李紅玉,房有榮,于海濤,俞盈,閻輝
浙江省醫(yī)學(xué)科學(xué)院藥物研究所,浙江 杭州 310013
核酸轉(zhuǎn)染哺乳動(dòng)物細(xì)胞通常使用商業(yè)的陽(yáng)離子脂質(zhì)體試劑,然而,這些試劑的轉(zhuǎn)染效率因細(xì)胞種類的不同差別很大。許多細(xì)胞株包括一些神經(jīng)細(xì)胞、T細(xì)胞、成纖維細(xì)胞和上皮細(xì)胞等已證明抵抗一般的陽(yáng)離子脂質(zhì)體轉(zhuǎn)染試劑[1-4]。另一些轉(zhuǎn)染細(xì)胞的方法如電穿孔法[5]和病毒介導(dǎo)法[6-7]具有一定的細(xì)胞毒性或以未知方式擾亂細(xì)胞功能等缺點(diǎn)。近來(lái)出現(xiàn)的核酸轉(zhuǎn)染新方法,包括lipidoids[8]、陽(yáng)離子聚合物[9]、無(wú)機(jī)納米粒子[10]、碳納米管[11]、細(xì)胞穿透肽[12-13]、陽(yáng)離子蛋白-抗體融合[14-15]、化學(xué)修飾的核酸[16]等,在針對(duì)特定種類細(xì)胞時(shí),分別具有一定的優(yōu)勢(shì)。然而,通常這些方法準(zhǔn)備過(guò)程較復(fù)雜,且在各細(xì)胞株中轉(zhuǎn)染效率差別較大。
David R. Liu實(shí)驗(yàn)室通過(guò)研究綠色熒光蛋白(GFP)的分子表面結(jié)構(gòu),在不影響蛋白熒光特性的前提下,把非保守氨基酸替換成一些帶正電荷或負(fù)電荷的氨基酸,得到一些“超電荷蛋白”[17]。這樣的超電荷蛋白不僅保持原有的性能,而且獲得了一些不同尋常的特性[18]。表面帶有36個(gè)正電荷的綠色熒光蛋白 (+36GFP)由于靜電排斥作用,使蛋白溶液具有更高的穩(wěn)定性。+36GFP可以通過(guò)靜電作用與DNA或RNA結(jié)合,形成單分散顆粒,用這種結(jié)合物轉(zhuǎn)染細(xì)胞可以高效地將核酸攜帶進(jìn)細(xì)胞[18]。諸多報(bào)道證明,很多帶正電的多肽和蛋白都具有細(xì)胞穿透作用,例如衍生于艾滋病毒的tat細(xì)胞穿透肽[19-25]。+36GFP的轉(zhuǎn)染效率是tat細(xì)胞穿透肽的100倍,對(duì)于一些耐受陽(yáng)離子脂質(zhì)體的細(xì)胞株也可以成功轉(zhuǎn)染,而且無(wú)明顯的細(xì)胞毒性[26]。因+36GFP保留了固有的綠色熒光特性,使整個(gè)實(shí)驗(yàn)操作可以肉眼觀察,簡(jiǎn)化了操作過(guò)程。
改造得到的+36GFP所具有的這些特性,為尋找更理想的轉(zhuǎn)染方法提供了新思路。這就為外源核酸進(jìn)入細(xì)胞內(nèi)發(fā)揮作用開(kāi)辟了一條便捷之路,無(wú)論對(duì)科學(xué)研究還是對(duì)核酸藥物的實(shí)際應(yīng)用都具有非常重要的意義。本實(shí)驗(yàn)將初步研究+36GFP的這些特性,為以后進(jìn)一步的研究打下基礎(chǔ)。
質(zhì)粒pET+36GFP-HA2原核系統(tǒng)表達(dá)融合蛋白+36GFP-HA2,其中HA2為一段具有破囊泡作用的短肽,+36GFP蛋白N端具有His-tag標(biāo)簽,該質(zhì)粒由哈佛大學(xué)的David R. Liu博士惠贈(zèng);質(zhì)粒LeGO-1×T/BSD具有真核啟動(dòng)子,可在細(xì)胞中表達(dá)紅熒光蛋白,由德國(guó)漢堡大學(xué) Boris Fehse教授惠贈(zèng)[27-28];感受態(tài)菌株 E.coli BL21(DE3)購(gòu)自 Novagen公司;Ni-NTA Agarose購(gòu)自QIAGEN公司;1 mL HiTrap Q FF離子層析柱、5 mL HiTrap