:

    (1)Finding a feasible search direction Dt;

    (2)Finding the scalar parameterτtthat will minimize F(vt-1+τtDt)so as to meet the constraints;

    (3)Testing for convergence to the optimum and terminating the procedure when convergence is achieved.

    2.2 Genetic algorithm and genetic/sensitivitybased hybrid algorithm

    Fig.1 Genetic/gradient-based hybrid algorithm

    Fig.1illustrates the flow chart of the genetic/gradient-based hybrid algorithm used in the pa-per.It is one of the genetic algorithms if the gradient-based algorithm is not used.But in the hybrid algorithm,the genetic algorithm is used to perform global search to avoid local optima,while the modified method for feasible directions algorithm is further used to fine-tune the excellent individuals of every generation optimized by genetic algorithm to achieve the local optima.

    Software named GA-NASTRAN is developed based on the commercial software MSC/NASTAN.GA-NASTRAN is programmed in FORTRAN90language.The hybrid algorithm mentioned above is carried out by one main program and seven main modules,which have the functions of data input/output,reading information of external individuals,developing the population of the initial generation and the individuals of a new generation,solving the aeroelastic analysis and satisfaction analysis by calling for NASTRAN,and judging the computation convergence.

    When an aeroelastic optimization is promoted,firstly,all the data including the model files for NASTRAN analysis and parameters for genetic algorithm,design variables and constrains which determine the genetic strategy should be prepared.The genetic algorithm begins with a population of individuals created at random.Aeroelastic characteristics of each individual in the population thereof are analyzed by NASTRAN,and fitness of each individual is also evaluated.Several individuals which have better quality have been selected and further optimized by the gradient algorithm involved in MSC/NASTRAN.The population is then operated by fitness scaling,niche technique and three main operators(reproduction,crossover,and mutation)to create a better population, which is further evaluated and tested for termination.If the termination criteria are not met,the population is once again operated and evaluated in the way described above.The procedure will not be ended until the termination criteria are met[19].

    3 DESCRIPTION OF STUDY CASE

    3.1 Calculation models

    A subsonic large airplane wing with normal aerodynamic configuration,which has a high-aspect-ratio metal wing,is analyzed.

    In initial design stage,the wing can be modeled as a beam-frame finite elementmodel(FEM),and the optimization design procedure can be used to get the appropriate stiffness distribution.The structural FEM is established as Fig.2.The stiffness characteristic of the wing is represented by an elastic beam with different stiffness distribution from root to tip,while the mass characteristic with a set of lumped mass elements.

    Fig.2 Beam-frame FEM

    In detailed design stage,the wing structure can be modeled as three-dimensional FEM,and it is much similar to the reality.Then the optimization design procedure can be used to attain the appropriate thickness distribution all over the wing skin.As shown in Fig.3,the wing FEM is established with shell-rod elements to meet mechanics characteristics of each component.

    The aerodynamics is calculated with the subsonic doublet lattice method,as shown in Fig.4.

    Fig.3 Three-dimensional FEM

    Fig.4 Aerodynamic model

    3.2 Design optimization

    The beam-frame FEM in initial design stage and the three-dimensional FEM in detailed stage are both studied using the aeroelastic optimiza-tion,and was attained the optimized wing stiffness distribution.The effects of design parameters on the constraints are also studied by the sensitivity analysis.

    (1)Object function

    The optimization in the paper is a weight minimization design.For the beam-frame wing model,the minimized summation of vertical bending stiffness and torsion stiffness at the wing root will be used instead of structure weight.

    (2)Constrains

    For the beam-frame wing model,vertical displacement at the wing tip should be less than the specified ratio of half span when the airplane goes through pull-up maneuver of the longitudinal maximum overload,and the torsion angle at wing tip should also be less than specified value during the cruise case,as well as the other performance meeting requirements.For the three-dimensional wing model,the aileron effectiveness should remain high enough under the serious pull-up maneuver mentioned above,and the flutter velocity under sea level condition and overall structural strength should be fit for the design requirement at the same time.

    (3)Design variables

    For beam-frame wing model,the scale coefficient of the initial stiffness of each wing segment is selected.For the three-dimensional wing model,the upper skin thickness,lower skin thickness and spar cap area are selected as the design variables.

