• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ACTIVE VIBRATION CONTROL OF TWO-BEAM STRUCTURES

    2013-12-02 01:39:36ChenTao陳濤WangLigang王立剛FengGuofeng馮國(guó)鋒
    關(guān)鍵詞:陳濤

    Chen Tao(陳濤),Wang Ligang(王立剛),F(xiàn)eng Guofeng(馮國(guó)鋒)

    (College of Science,Harbin Engineering University,Harbin,150001,P.R.China)

    INTRODUCTION

    Two-beam structures are commonly used as elements in the construction of many practical engineering structures such as spacecraft and large space structures.All these structures have flexible extensions which are made as light and slender as possible.Such slender elements lack the necessary damping properties of being able to function effectively under dynamic loads.In order to damp out excessive vibrations and improve the performance of structures,conventional approaches of additional passive damping treatments are not often implemented on these systems because of weights or other constraints.Therefore there has been an increasing interest in active vibration control[1-4].In active vibration control,desirable performance characteristics are achieved through the application of control forces to a structure.

    Vibrations can be described in a number of ways,with the most common descriptions in terms of modes and wave motion.In modal active vibration control,the aim is to control the characteristics of the modes of vibration,i.e.,their damping factors,natural frequencies or mode shapes.Modal control aims to control the global behavior of the structure,whereas wave control aims to control the flow of vibration energy through the structure.Wave designs are based on the local properties of the structure,and are inherently much less sensitive to system properties and more robust than global models of structures[5-6].In a continuous structure,vibrations can alternatively be regarded as the superposition of waves traveling through the structure.These waves are reflected and transmitted at the structural discontinuities.Active wave control aims to control the distribution of energy in the structure by either reducing the transmission of waves from one part of the structure to another or absorbing the energy carried by the waves.Here the disturbance is detected,and a control force is used somewhere upstream or downstream to absorb the energy associated with the propagating wave.

    Physical modes of flexural wave propagation in beam or plate are developed in order to implement wave control.Gardonio and Elliott controlled a one-dimensional structure with a scattering termination by means of active control of waves[7].Brennan described an analytical and experimental investigation into the use of a tunable vibration neutralizer to control the transmission of flexural propagating waves on an infinite beam[8].Mei,et al studied hybrid wave/mode active vibration control of an Euler-Bernoulli beam[5].Carvalho and Zindeluk modeled and tackled active control of waves in a Timoshenko beam[9].Halkyard and Mace analyzed adaptive control of flexural vibration in a beam using wave amplitudes[10].EL-Khatib,et al concerned with the control of flexural waves in a beam using a tuned vibration absorber[11].Hu,et al studied vibration control of Timoshenko beam based on hybrid wave/mode method,and compared wave control with modal control[12].Chen,et al investigated wave control of a cantilevered Mindlintype plate[6].Some authors,like Mace and Mead,dedicated their efforts to the wave reflection mechanism[13-14].

    In previous investigations,wave control only has been used to control the wave motion in a beam or plate[6-12].Less frequently,the wave control of two-beam structures has been investigated.Although Svensson,et al theoretically studied the wave scattering and the active modification of wave scattering at structural junctions[15],wave control has not been investigated.In the present work,a cantilever structure is modeled as two-beam structures. Wave-control approach is applied to the structures.In the twobeam structures,the incident propagating wave is reflected and transmitted at the beam junction and control location. Proportional-plus-derivative(PD)feedback wave control is implemented.

    This paper presents a theoretical investigation using active control to attenuate the responses associated with two-beam structures.Based on the substructure synthesis method and Hamilton theory,motion equations of the structures are given in terms of the modal coordinates.And wave-control approach is used to absorb vibration energy.In particular,if the beam material is the same on both sides of the beam junction,wave reflection and transmission coefficients at control location are determined by the thickness ratio of the structures.At last,numerical examples are given,and numerical results show the influences of the thickness ratio of two-beam structures on wave control.

    1 MOTION EQUATIONS OF COUPLED BEAM STRUCTURE

    The general form of the structures considered in this paper is illustrated in Fig.1.Two uniform beams are joined rigidly along a common edge.U-sing the substructure synthesis method,a cantilever beam and a free-free beam are coupled,as shown in Fig.2.

    Fig.1 Cantilever structure of coupled beam

    Fig.2 Cantilever and free-free beams

    In the absence of damping,the motion equation of single uniform Euler-Bernoulli beam with constant cross-section may be written in the form

    where w(x1,t)and w(x2,t)are the transversal deflection of the first beam and the second beam,respectively,f(x1,t)and f(x2,t)the external disturbance of the first beam and the second beam,respectively,Edenotes the Young′s modulus,Ithe area moment of inertia,ρthe density,Athe cross-sectional area.