Desalting脫鹽柱購(gòu)自GE公司;蛋白質(zhì)分子量 Marker購(gòu)自北京全式金公司和Fermentas公司;ECL顯色液、FITC熒光標(biāo)記試劑盒購(gòu)自Pierce Biotechnology公司;牛血清白蛋白 (BSA)、LB培養(yǎng)基購(gòu)自上海生工生物工程公司;DMEM、RPMI-1640、OPTI-MEM培養(yǎng)基、胎牛血清 (FBS)和 Lipofectamine 2000轉(zhuǎn)染試劑均購(gòu)自 Invitrogen公司;青霉素/鏈霉素雙抗(10 000 IU/mL)購(gòu)自天津?yàn)笊铮皇罂笻is-tag一抗抗體購(gòu)自天根公司、HRP標(biāo)記的羊抗鼠IgG抗體均購(gòu)于武漢博士德公司;BCA蛋白濃度測(cè)定試劑盒、考馬斯亮藍(lán)G-250染色液、脫色液購(gòu)自碧云天公司。
二氧化碳細(xì)胞培養(yǎng)箱 (Sanyo,日本),蛋白電泳系統(tǒng) (Bio-Rad,美國(guó)),熒光倒置顯微鏡(Leica,德國(guó)),流式細(xì)胞儀 (BD,美國(guó)),高速冷凍離心機(jī) (Beckman,美國(guó)),激光共聚焦顯微鏡(ZEISS,德國(guó))、凝膠成像儀 (Bio-Rad,美國(guó))。
質(zhì)粒pET+36GFP-HA2轉(zhuǎn)化化學(xué)感受態(tài)表達(dá)菌株E. coli BL21(DE3),平板上挑取單克隆菌落,篩選高表達(dá)菌株。利用自動(dòng)誘導(dǎo)培養(yǎng)基[29-30]表達(dá)目的蛋白,離心沉淀菌體,在非變性條件下裂解菌體。取上清按照 QIAGEN 公司 QIA expressionistTM蛋白純化系統(tǒng)關(guān)于His-tag標(biāo)簽蛋白的純化說(shuō)明書(shū)操作[26]。將通過(guò)親和層析得到的蛋白,先通過(guò)1 mL HiTrap Q FF離子層析柱進(jìn)行離子交換,然后再通過(guò)5 mL HiTrap Desalting脫鹽柱,用含10%甘油的PBS洗脫,過(guò)濾除菌。BCA法測(cè)定蛋白的濃度用于后續(xù)的實(shí)驗(yàn)。
B16細(xì)胞、293細(xì)胞、HepG2細(xì)胞用含有10% FBS和1%青霉素/鏈霉素雙抗 (100 IU/mL)的 DMEM 培養(yǎng)基進(jìn)行培養(yǎng),A549細(xì)胞用含有10%FBS和1%青霉素/鏈霉素雙抗 (100 IU/mL)的RPMI-1640培養(yǎng)基培養(yǎng)。將處于指數(shù)生長(zhǎng)期的4種細(xì)胞分別傳代于 24孔板,待細(xì)胞匯合度達(dá)90%時(shí),用+36GFP蛋白進(jìn)行轉(zhuǎn)導(dǎo)。其中293細(xì)胞中+36GFP 的終濃度為 25、50、100、200 nmol/L;HepG2細(xì)胞中+36GFP的終濃度為25、50、100、200 nmol/L;A549細(xì)胞中+36GFP的終濃度為12.5、25、50、100 nmol/L;A549細(xì)胞中+36GFP的終濃度為12.5 nmol/L、25 nmol/L和50 nmol/L,同時(shí)設(shè)空白對(duì)照。37 ℃繼續(xù)培養(yǎng)30 min后吸去培養(yǎng)液,用無(wú)鈣鎂溶液洗滌 1次,0.25%胰蛋白酶消化,用含20 U/mL肝素的PBS洗滌3次,重懸,流式細(xì)胞儀 FITC通道檢測(cè)熒光細(xì)胞百分比。
接種A549細(xì)胞至2個(gè)NEST-35mm細(xì)胞培養(yǎng)皿中 (其玻底直徑為 2 cm),待細(xì)胞融合度達(dá)到80%時(shí),在其中1個(gè)平皿中加入+36GFP蛋白使其終濃度為100 nmol/L,另1個(gè)平皿不做處理,37 ℃孵育4 h后用含20 U/mL肝素的PBS洗滌3次,激光共聚焦觀察+36GFP蛋白的轉(zhuǎn)導(dǎo)效果。