    4 RESULTS OF STUDY CASE

    The spanwise vertical bending and torsional stiffness distribution of beam-frame wing model,and the size of three-dimensional wing structure are all decided using the aeroelastic optimization.Meanwhile,the three-dimensional wing structure is converted to get the equivalent spanwise bending and torsional stiffness distribution.The effects of design parameters on the performance are also studied by sensitivity analysis.

    4.1 Comparison of object functions

    The unitized object functions of the beamframe and three-dimensional wing model attained by the hybrid algorithm and two conventional methods,one is the gradient algorithm and the other is the genetic algorithm,are compared in Table 1.The data shows that compared with the conventional methods,genetic/gradient-based hybrid algorithm can have better optimize result for both ty pes of analysis model.

    Table 1 Object functions obtained by different optimization algorithms

    4.2 Comparison of stiffness distribution

    Fig.5 Comparison of vertical bending stiffness

    Fig.6 Comparison of torsional stiffness

    The nondimensional vertical bending and torsional stiffness for the beam-frame and three-dimensional wing models are compared in Figs.5-6,and the stiffness of a reference wing with the similar structure is also illustrated.The result indicates that the stiffness distribution obtained by these two methods is close to each other,and both of them are similar with the reference wing,which means that genetic/gradient-based hybrid algorithm is applicable in stiffness design of large airplane wing.

    4.3 Design sensitivity

    In the genetic/gradient-based hybrid algorithm,the sensitivity algorithm can improve the local search efficiency,and the sensitivity information can also be the guide of design optimization.As limited to the length,this paper here only lists the nondimensional sensitivity of bending deformation at wing tip and gvalue in flutter analysis with respect to the bending and torsional stiffness of each wing segment,which is represented as importance index in Fig.7.

    Fig.7shows the effect of the stiffness at each wing segment on the wing tip deformation.The larger importance index is,the more significant effect appears.The result shows that the wing-tip deformation is mostly effected by the vertical bending stiffness of inner and middle wing parts,while the effect of torsional stiffness is much smaller.

    Fig.7 Effect of wing stiffness at different segments on wing-tip deformation

    Fig.8shows the effect of the stiffness of each wing segment on gvalue of flutter mode near critical flutter speed in the v-gchart of the flutter analysis,where the g value goes through the 0 damping level from minus to positive.It can make sure that the design is fit for the flutter constraint to reduce the gvalue until it is below 0.The result shows that the gvalue of flutter mode is positive relevant with the vertical bending stiffness,while negative relevant to the torsional stiffness.The torsional stiffness at middle and outer wing parts has great effect on the gvalue level.Therefore,torsional stiffness there should be increased in order to restrain the gvalue level.

    Fig.8 Effect of stiffness of beam-frame wing on gvalue of flutter mode

    4.4 Comparison of skin thickness

    The genetic/sensitivity-based hybrid algorithm is applied to the wing structure optimization meeting the aeroelastic and the strength constraints.The optimized results of upper skin are shown in Fig.9in comparison with the one of initial wing subject to strength constrains.

    The results show that the main difference of skin thickness is located at middle segment due to aeroelastic constraint,and the wing skin at the middle segment subject to aeroelastic constraint and strength constraint are thicker than the one only meeting strength constraints.The trend is consistent with the abovementioned sensitivities analysis results.In addition,the thickness distribution of the lower skin is similar to the one illustrated in Fig.9.

    5 CONCLUSIONS

    Fig.9 Comparison of torsional stiffness

    The application of the genetic/gradient-based hybrid algorithm in the aeroelastic optimization of large airplane wing is introduced.With the comparison of stiffness distribution of both beam-frame wing model and three-dimensional wing model,the sensitivity analysis of structural variables,and the comparison of thickness distribution of initial and optimized three-dimensional wing models,the following conclusions are attained.

    (1)The genetic/gradient-based hybrid algorithm is available in aeroelastic optimization of large airplane.It can be used in design optimization of wing stiffness at the stage of initial design,as well as in size design optimization at the stage of detailed design.The stiffness distribution obtained in both cases is consistent.

    (2)In the genetic/gradient-based hybrid algorithm,the sensitivity information can be the guide of design optimization,as well as improve the local search efficiency.

    As limited to the length,the paper here only lists some macroscopic and initial analysis results.More optimization results and interaction roles can be obtained using the genetic/gradient-based hybrid algorithm,which can provide valuable advices for engineering.