    The bending moment Mand shear force Q transmitted through an arbitrary section of the beam may be expressed as

    Using assumed mode method,the displacement of the beam 1and beam 2can be discretized as

    whereΦ (x1)andΨ (x2)represent the mode functions of transverse vibrations of beam 1and beam 2,respectively,q(t)and p(t)the modal coordinates of transverse vibrations of beam 1and beam 2,respectively.The quantities are given by

    The kinetic energy of the beam 1can be expressed as

    The potential energy of the beam 1can be written as

    The kinetic energy of the beam 2is given by

    the mass per unit length of the beam 2.Here,the mode shapes are assumed to be mass-normalized such that

    The potential energy of the beam 2is expressed as

    Therefore,the kinetic energy of two-beam structures can be written as

    The potential energy of the structures is expressed as

    Substructure synthesis is a method whereby a structure is regarded as an assemblage of substructures,each of which is modeled separately and made to act as a single structure by imposing certain geometric compatibility at boundaries between two adjacent substructures[16].Therefore,using the substructure synthesis method,the coupled structure is regarded as a cantilever beam and a free-free beam,and applying continuity and equilibrium of the beam junction,dependent modal coordinates [qTpT]of substructures can be transformed the independent modal coordinates of the coupled structure.

    Since the displacement and slope are continuous,furthermore,by considering the equilibrium of the beam junction,constraint equations can be written as

    From Eqs.(14-15),the following can be obtained.

    where Iis the identical matrix,matrix Gcan be determined by Eqs.(14-15),and z=[z1z2…zt]Trepresents modal coordinates of transverse vibrations of two-beam structures.

    Substituting Eq.(16)into Eqs.(12-13),we have

    According to the Clapeyron Principle,the work done by the external load can be expressed as

    Obviously,the natural frequencies of the structures can be determined by Mand K.

    2 FEEDBACK WAVE CONTROL

    Vibrations can be regarded as the superstition of the waves traveling through the structure.In this paper,collocated force/sensor negative feedback control is assumed to be applied.In the frequency domain,the wave-control force is given by

    where Hw(ω)is frequency-dependent and complex[5].Note that the amplitudes of any incident near-field waves are neglected.

    A propagating wave is incident on the discontinuity and gives rise to reflected and transmitted waves.In order to determin Hw(ω),the wave reflection and transmission coefficients at point discontinuities are needed to be calculated.

    2.1 Wave transmission and reflection at beam junction

    If a concentrated harmonic load is applied,at any point,to the beam,four free flexural waves will emanate from this point.

    Let two beams differed by wave-number and bending stiffness be joined at x3=0.A positivepropagating wave is incident on the beam junction and gives rise to reflected and transmitted propagating and near-field waves,as shown in Fig.3.

    Fig.3 Reflection and transmission of waves at beam junction

    The displacement of the beam w- (x3)and w+(x3)in the regions x3≤0and x3≥0are given by

    where the time dependence exp(iωt)has been suppressed,a+denotes the wave amplitude of incident propagating waves,a-the wave amplitude of reflected propagating waves,a-Nthe wave am-plitude of reflected near-field waves,b+the wave amplitude of transmitted propagating waves,and b+Nthe wave amplitude of transmitted near-field waves.The subscripts 1and 2refer to the incident and transmitted sides of the junction,respectively.

    Since the displacement,slope,bending moment and shear force are all continuous at the junction[13],we have

    where sign″-″and″+″denote the corresponding mechanical quantity in the regions x3≤0and x3≥0,respectively.

    Substituting Eq.(22)into Eq.(23),the reflection and transmission coefficients can be expressed as

    whereα=k2/k1andβ=(EIK2)2/(EIK)1represent the ratios of wave-number and bending wave impedance,t1and t2the transmission coefficients,and r1and r2the reflection coefficients.

    If the material is the same on both sides of the beam junction,we have

    whereσ=h2/h1denotes the thickness ratio of two beams.

    For an incident propagating wave,the power carried in a propagating wave is proportional to the square of wave amplitude[6,13].The reflection efficiency,the ratio of reflected to incident power is given by Er(σ)=|r1|2,and the power transmitted is given by Et=1-Er(σ)=|t1|2σ3/2.Therefore the power reflected and transmitted per unit incident power is Ep(σ)=|r1|2+|t1|2σ3/2.Transmitted energy depends onσ.

    2.2 Wave transmission and reflection at control location

    The power is mostly transmitted at the beam junction whenσis close to 1.The power is mostly reflected at the beam junction whenσapproaches 0.Therefore wave control is used somewhere downstream to absorb energy associated with the transmitted propagating wave of the beam junction whenσis close to 1as shown in Fig.4(a).Whenσapproaches 0,wave control is used somewhere upstream to absorb energy associated with the transmitted propagating wave of beam junction as shown in Fig.4(b).Transmitted (or reflected)propagating wave of the beam junction is incident on the control location and gives rise to reflected and transmitted propagating and nearfield waves.

    Fig.4 Schematic diagram of feedback control

    At first,consider the first case whenσis close to 1as shown in Fig.4(a).Wave control is applied at position x4=0.The displacement of the beamw-(x4)and w+(x4)in the regions x4≤0and x4≥0are given by

    where the time dependence exp(iωt)has been suppressed.

    For the same reason described in Section 2.1,the reflection and transmission coefficients at the control location can be expressed as

    where t3and t4are the transmission coefficients,and r3and r4the reflection coefficients.