    [1] Bindolino G,Ghiringhelli G,Ricci S,et al.Multilevel structural optimization for preliminary wing-box weight estimation[J].Journal of Aircraft,2010,47(2):475-489.

    [2] Battoo R S,Visser J A.Aeroelastic and strength optimization of a large aircraft wing with wing parameter variations[R].AIAA Paper 1998-1821,1998.

    [3] Lynch R W,Rogers W A,Braymen G W,et al.Aeroelastic tailoring of advanced composite structures for military aircraft,Volume III—Modification and user′s guide for procedure TSO[R].AFFDL-TR-76-100,1978.

    [4] Markowitz J,Isakson G.FASTOP-3:A strength,deflection and flutter optimization program for metallic composite structures[R]. AFFDL-TR-78-50,1978.

    [5] Dodd A J,Kadrinka K E,Loikkanen M J,et al.Aeroelastic design optimization program[J].Journal of Aircraft,1990,27(12):1028-1036.

    [6] Rodden W P,Johnson E H.MSC/Nastran aeroelastic analysis user′s guide V68[M].Log Angeles:MSC Software Corporation,1994:657-698.

    [7] Neill D J,Johnson E H,Canfield R.ASTROS—A multidisciplinary automated structural design tool[J].Journal of Aircraft,1990,27(12):1021-1027.

    [8] Danilin A I,Weisshaar T A.The use of structural optimization criteria for aircraft conceptual design[R].AIAA Paper 2000-1328,2000.

    [9] Guan J,Aral M M.Progressive genetic algorithm for solution of optimization problems with nonlinear equality and inequality constraints[J].Journal of Applied Mathematical Modelling,1998,23(4):329-343.

    [10]Holland J H.Adaptation in natural and artificial systems[M].Ann Arbor:University of Michigan Press,1975:183.

    [11]Raymer D P,Crossley W A.A comparative study of genetic algorithm and orthogonal steepest descent for aircraft multidisciplinary optimization[R].AIAA Paper 2002-0514,2002.

    [12]Perez R E,Chung J,Behdinan K.Aircraft conceptual design using genetic algorithms[R].AIAA Paper 2000-4938,2000.

    [13]Daly P,Ngo D.Multidisciplinary structural optimization utilizing genetic algorithm capabilities(for C-17 Horizontal Stabilizer Rib Design)[R].AIAA Paper 98-4776,1998.

    [14]Orvpsh D,Davis L.Using agenetic algorithm to optimize problems with feasibility constrains[C]∥Proc of 1st IEEE Conf on Evolutionary Computation.Orlando,F(xiàn)L,USA:IEEE,1994:548-553.

    [15]Cheng R,Mitsuo G,Tsujimura Y.A tutorial survey of job-shop scheduling problems using genetic algorithms,Part II:Hybrid genetic search strategies[J].Computers & Industrial Engineering,1999,36(2):343-364.

    [16]Davis L.Bit-climbling,representational bias,and test suite design[C]∥Proceedings of Fourth International Conference on Genetic Algorithm (ICGA 4).San Diego,CA,USA:[s.n.],1991:18-23.

    [17]Neill D J,Herendeen D L,Venkayya V B.ASTROS enhancements.Vol.3:ASTROS theoretical manual[R].AD Paper A308134,1995.

    [18]Eastep F E.Aeroelastic tailoring of composite structures[J].Journal of Aircraft,1999,36(6):1041-1047.

    [19]Herrera F,Verdegay J.Genetic algorithms and soft computing[M].Heidelberg,Germany:Springer-Verlag,1996:3-29.

    猜你喜歡
    志強(qiáng)
    NFT與絕對主義
    趙志強(qiáng)書法作品
    學(xué)習(xí)“集合”,學(xué)什么
    李志強(qiáng)·書法作品稱賞
    袁志強(qiáng) 始終奮戰(zhàn)在防疫第一線
    盧志強(qiáng) 用心于畫外
    海峽姐妹(2019年4期)2019-06-18 10:39:00
    送別張公志強(qiáng)
    寶藏(2018年12期)2019-01-29 01:50:50
    ON ENTIRE SOLUTIONS OF SOME TYPE OF NONLINEAR DIFFERENCE EQUATIONS?
    Numerical prediction of effective wake field for a submarine based on a hybrid approach and an RBF interpolation*
    Analysis of Tibetan Plateau Vortex Activities Using ERA-Interim Data for the Period 1979-2013
    最新美女视频免费是黄的| 午夜福利欧美成人| 草草在线视频免费看| av在线天堂中文字幕| 高清毛片免费观看视频网站| 日韩欧美在线二视频| 欧美乱色亚洲激情| 每晚都被弄得嗷嗷叫到高潮| 男女下面进入的视频免费午夜 | 成年女人毛片免费观看观看9| 免费在线观看黄色视频的| 久久久久国产一级毛片高清牌| 日韩欧美国产在线观看| 国产精华一区二区三区| 欧美又色又爽又黄视频| 国产精品99久久99久久久不卡| 身体一侧抽搐| 日韩 欧美 亚洲 中文字幕| 国产精品二区激情视频| 在线免费观看的www视频| 国产精品一区二区三区四区久久 | 国产精品,欧美在线| 亚洲精品久久成人aⅴ小说| 久久久久久大精品| cao死你这个sao货| 后天国语完整版免费观看| 首页视频小说图片口味搜索| 国产单亲对白刺激| 亚洲国产精品久久男人天堂| 国产在线精品亚洲第一网站| 成人欧美大片| 美国免费a级毛片| 亚洲精品av麻豆狂野| 岛国在线观看网站| 日韩精品中文字幕看吧| 在线观看免费视频日本深夜| 欧美日韩精品网址| 久久精品人妻少妇| 在线视频色国产色| 久久久久久九九精品二区国产 | 国产激情欧美一区二区| 日本一本二区三区精品| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品人妻蜜桃| 精品高清国产在线一区| 最近在线观看免费完整版| 国产蜜桃级精品一区二区三区| 亚洲国产毛片av蜜桃av| 此物有八面人人有两片| 韩国精品一区二区三区| 国产精品久久久人人做人人爽| 90打野战视频偷拍视频| 久久精品国产亚洲av高清一级| 国产成人精品久久二区二区91| 欧美性猛交黑人性爽| 女生性感内裤真人,穿戴方法视频| 久久久国产精品麻豆| 最近最新免费中文字幕在线| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区精品| av片东京热男人的天堂| 在线av久久热| www国产在线视频色| 亚洲人成电影免费在线| 一级作爱视频免费观看| 欧美色视频一区免费| 国产成人啪精品午夜网站| 窝窝影院91人妻| 看黄色毛片网站| 中文字幕久久专区| 99久久99久久久精品蜜桃| 亚洲一区中文字幕在线| 黑人巨大精品欧美一区二区mp4| 亚洲国产欧美日韩在线播放| 亚洲国产精品999在线| 亚洲男人天堂网一区| 听说在线观看完整版免费高清| 久久九九热精品免费| 亚洲成国产人片在线观看| 午夜成年电影在线免费观看| 免费在线观看日本一区| 精品久久久久久久人妻蜜臀av| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一区二区三区色噜噜| 