    In this paper,the controller is designed to absorb vibrational energy by adding optimal damping to the structure.SupposingH(ω)=(1+i)ωg,the power carried in a propagating wave is proportional to the square of the wave amplitude.The performance index of optimal control is to make the dissipated energy at control location the maximum.In other words,the optimal control gain gcan be found by assuming that a wave is incident on onside of the control location and then by designing the control gain so as to maximize the absorb incoming energy,namely to minimize|r3|2|t1|2σ3/2+|t3|2|t1|2σ3/2.

    Therefore the power reflected and transmitted at control location is given by

    Then the frequency response of the optimal controller is given by

    where g=2/ω.

    Next,consider the second case when the power is mostly reflected at the beam junction (σ approaches 0)as shown in Fig.4(b).

    For the same reason as stated above,the reflection and transmission coefficients at the control location can be expressed as

    where t3and t4are the transmission coefficients,r3and r4the reflection coefficients.

    2.3 Controller design

    The optimal controller is noncausal[5-6].Hence,a real-time implementation must be some approximations to this ideal.PD feedback control is implemented,with the controller tuned so that it is equal to the optimal controller at some specific frequenciesωd.The controller then has the frequency response

    where c1=ωdgand c2=g.

    If the force is applied at a point xi=xw(i=1,2),then the wave-control force is fw=(w,xi,t)δ(xitxw).For tuned PD control,substituting Eq.(31)to Eq.(20),using Laplace transform,this becomes

    For collocated wave control,and with the control force approximated by Eq.(32),the equations of motion can thus be written in matrix form as

    3 NUMERICAL EXAMPLES

    In this section,some numerical results are presented.In what follows,several dimensionless parameters are:L=1,the first natural frequency of the first beamω1=1,the thickness ratio of two beamsσ=0.90,0.21and 0.05,and the corresponding non-dimensional natural frequencies ωi(i=1,2,…,9)are given in Tables 1-3.

    Table 1 First nine nondimensional natural frequencies of system (σ=0.90)

    Table 2 First nine nondimensional natural frequencies of system (σ=0.21)

    Table 3 First nine nondimensional natural frequencies of system (σ=0.05)

    A disturbance force is applied at x1=0.10L.Simulation results are shown in Figs.5-14.In Figs.6,14,the wave-control force is applied at x2=Lwhenσ=0.90.In Fig.8,the wave-control force is applied at x1=0.15L whenσ=0.05.In Fig.10,the wave-control force is applied at x2=L whenσ=0.21 (reflected energy at the beam junction is almost equal to transmitted energy of the beam junction).In Fig.11,the wave-control force is applied at x1=0.15L.In Fig.12,two wave controllers are applied at x1=0.15L and x2=L.Numerical results show the response at x2=0.75L per unit disturbance force. In Figs.5-12,the value of ordinate is prescribed as common logarithm of the actual deflection.

    Fig.5 Frequency response before wave control(σ=0.90)

    Fig.6 Frequency response after wave control(σ=0.90,x2=L)

    The positions of these points are chosen so as to avoid the nodes of the modes.The controlled and uncontrolled frequency responses are compared.In the approximation that tuned PD control,the controller is tuned to be optimal atωd=10.

    Figs.5,6show that the frequency responses before and after wave control whenσ=0.90.The power is mostly transmitted at the beam junction whenσis close to 1,so wave controller is applied at the second beam for good performance.Without control,sharp resonances can be observed.While after wave control,controllers add damping to the structure.Energy of structure is absorbed.Sharp resonances are weakened.

    Figs.7,8show that the frequency responses before and after wave control whenσ=0.05.The power is mostly reflected at the beam junction whenσapproaches 0.Therefore,wave control is applied at the first beam.In Figs.6,8,relatively poor performance can be seen.The degradation of the performance is due to the fact that the point of application of the wave controller lies to the nodes of the modes.Such effects depend on the specific form and location of the wave controller,the conclusion is same as Refs.[5,12].They can be minimized by the suitable application of two or more wave controllers.

    Fig.7 Frequency response before wave control(σ=0.05)

    Fig.8 Frequency response after wave control(σ=0.05,x1=0.15L)

    Fig.9 Frequency response before wave control(σ=0.21)

    Fig.10 Frequency response after wave control(σ=0.21,x2=L)

    Fig.11 Frequency response after wave control(σ=0.21,x1=0.15L)

    Figs.9-12show that the frequency respon-ses before and after wave control whenσ=0.21.Fig.10shows wave controller absorbs vibrational energy,especially at lower frequencies.Fig.11 shows wave controller absorbs vibrational energy,especially at higher frequencies.In Figs.10,11,relatively poor performance can be seen when wave controller is only applied at the downstream of the beam junction or upstream of the beam junction,whereas Fig.12gives better performance.In fact,reflected energy at the beam junc-tion is almost equal to transmitted energy at the beam junction whenσapproaches 0.21,so wave controllers are ought to be applied at not only the first beam but also the second beam for better performance.One controller absorbs reflected energy,and the other absorbs transmitted energy.Figs.13,14show that the time responses before and after wave control whenσ=0.90.