欧美av亚洲av综合av国产av| 国产一区二区在线av高清观看| 亚洲九九香蕉| 欧美人与性动交α欧美精品济南到| 国产成人一区二区三区免费视频网站| 午夜日韩欧美国产| av中文乱码字幕在线| 叶爱在线成人免费视频播放| √禁漫天堂资源中文www| 亚洲午夜精品一区,二区,三区| 亚洲精品久久成人aⅴ小说| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美精品综合久久99| 久久热在线av| 老司机午夜福利在线观看视频| 亚洲人成伊人成综合网2020| 久久草成人影院| 日日爽夜夜爽网站| 一本综合久久免费| 亚洲色图av天堂| 国产亚洲av高清不卡| 18禁观看日本| 91成人精品电影| 久久国产精品男人的天堂亚洲| 亚洲激情在线av| 最近最新中文字幕大全免费视频| 禁无遮挡网站| www.精华液| 欧美激情极品国产一区二区三区| 男女下面进入的视频免费午夜 | 亚洲国产看品久久| 在线天堂中文资源库| 男女视频在线观看网站免费 | 亚洲人成伊人成综合网2020| 久久国产精品人妻蜜桃| 亚洲一区中文字幕在线| 国产av在哪里看| 国产欧美日韩精品亚洲av| 麻豆av在线久日| 欧美一级毛片孕妇| 麻豆一二三区av精品| 欧美成人午夜精品| 黄色视频不卡| 99久久精品国产亚洲精品| 一本大道久久a久久精品| 午夜a级毛片| 一边摸一边抽搐一进一小说| 一区二区三区国产精品乱码| 在线观看一区二区三区| 亚洲成av人片免费观看| 亚洲av成人一区二区三| 中文字幕人成人乱码亚洲影| 久久精品91无色码中文字幕| 啦啦啦韩国在线观看视频| 国产三级在线视频| 欧美在线一区亚洲| 精品第一国产精品| av天堂在线播放| 51午夜福利影视在线观看| 伦理电影免费视频| 91字幕亚洲| 制服丝袜大香蕉在线| 欧美国产日韩亚洲一区| 老汉色∧v一级毛片| 在线天堂中文资源库| 亚洲免费av在线视频| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看影片大全网站| 一级a爱片免费观看的视频| 亚洲中文av在线| 午夜福利在线观看吧| 在线看三级毛片| 国产精品久久电影中文字幕| 国产区一区二久久| 午夜成年电影在线免费观看| 久久久久久久久中文| 欧美三级亚洲精品| 伊人久久大香线蕉亚洲五| 99精品欧美一区二区三区四区| 欧美黑人巨大hd| 午夜福利成人在线免费观看| 久久精品亚洲精品国产色婷小说| 伊人久久大香线蕉亚洲五| 天堂√8在线中文| 香蕉国产在线看| 亚洲人成网站高清观看| 又紧又爽又黄一区二区| 日韩 欧美 亚洲 中文字幕| 亚洲欧美一区二区三区黑人| 亚洲一区高清亚洲精品| 精品卡一卡二卡四卡免费| 亚洲 国产 在线| 亚洲精品粉嫩美女一区| 99riav亚洲国产免费| 久久 成人 亚洲| 国产成人系列免费观看| 桃红色精品国产亚洲av| 9191精品国产免费久久| 在线永久观看黄色视频| 非洲黑人性xxxx精品又粗又长| 色老头精品视频在线观看| 亚洲男人天堂网一区| 欧美色欧美亚洲另类二区| 白带黄色成豆腐渣| 啦啦啦 在线观看视频| 国产成人欧美在线观看| 又黄又爽又免费观看的视频| 妹子高潮喷水视频| 国产精品美女特级片免费视频播放器 | 两个人视频免费观看高清| 国产成人av激情在线播放| 99国产精品99久久久久| 亚洲va日本ⅴa欧美va伊人久久| 大型黄色视频在线免费观看| 国产主播在线观看一区二区| 十八禁网站免费在线| 欧美成人性av电影在线观看| 在线观看日韩欧美| 国产日本99.