    Fig.12 Frequency response after wave control(σ=0.21,x1=0.15L,x2=L)

    Fig.13 Time response before wave control(σ=0.90)

    Fig.14 Time response after wave control(σ=0.90)

    4 CONCLUSION

    This paper presents the theoretical analysis and numerical results of wave control of twobeam structures.Wave control is used to control the wave motion of the structures.The incident propagating wave is reflected and transmitted at beam junction,and wave reflection and transmission coefficients at beam junction are also be decided by the thickness ratio of two coupled beams.The power is mostly transmitted at the beam junction when the thickness ratioσis close to 1.Whenσis close to 0,the power is mostly reflected at the beam junction.Therefore wave control is used somewhere downstream to absorb energy associated with the transmitted propagating wave of the beam junction whenσis close to 1.Whenσis close to 0,wave control is used somewhere upstream to absorb energy associated with the transmitted propagating wave of the beam junction.In other circumstances,there is not only reflected energy at the beam junction but also transmitted energy.Now,better performance can be achieved by applying wave controllers to two sides of beam junction.One controller absorbs reflected energy,and the other absorbs transmitted energy.

    Control gain is designed in frequency domain.PD control is adopted.In the time domain,this corresponds to a tuned spring-damper combination.The results show that the wave control is efficient for two coupled beams.Similarly,the wave controller is designed for two coupled plates lying in the x-y plane and its efficiency is proved.

    [1] Ma Xingrui,Gou Xingyu,Li Tieshou,et al.Development generalization of spacecraft dynamics[J].Journal of Astronautics,2000,21(3):1-5.(in Chinese)

    [2] Wang Liang,Chen Huaihai,He xudong,et al.Active vibration control of axially moving cantilever beam by magnetic force[J].Journal of Nanjing University of Aeronautics & Astronautics,2010,42(5):568-573.(in Chinese)

    [3] Miller D,Hall S,F(xiàn)lotow A von.Optimal control of power flow at structural junctions[J].Journal of Sound and Vibration,1990,140(3):475-497.

    [4] Jha R,Bailey A,Ahmadi G.Combined active and passive control of space structure vibrations during launch[C]//44th AIAA/ASME/AHS Structures,Structural Dynamics,and Materials Conference.Norfolk,Virginia,USA:AIAA,2003.

    [5] Mei C,Mace B R,Jones R W.Hybrid wave/mode active vibration control[J].Journal of Sound and Vibration,2001,247(5):765-784.

    [6] Chen T,Hu C,Huang W H.Vibration control of cantilevered Mindlin-type plates[J].Journal of Sound and Vibration,2009,320(1/2):221-234.

    [7] Gardonio P,Elliott S J.Active control of waves on a one-dimensional structure with a scattering termination[J].Journal of Sound and Vibration,1996,192(3):701-730.

    [8] Brennan M J.Control of flexural waves on a beam using a tunable vibration neutralizer[J].Journal of Sound and Vibration,1998,222(3):389-407.

    [9] Carvalho M O M,Zindeluk M.Active control of waves in a Timoshenko beam[J].International Journal of Solids and Structures,2001,38(10-13):1749-1764.

    [10]Halkyard C R,Mace B R.Feedforward adaptive control of flexural vibration in a beam using wave amplitudes[J].Journal of Sound and Vibration,2002,254(1):117-141.

    [11]EL-Khatib H M,Mace B R,Brennan M J.Suppression of bending waves in a beam using a tuned vibration absorber[J].Journal of Sound and Vibration,2005,288(4/5):1157-1175.

    [12]Hu Chao,Chen Tao,Huang Wenhu.Active vibration control of Timoshenko beam based on hybrid wave/mode method[J].Acta Aeronautica et Astronautica Sinica,2007,28(2):301-308.(in Chinese)

    [13]Mace B R.Wave reflection and transmission in beams[J].Journal of Sound and Vibration,1984,97(2):237-246.

    [14]Mead D J.Waves and modes in finite beams:Application of the phase-closure principle[J].Journal of Sound and Vibration,1994,71(5):695-702.

    [15]Svensson J L,Andersson P B U,Kropp W.On the design of structure junctions for the purpose of hybrid passive-active vibration control[J].Journal of Sound and Vibration,2010,329(9):1274-1288.

    [16]Meirovitch L.Dynamics and control of structures[M].New York:Wiley,1990.

    猜你喜歡
    陳濤
    An extended social force model on unidirectional flow considering psychological and behavioral impacts of hazard source
    神奇符號(hào) ——姓與名
    Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
    助人為樂的護(hù)士
    封二 春姑姑走啦
    猴爸爸的百寶箱
    陳濤吉祥物設(shè)計(jì)作品選登
    Interaction induced non-reciprocal three-level quantum transport?
    Adaptive Human Tracking Across Non-overlapping Cameras in Depression Angles
    Experimental validation method of elastic thin rod model for simulating the motional cable harness
    久久久国产欧美日韩av| 色综合欧美亚洲国产小说| 91av网站免费观看| 欧美老熟妇乱子伦牲交| 老司机靠b影院| 不卡av一区二区三区| 夜夜骑夜夜射夜夜干| 桃花免费在线播放| videosex国产| 狂野欧美激情性bbbbbb| 午夜久久久在线观看| 狠狠婷婷综合久久久久久88av| www.自偷自拍.com| 搡老熟女国产l中国老女人| 亚洲av男天堂| 久久中文字幕一级| 91成人精品电影| 18禁观看日本| 在线观看舔阴道视频| 国产国语露脸激情在线看| 俄罗斯特黄特色一大片| 精品免费久久久久久久清纯 | 男女免费视频国产| 十八禁网站网址无遮挡| 男女无遮挡免费网站观看| 欧美 日韩 精品 国产| 欧美国产精品va在线观看不卡| 在线观看免费高清a一片| 淫妇啪啪啪对白视频 | 欧美人与性动交α欧美软件| 一区二区三区四区激情视频| 欧美另类一区| 18禁裸乳无遮挡动漫免费视频| 国产精品成人在线| 亚洲精品日韩在线中文字幕| 亚洲国产精品一区二区三区在线| 亚洲中文av在线| 亚洲,欧美精品.| 久久精品aⅴ一区二区三区四区| 涩涩av久久男人的天堂| 亚洲精品国产av蜜桃| 啦啦啦啦在线视频资源| 老司机在亚洲福利影院| 人妻人人澡人人爽人人| 亚洲欧美日韩高清在线视频 | 久久久精品国产亚洲av高清涩受| 亚洲国产av影院在线观看| 成在线人永久免费视频| 国产欧美亚洲国产| 国产精品国产av在线观看| 国产精品国产av在线观看| 国产精品久久久人人做人人爽| 在线观看免费视频网站a站| 搡老岳熟女国产| 日韩欧美一区视频在线观看| 蜜桃国产av成人99| 99久久人妻综合| 在线观看一区二区三区激情| 动漫黄色视频在线观看| 亚洲五月色婷婷综合| 欧美精品啪啪一区二区三区 | 啦啦啦啦在线视频资源| 成年人午夜在线观看视频| 午夜日韩欧美国产| 成人18禁高潮啪啪吃奶动态图| 大片电影免费在线观看免费| 91国产中文字幕| 黄片小视频在线播放| 久热爱精品视频在线9| 久久国产亚洲av麻豆专区| 久久久久久久久免费视频了| 国产男女内射视频| 日本撒尿小便嘘嘘汇集6| 制服诱惑二区| 亚洲av国产av综合av卡| 亚洲精品久久久久久婷婷小说| 久久久久久久久久久久大奶| 亚洲成av片中文字幕在线观看| 免费在线观看完整版高清| 国产又爽黄色视频| 婷婷成人精品国产| 国产精品1区2区在线观看. | av天堂在线播放| 亚洲国产欧美日韩在线播放| 国产视频一区二区在线看| 欧美 亚洲 国产 日韩一| 99九九在线精品视频| 亚洲 欧美一区二区三区| av天堂久久9| 一级毛片电影观看| 亚洲第一欧美日韩一区二区三区 | 99re6热这里在线精品视频| 国产免费av片在线观看野外av| 天天影视国产精品| 好男人电影高清在线观看| 精品少妇久久久久久888优播| 亚洲精品中文字幕一二三四区 | 亚洲国产精品999| 亚洲视频免费观看视频| 在线观看舔阴道视频| 少妇猛男粗大的猛烈进出视频| 成人国产av品久久久| 99国产综合亚洲精品| videosex国产| 美女高潮到喷水免费观看| 99国产综合亚洲精品| 少妇裸体淫交视频免费看高清 | 久久久久久久精品精品| 久久国产亚洲av麻豆专区| 男男h啪啪无遮挡| 99久久99久久久精品蜜桃| 高清欧美精品videossex| 亚洲自偷自拍图片 自拍| a级毛片黄视频| 国产精品1区2区在线观看. | 国产精品二区激情视频| 日本黄色日本黄色录像| 亚洲精品美女久久av网站| 人人妻人人澡人人爽人人夜夜| 91av网站免费观看| 老鸭窝网址在线观看| 欧美日韩成人在线一区二区| 