免费观看| 麻豆一二三区av精品| 久久久久久九九精品二区国产 | 人成视频在线观看免费观看| 母亲3免费完整高清在线观看| 人成视频在线观看免费观看| 日韩一卡2卡3卡4卡2021年| 久久国产精品人妻蜜桃| 老司机在亚洲福利影院| 久久精品人妻少妇| 欧美在线黄色| 久久香蕉国产精品| 亚洲精品久久国产高清桃花| 欧美成人免费av一区二区三区| 夜夜躁狠狠躁天天躁| 亚洲最大成人中文| 精华霜和精华液先用哪个| 国产午夜精品久久久久久| 12—13女人毛片做爰片一| 国产精品亚洲美女久久久| 2021天堂中文幕一二区在线观 | 黄色视频不卡| 午夜福利视频1000在线观看| 欧美一级毛片孕妇| 女性被躁到高潮视频| 国产又爽黄色视频| 两个人视频免费观看高清| 精品久久久久久成人av| 777久久人妻少妇嫩草av网站| 久久精品国产亚洲av香蕉五月| 一级片免费观看大全| 亚洲人成网站高清观看| 久久久久久免费高清国产稀缺| 19禁男女啪啪无遮挡网站| 国产日本99.免费观看| 日本熟妇午夜| 国产精品免费一区二区三区在线| 一级作爱视频免费观看| 真人做人爱边吃奶动态| 国产爱豆传媒在线观看 | 色播亚洲综合网| 伦理电影免费视频| 99久久久亚洲精品蜜臀av| 久久久久久大精品| 欧美另类亚洲清纯唯美| 在线观看66精品国产| 亚洲熟妇熟女久久| 桃色一区二区三区在线观看| 精品不卡国产一区二区三区| 亚洲精品粉嫩美女一区| 色av中文字幕| 久久精品91蜜桃| 国产精品久久久久久精品电影 | 在线观看66精品国产| 国产三级黄色录像| 成人国语在线视频| 亚洲精品一卡2卡三卡4卡5卡| 黄片小视频在线播放| 日韩有码中文字幕| 亚洲国产日韩欧美精品在线观看 | 丝袜美腿诱惑在线| 精品久久蜜臀av无| 麻豆成人av在线观看| 男女床上黄色一级片免费看| 国产日本99.免费观看| 激情在线观看视频在线高清| 亚洲国产毛片av蜜桃av| 亚洲精华国产精华精| 一级毛片精品| 波多野结衣高清无吗| av在线天堂中文字幕| 亚洲第一电影网av| 国产99白浆流出| 黄色视频,在线免费观看| 国产亚洲欧美精品永久| 亚洲三区欧美一区| 日本五十路高清| 18禁裸乳无遮挡免费网站照片 | 久久久久亚洲av毛片大全| 免费看美女性在线毛片视频| √禁漫天堂资源中文www| 国产99白浆流出| 日韩欧美免费精品| 十分钟在线观看高清视频www| 日韩精品中文字幕看吧| 亚洲熟妇中文字幕五十中出| 在线av久久热| 国产99白浆流出| 黄频高清免费视频| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| or卡值多少钱| 精品日产1卡2卡| 曰老女人黄片| 日本精品一区二区三区蜜桃| 99久久国产精品久久久| 一本综合久久免费| 欧美午夜高清在线| 一级作爱视频免费观看| 成人永久免费在线观看视频| 日韩精品免费视频一区二区三区| 亚洲精品久久国产高清桃花| 男男h啪啪无遮挡| 国产不卡一卡二| 给我免费播放毛片高清在线观看| 韩国av一区二区三区四区| 午夜福利一区二区在线看| 午夜精品久久久久久毛片777| 好看av亚洲va欧美ⅴa在| 久久99热这里只有精品18| 免费在线观看黄色视频的| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久精品电影 | 巨乳人妻的诱惑在线观看| 免费在线观看亚洲国产| 日韩精品青青久久久久久| 男人操女人黄网站| 国产一区二区三区视频了| 久久久久国内视频| 一二三四在线观看免费中文在| 亚洲一码二码三码区别大吗| 色婷婷久久久亚洲欧美| 免费观看人在逋| 色播在线永久视频| 90打野战视频偷拍视频| 看黄色毛片网站| 中文字幕人妻丝袜一区二区| 精品久久久久久久久久免费视频| 天堂动漫精品| 日日夜夜操网爽| 美女高潮喷水抽搐中文字幕| 夜夜躁狠狠躁天天躁| 亚洲,欧美精品.