69精品国产乱码久久久| 国产97色在线日韩免费| 91麻豆av在线| 欧美少妇被猛烈插入视频| 国产高清videossex| 午夜久久久在线观看| 国产精品一区二区在线不卡| 男女高潮啪啪啪动态图| 亚洲精品国产色婷婷电影| 久久久久精品国产欧美久久久 | 一边摸一边抽搐一进一出视频| 水蜜桃什么品种好| 亚洲欧美精品综合一区二区三区| 99热全是精品| 国产成人欧美| 国产精品影院久久| 波多野结衣av一区二区av| 国产亚洲av片在线观看秒播厂| videos熟女内射| 国产一区有黄有色的免费视频| 啦啦啦免费观看视频1| 久久精品aⅴ一区二区三区四区| 久久人妻熟女aⅴ| 精品少妇黑人巨大在线播放| 日韩视频在线欧美| 国产野战对白在线观看| 极品少妇高潮喷水抽搐| 成年av动漫网址| 欧美日韩黄片免| 日韩中文字幕欧美一区二区| 精品福利观看| 五月天丁香电影| 超碰成人久久| 人妻人人澡人人爽人人| 亚洲中文日韩欧美视频| 脱女人内裤的视频| 久久影院123| 午夜久久久在线观看| 精品久久蜜臀av无| 亚洲欧美一区二区三区久久| 免费一级毛片在线播放高清视频 | 狂野欧美激情性bbbbbb| 一区二区三区乱码不卡18| 精品少妇内射三级| 国产精品一区二区免费欧美 | 人人妻,人人澡人人爽秒播| 国产一级毛片在线| 97精品久久久久久久久久精品| 精品福利观看| 午夜福利影视在线免费观看| 天天躁日日躁夜夜躁夜夜| 一区二区三区乱码不卡18| 乱人伦中国视频| 十八禁网站免费在线| 午夜福利在线观看吧| 国产成人免费观看mmmm| 9色porny在线观看| 一区二区三区乱码不卡18| 国产亚洲av高清不卡| 日韩欧美国产一区二区入口| 一区福利在线观看| av有码第一页| 黄频高清免费视频| 黄片大片在线免费观看| 日韩制服骚丝袜av| 国产亚洲午夜精品一区二区久久| 人人妻人人添人人爽欧美一区卜| 久久精品亚洲熟妇少妇任你| 国产男人的电影天堂91| 国产日韩一区二区三区精品不卡| xxxhd国产人妻xxx| 两性午夜刺激爽爽歪歪视频在线观看 | 中国国产av一级| 丝袜美足系列| 一二三四在线观看免费中文在| 99久久人妻综合| av视频免费观看在线观看| 久久久国产精品麻豆| 欧美在线一区亚洲| 在线观看免费午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 黄片播放在线免费| 欧美 亚洲 国产 日韩一| 乱人伦中国视频| 国产在线视频一区二区| a级毛片在线看网站| 狂野欧美激情性xxxx| 高潮久久久久久久久久久不卡| 男人爽女人下面视频在线观看| 久久人人97超碰香蕉20202| 欧美午夜高清在线| 大陆偷拍与自拍| 1024视频免费在线观看| 久久久国产成人免费| 精品久久蜜臀av无| 黑人欧美特级aaaaaa片| 午夜日韩欧美国产| 麻豆乱淫一区二区| 99久久人妻综合| 少妇被粗大的猛进出69影院| 日韩三级视频一区二区三区| 天堂中文最新版在线下载| 国产黄色免费在线视频| 一区二区av电影网| 午夜成年电影在线免费观看| 窝窝影院91人妻| 国产老妇伦熟女老妇高清| 蜜桃国产av成人99| h视频一区二区三区| 黄色视频不卡| 人成视频在线观看免费观看| 欧美日韩精品网址| 亚洲专区国产一区二区| www.自偷自拍.com| 蜜桃在线观看..| 国产一区二区三区在线臀色熟女 | 国产亚洲欧美在线一区二区| 午夜福利一区二区在线看| www.av在线官网国产| 在线看a的网站| 别揉我奶头~嗯~啊~动态视频 | 久久久久久久国产电影| 日韩电影二区| 五月开心婷婷网| 午夜福利在线观看吧| 亚洲伊人久久精品综合| 亚洲av电影在线观看一区二区三区| 精品久久久精品久久久| 在线观看www视频免费| 国产精品麻豆人妻色哟哟久久| 老汉色av国产亚洲站长工具| 大陆偷拍与自拍| 成年人黄色毛片网站| 大片电影免费在线观看免费| 久久国产亚洲av麻豆专区| 亚洲专区国产一区二区| 亚洲成人免费av在线播放| 国产一区二区三区综合在线观看| 亚洲欧美成人综合另类久久久| 国产人伦9x9x在线观看| 黄色a级毛片大全视频| 国产精品熟女久久久久浪| 狠狠精品人妻久久久久久综合| 欧美变态另类bdsm刘玥| 国产有黄有色有爽视频| 成人黄色视频免费在线看| 美女扒开内裤让男人捅视频| 亚洲av片天天在线观看| 国产一级毛片在线| 午夜福利一区二区在线看| 日韩欧美免费精品| 麻豆av在线久日| 国产精品亚洲av一区麻豆| 国产免费视频播放在线视频| 国产视频一区二区在线看| 国产在线观看jvid| 国产免费现黄频在线看| 亚洲人成电影观看| 久久久久国产一级毛片高清牌| 日日摸夜夜添夜夜添小说| 侵犯人妻中文字幕一二三四区| 欧美精品高潮呻吟av久久| 大香蕉久久网| 桃红色精品国产亚洲av| 丰满人妻熟妇乱又伦精品不卡| 一级毛片精品| 色婷婷久久久亚洲欧美| 国产成人欧美| 国产xxxxx性猛交| 国产一区二区三区综合在线观看| 大陆偷拍与自拍| 亚洲精品日韩在线中文字幕| 99久久国产精品久久久| 国产亚洲午夜精品一区二区久久| 人成视频在线观看免费观看| 欧美日韩一级在线毛片| 国产激情久久老熟女| 一区二区三区四区激情视频| 成年人午夜在线观看视频| 建设人人有责人人尽责人人享有的| 极品少妇高潮喷水抽搐| 亚洲第一青青草原| 中文字幕人妻丝袜制服| 成人黄色视频免费在线看| 熟女少妇亚洲综合色aaa.