| 日本三级黄在线观看| 精品国产一区二区三区四区第35| 最新在线观看一区二区三区| 久久国产乱子伦精品免费另类| 很黄的视频免费| 91字幕亚洲| 亚洲成人久久爱视频| 亚洲精品中文字幕在线视频| 制服诱惑二区| 亚洲成人久久性| 国产色视频综合| 侵犯人妻中文字幕一二三四区| 两个人视频免费观看高清| 欧美性长视频在线观看| 欧美日韩乱码在线| 中文字幕精品免费在线观看视频| 欧美成人性av电影在线观看| 手机成人av网站| 成人午夜高清在线视频 | 一本久久中文字幕| 久久精品91蜜桃| 91国产中文字幕| 黑人巨大精品欧美一区二区mp4| 日韩欧美免费精品| 精品久久久久久成人av| 色哟哟哟哟哟哟| 波多野结衣高清作品| 国产v大片淫在线免费观看| 亚洲精品在线美女| 精品久久久久久久毛片微露脸| 精品熟女少妇八av免费久了| 亚洲一码二码三码区别大吗| 婷婷精品国产亚洲av| 午夜免费观看网址| www国产在线视频色| ponron亚洲| 亚洲七黄色美女视频| 亚洲人成网站高清观看| 少妇粗大呻吟视频| av超薄肉色丝袜交足视频| 欧美日本视频| 日韩三级视频一区二区三区| 中文字幕最新亚洲高清| 国产在线观看jvid| 久久这里只有精品19| 精品不卡国产一区二区三区| 成在线人永久免费视频| 亚洲在线自拍视频| av天堂在线播放| 99riav亚洲国产免费| 亚洲国产精品合色在线| 露出奶头的视频| 啦啦啦观看免费观看视频高清| 精华霜和精华液先用哪个| 1024视频免费在线观看| 国产99久久九九免费精品| 国产精品久久久人人做人人爽| 首页视频小说图片口味搜索| 亚洲一区二区三区色噜噜| а√天堂www在线а√下载| 亚洲欧美日韩高清在线视频| 久久婷婷人人爽人人干人人爱| 国产视频内射| 每晚都被弄得嗷嗷叫到高潮| 日本a在线网址| 怎么达到女性高潮| 精品国产一区二区三区四区第35| 后天国语完整版免费观看| 在线十欧美十亚洲十日本专区| www.999成人在线观看| 美女扒开内裤让男人捅视频| 午夜福利在线在线| 免费在线观看黄色视频的| 欧美三级亚洲精品| 亚洲国产欧美一区二区综合| 欧美激情久久久久久爽电影| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av中文字字幕乱码综合 | 国产国语露脸激情在线看| 国产一区二区三区视频了| 一边摸一边抽搐一进一小说| 国产亚洲精品一区二区www| 国产三级黄色录像| 亚洲欧美日韩高清在线视频| 精品乱码久久久久久99久播| 成人18禁在线播放| avwww免费| 欧美成人免费av一区二区三区| 国产三级在线视频| 无人区码免费观看不卡| 一边摸一边做爽爽视频免费| 啪啪无遮挡十八禁网站| 亚洲国产精品合色在线| 国产精品自产拍在线观看55亚洲| 麻豆一二三区av精品| 国产亚洲欧美在线一区二区| 久久国产精品人妻蜜桃| 日韩欧美三级三区| 亚洲天堂国产精品一区在线| 国产欧美日韩一区二区三| 国产久久久一区二区三区| 国产精品久久久av美女十八| 国产极品粉嫩免费观看在线| 999久久久精品免费观看国产| 久久精品91无色码中文字幕| 真人做人爱边吃奶动态| 久久人妻av系列| 亚洲国产精品合色在线| 哪里可以看免费的av片| 熟女少妇亚洲综合色aaa.| 国产亚洲精品久久久久久毛片| 久久香蕉国产精品| 亚洲第一电影网av| 欧美又色又爽又黄视频| 亚洲av电影在线进入| 九色国产91popny在线| 午夜福利欧美成人| 欧美日韩一级在线毛片| 不卡av一区二区三区| 亚洲av日韩精品久久久久久密| 日本一本二区三区精品| 一级a爱片免费观看的视频| 无人区码免费观看不卡| 久久久久久免费高清国产稀缺| or卡值多少钱| 啦啦啦观看免费观看视频高清| 国产高清激情床上av| 首页视频小说图片口味搜索| 日韩欧美一区二区三区在线观看| 日韩大尺度精品在线看网址| 国产精品精品国产色婷婷| 手机成人av网站| 成人手机av| 欧美+亚洲+日韩+国产| 婷婷丁香在线五月| 国产精品二区激情视频| 亚洲午夜理论影院| 欧美黑人巨大hd| 国产成人欧美| 久久精品国产99精品国产亚洲性色| 男人舔女人下体高潮全视频| 男女那种视频在线观看| 欧美性猛交╳xxx乱大交人| 国产黄片美女视频| 制服诱惑二区| 婷婷精品国产亚洲av在线| 国产激情久久老熟女| 十八禁网站免费在线| 