| 99国产精品99久久久久| 亚洲精品成人av观看孕妇| www.自偷自拍.com| 久久天堂一区二区三区四区| 俄罗斯特黄特色一大片| 免费在线观看黄色视频的| 国产1区2区3区精品| 热re99久久精品国产66热6| 国产亚洲欧美在线一区二区| bbb黄色大片| 美女福利国产在线| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久久久99蜜臀| 国产黄频视频在线观看| 国产高清videossex| 欧美激情久久久久久爽电影 | 亚洲精品日韩在线中文字幕| 欧美另类一区| 久久人人爽人人片av| 精品人妻在线不人妻| 中亚洲国语对白在线视频| 欧美中文综合在线视频| 女性被躁到高潮视频| 国产又爽黄色视频| 最近最新中文字幕大全免费视频| 婷婷丁香在线五月| 男人爽女人下面视频在线观看| 日韩视频在线欧美| 亚洲欧美精品自产自拍| 91麻豆av在线| 一边摸一边抽搐一进一出视频| 精品国产一区二区三区四区第35| 日本a在线网址| 国产男人的电影天堂91| 色婷婷久久久亚洲欧美| 成年动漫av网址| 纵有疾风起免费观看全集完整版| 大片电影免费在线观看免费| netflix在线观看网站| 韩国精品一区二区三区| 岛国毛片在线播放| 午夜老司机福利片| 久久精品亚洲熟妇少妇任你| 他把我摸到了高潮在线观看 | 久久女婷五月综合色啪小说| 日韩中文字幕视频在线看片| 久久久久国产精品人妻一区二区| 久久精品熟女亚洲av麻豆精品| 51午夜福利影视在线观看| 91麻豆av在线| 老司机在亚洲福利影院| 两个人免费观看高清视频| 中亚洲国语对白在线视频| 正在播放国产对白刺激| 亚洲成人免费电影在线观看| 美女高潮喷水抽搐中文字幕| 国产黄频视频在线观看| 两个人看的免费小视频| 黄网站色视频无遮挡免费观看| 欧美黑人欧美精品刺激| 麻豆国产av国片精品| 国产免费视频播放在线视频| 精品人妻1区二区| 免费观看人在逋| 亚洲avbb在线观看| 一级黄色大片毛片| 久久天堂一区二区三区四区| 亚洲五月婷婷丁香| 久久99热这里只频精品6学生| 亚洲精品国产av蜜桃| 天天添夜夜摸| 亚洲免费av在线视频| 老司机影院成人| av欧美777| 大香蕉久久成人网| 女人爽到高潮嗷嗷叫在线视频| 巨乳人妻的诱惑在线观看| 国产欧美日韩一区二区精品| 高潮久久久久久久久久久不卡| 亚洲精品国产av蜜桃| 久久国产精品大桥未久av| 爱豆传媒免费全集在线观看| 老司机影院成人| 在线永久观看黄色视频| 中文欧美无线码| 国产免费视频播放在线视频| 91成人精品电影| 天天操日日干夜夜撸| 午夜成年电影在线免费观看| av电影中文网址| 青春草视频在线免费观看| 汤姆久久久久久久影院中文字幕| 亚洲精品久久午夜乱码| 成年av动漫网址| 欧美激情高清一区二区三区| www.精华液| 不卡一级毛片| 国产男女超爽视频在线观看| 国产男人的电影天堂91| 一边摸一边做爽爽视频免费| 国产一区二区三区综合在线观看| 日本撒尿小便嘘嘘汇集6| 美女国产高潮福利片在线看| 亚洲av美国av| 亚洲国产av影院在线观看| 在线十欧美十亚洲十日本专区| 久久久水蜜桃国产精品网| 欧美日韩福利视频一区二区| 真人做人爱边吃奶动态| 亚洲av成人不卡在线观看播放网 | 黑人猛操日本美女一级片| 久热爱精品视频在线9| 1024香蕉在线观看| 久久性视频一级片| 看免费av毛片| 久久人人97超碰香蕉20202| 久久国产精品大桥未久av| 久久久久久亚洲精品国产蜜桃av| 青青草视频在线视频观看| 蜜桃国产av成人99| 美女高潮到喷水免费观看| 少妇人妻久久综合中文| 亚洲欧美清纯卡通| 18禁国产床啪视频网站| 美女主播在线视频| 午夜激情av网站| 大香蕉久久网| 各种免费的搞黄视频| 国产日韩欧美视频二区| 国产一区二区三区在线臀色熟女 | 可以免费在线观看a视频的电影网站| 久热爱精品视频在线9| 大香蕉久久网| 2018国产大陆天天弄谢| 国产精品久久久久久精品古装| 国产一区二区三区在线臀色熟女 | 一级片'在线观看视频| 亚洲精品中文字幕在线视频| 香蕉丝袜av| 黑人欧美特级aaaaaa片| 涩涩av久久男人的天堂| 日韩大码丰满熟妇| netflix在线观看网站| 久久久欧美国产精品| 亚洲国产av新网站| 