搡老熟女国产l中国老女人| av超薄肉色丝袜交足视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一欧美日韩一区二区三区| 99热只有精品国产| 国产亚洲精品av在线| 免费搜索国产男女视频| 99久久久亚洲精品蜜臀av| 在线av久久热| 日韩欧美三级三区| 女人爽到高潮嗷嗷叫在线视频| 男女视频在线观看网站免费 | 免费在线观看完整版高清| 啦啦啦韩国在线观看视频| 国产精品日韩av在线免费观看| 日日夜夜操网爽| 成人免费观看视频高清| 中文字幕高清在线视频| 精品久久久久久久毛片微露脸| 欧美日本视频| 免费看美女性在线毛片视频| 国产熟女xx| 国产精品久久久久久精品电影 | 久久久久久久精品吃奶| 白带黄色成豆腐渣| 一边摸一边抽搐一进一小说| 又紧又爽又黄一区二区| 中国美女看黄片| 国产精品亚洲一级av第二区| 久久天躁狠狠躁夜夜2o2o| 成年版毛片免费区| 国产精品久久视频播放| 久久久久久免费高清国产稀缺| 欧美日韩一级在线毛片| 国产男靠女视频免费网站| 久久精品国产99精品国产亚洲性色| 国产精品香港三级国产av潘金莲| 国产久久久一区二区三区| 免费在线观看完整版高清| 国产激情欧美一区二区| 免费高清在线观看日韩| 搡老熟女国产l中国老女人| 国产一区二区三区在线臀色熟女| 国产1区2区3区精品| 99精品欧美一区二区三区四区| 淫妇啪啪啪对白视频| 十八禁网站免费在线| 日日摸夜夜添夜夜添小说| 国产精品二区激情视频| 成人欧美大片| a级毛片a级免费在线| 在线国产一区二区在线| 亚洲精品国产精品久久久不卡| 亚洲av成人一区二区三| 国产伦人伦偷精品视频| av免费在线观看网站| 高清毛片免费观看视频网站| 99久久久亚洲精品蜜臀av| 日韩一卡2卡3卡4卡2021年| 97人妻精品一区二区三区麻豆 | 又黄又爽又免费观看的视频| 99久久无色码亚洲精品果冻| 又黄又爽又免费观看的视频| 两个人视频免费观看高清| 欧美乱色亚洲激情| 亚洲国产精品成人综合色| 不卡av一区二区三区| 免费人成视频x8x8入口观看| 黄色毛片三级朝国网站| 婷婷六月久久综合丁香| 国产在线观看jvid| 无人区码免费观看不卡| 久久久国产欧美日韩av| 人妻久久中文字幕网| 色综合亚洲欧美另类图片| 精品久久久久久久久久免费视频| 国产成年人精品一区二区| 国产精品野战在线观看| 亚洲精品国产精品久久久不卡| 亚洲中文日韩欧美视频| 欧美激情高清一区二区三区| 欧美日本视频| 亚洲性夜色夜夜综合| 日本熟妇午夜| 亚洲精华国产精华精| 亚洲人成网站在线播放欧美日韩| 日韩大码丰满熟妇| 亚洲人成网站在线播放欧美日韩| 香蕉国产在线看| 亚洲精品在线美女| 中文字幕人妻熟女乱码| 欧美+亚洲+日韩+国产| 97超级碰碰碰精品色视频在线观看| 最好的美女福利视频网| 久久久久久亚洲精品国产蜜桃av| 无遮挡黄片免费观看| 亚洲精品国产一区二区精华液| 婷婷六月久久综合丁香| 国产又黄又爽又无遮挡在线| 亚洲熟妇中文字幕五十中出| 国产成人精品久久二区二区免费| 国产精品av久久久久免费| 亚洲国产精品合色在线| 18禁裸乳无遮挡免费网站照片 | www.自偷自拍.com| 国产单亲对白刺激| 久久99热这里只有精品18| 50天的宝宝边吃奶边哭怎么回事| 亚洲无线在线观看| 女性被躁到高潮视频| 高清毛片免费观看视频网站| 国产爱豆传媒在线观看 | 亚洲第一电影网av| 欧美黑人欧美精品刺激| 男男h啪啪无遮挡| 狠狠狠狠99中文字幕| 国产视频一区二区在线看| 99精品久久久久人妻精品| 男女午夜视频在线观看| 日本在线视频免费播放| 19禁男女啪啪无遮挡网站| 又黄又粗又硬又大视频| www.www免费av| 亚洲av成人不卡在线观看播放网| 国产v大片淫在线免费观看| 日韩欧美三级三区| 亚洲欧美一区二区三区黑人| 国产精品99久久99久久久不卡| 大型av网站在线播放| 国产午夜福利久久久久久| av片东京热男人的天堂| 久久精品aⅴ一区二区三区四区|