久久久久国产精品人妻一区二区| 我要看黄色一级片免费的| 老熟妇乱子伦视频在线观看 | 亚洲黑人精品在线| 啦啦啦中文免费视频观看日本| tube8黄色片| 国产一区二区三区av在线| 国产精品久久久久成人av| 国产精品二区激情视频| 各种免费的搞黄视频| 亚洲精品国产区一区二| 日韩视频一区二区在线观看| 少妇粗大呻吟视频| 宅男免费午夜| 黄频高清免费视频| 亚洲欧洲精品一区二区精品久久久| 亚洲国产中文字幕在线视频| 97精品久久久久久久久久精品| 国产欧美日韩精品亚洲av| 精品国产一区二区久久| 日日摸夜夜添夜夜添小说| 极品少妇高潮喷水抽搐| 久久99一区二区三区| 国产亚洲午夜精品一区二区久久| 国产精品1区2区在线观看. | 亚洲熟女毛片儿| 俄罗斯特黄特色一大片| 丰满迷人的少妇在线观看| 十八禁高潮呻吟视频| 免费看十八禁软件| 久久精品国产综合久久久| 国产成人系列免费观看| 午夜老司机福利片| 亚洲国产欧美日韩在线播放| 热99re8久久精品国产| 在线观看一区二区三区激情| 国产高清videossex| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美网| 男女免费视频国产| 亚洲专区国产一区二区| 精品熟女少妇八av免费久了| 久久精品国产a三级三级三级| av又黄又爽大尺度在线免费看| 人妻 亚洲 视频| 高潮久久久久久久久久久不卡| 午夜福利免费观看在线| 美女国产高潮福利片在线看| 亚洲美女黄色视频免费看| 韩国精品一区二区三区| 国产精品免费大片| 成年人免费黄色播放视频| 人妻人人澡人人爽人人| 丝袜人妻中文字幕| 老熟女久久久| 欧美国产精品一级二级三级| 国产精品九九99| 欧美 亚洲 国产 日韩一| 这个男人来自地球电影免费观看| 亚洲av成人不卡在线观看播放网 | 国产不卡av网站在线观看| 啦啦啦在线免费观看视频4| 国内毛片毛片毛片毛片毛片| 99热全是精品| 极品人妻少妇av视频| 欧美黑人精品巨大| 久久 成人 亚洲| 51午夜福利影视在线观看| 国产精品国产三级国产专区5o| 国产成人一区二区三区免费视频网站| avwww免费| 免费在线观看日本一区| 亚洲欧美精品自产自拍| 妹子高潮喷水视频| 国产成人欧美在线观看 | 美女中出高潮动态图| 我的亚洲天堂| 91av网站免费观看| 欧美日韩黄片免| 欧美黄色淫秽网站| 亚洲av美国av| 午夜福利影视在线免费观看| 亚洲精品久久久久久婷婷小说| 欧美+亚洲+日韩+国产| 亚洲avbb在线观看| 国产三级黄色录像| 777久久人妻少妇嫩草av网站| 男人操女人黄网站| 国产真人三级小视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美免费精品| 黄网站色视频无遮挡免费观看| 色婷婷av一区二区三区视频| 国产一卡二卡三卡精品| 9191精品国产免费久久| 亚洲精品日韩在线中文字幕| 日本五十路高清| 精品一区在线观看国产| 午夜福利免费观看在线| 国产亚洲av高清不卡| 极品人妻少妇av视频| 宅男免费午夜| 我要看黄色一级片免费的| 国产色视频综合| 日本欧美视频一区| 精品国产乱子伦一区二区三区 | 另类精品久久| 精品欧美一区二区三区在线| 男女床上黄色一级片免费看| 国产精品熟女久久久久浪| 制服诱惑二区| 男人添女人高潮全过程视频| 日日夜夜操网爽| 日韩人妻精品一区2区三区| 黑人巨大精品欧美一区二区蜜桃| 男女国产视频网站| 黄色视频,在线免费观看| 亚洲熟女毛片儿| 精品久久蜜臀av无| 在线天堂中文资源库| 欧美日韩精品网址| 日本wwww免费看| 国产欧美日韩一区二区三 | www.av在线官网国产| 黄色毛片三级朝国网站| 欧美日本中文国产一区发布| 嫁个100分男人电影在线观看| 国产成人啪精品午夜网站| 999久久久国产精品视频| 汤姆久久久久久久影院中文字幕| 亚洲一区中文字幕在线| 亚洲欧美一区二区三区黑人| 欧美 日韩 精品 国产| 国产激情久久老熟女| 久久女婷五月综合色啪小说| 久久久精品区二区三区| 色综合欧美亚洲国产小说| 国产欧美亚洲国产| 亚洲精品一卡2卡三卡4卡5卡 | 国产成+人综合+亚洲专区| 亚洲色图 男人天堂 中文字幕| 精品国产一区二区三区四区第35| 国产成人a∨麻豆精品| 国产黄色免费在线视频| 少妇精品久久久久久久| 啦啦啦在线免费观看视频4| 亚洲精品日韩在线中文字幕| 国产精品麻豆人妻色哟哟久久| 国产99久久九九免费精品| 亚洲国产欧美一区二区综合| av在线app专区| 精品少妇久久久久久888优播| 亚洲黑人精品在线| 人人妻,人人澡人人爽秒播| 久久久久久久久免费视频了| 欧美在线一区亚洲| 亚洲精品一区蜜桃| 天堂8中文在线网| 亚洲国产欧美一区二区综合| 日本91视频免费播放| 日日夜夜操网爽| 国产成人影院久久av| 午夜影院在线不卡|