用濃度為0.9 μg/μL的+36GFP蛋白和濃度為0.4 μg/μL 的質(zhì)粒 LeGo-1×T/BSD 分別按 4∶1、9∶1、14∶1、19∶1和24∶1的體積比例混合。20 ℃振蕩混勻30 min后,進(jìn)行1%的瓊脂糖凝膠電泳,凝膠成像儀中觀察結(jié)果。
接種HepG2細(xì)胞到4個(gè)NEST-35mm細(xì)胞培養(yǎng)皿中 (其玻底直徑為 2 cm),次日細(xì)胞融合度達(dá)到80%時(shí)用于轉(zhuǎn)染實(shí)驗(yàn)。其中1培養(yǎng)皿用脂質(zhì)體 Lipofectamine2000轉(zhuǎn)染質(zhì)粒 LeGO-1×T/BSD(0.4 μg/μL):分別用 100 μL OPTI-MEM 培養(yǎng)基稀釋 2 μg 質(zhì) 粒 LeGO-1×T/BSD 和 5 μL Lipofectamine2000,室溫孵育5 min后混合,繼續(xù)孵育 20 min,棄去培養(yǎng)皿中的培養(yǎng)基用OPTI-MEM培養(yǎng)基洗滌細(xì)胞2次,將200 μL混合物加入平皿并再補(bǔ)加200 μL OPTI-MEM;另外3 個(gè)培養(yǎng)皿分別用 20 μL、50 μL、100 μL 的+36GFP蛋白結(jié)合2 μg質(zhì)粒LeGO-1×T/BSD轉(zhuǎn)染HepG2細(xì)胞:2 μg質(zhì)粒LeGO-1×T/BSD分別與20 μL、50 μL、100 μL +36GFP 蛋白混合 20 ℃振蕩混勻 30 min后加入平皿中,每個(gè)平皿用OPTI-MEM培養(yǎng)液補(bǔ)足至400 μL;最后1個(gè)培養(yǎng)皿中只加入2 μg質(zhì)粒LeGO-1×T/BSD,同樣用OPTI-MEM 培養(yǎng)液補(bǔ)足至 400 μL。所有平皿放入37 CO℃2孵箱里培養(yǎng)6 h,然后換液加入含有10% FBS無(wú)抗生素的 DMEM 培養(yǎng)基繼續(xù)培養(yǎng)24 h。激光共聚焦觀察細(xì)胞中質(zhì)粒 LeGO-1×T/BSD的表達(dá)。
293細(xì)胞接種到12孔板中,待細(xì)胞融合度達(dá)到90%時(shí)用于轉(zhuǎn)染實(shí)驗(yàn)。空白組為完全不做處理的細(xì)胞;實(shí)驗(yàn)對(duì)照組只加入4 μL質(zhì)粒LeGO-1×T/BSD (0.4 μg/μL);脂質(zhì)體轉(zhuǎn)染組將 4 μL 質(zhì)粒和4 μL Lipofectamine2000 分 別 加 入 100 μL OPTI-MEM培養(yǎng)基中,室溫孵育5 min,混合繼續(xù)孵育20 min,將200 μL混合物加入平板中;實(shí)驗(yàn)組共有 4組,+36GFP 蛋白 (0.9 μg/μL)和質(zhì)粒分別按照25∶1、50∶1、100∶1和200∶1的體積比混合,20 ℃振蕩混勻30 min后,加入培養(yǎng)孔中用 OPTI-MEM 培養(yǎng)基補(bǔ)足終體積為200 μL。平板放入37 CO℃2孵箱里培養(yǎng)6 h,然后換液加入含有 10% FBS無(wú)抗生素的 DMEM培養(yǎng)基。培養(yǎng)48 h后,0.25%胰蛋白酶消化,用含20 U/mL肝素的PBS洗滌3次,重懸,流式細(xì)胞儀FL2通道檢測(cè)。
自動(dòng)誘導(dǎo)培養(yǎng)基 30 ℃過(guò)夜培養(yǎng)含 pET+36GFP-HA2質(zhì)粒的BL21(DE3)表達(dá)菌株,離心收集細(xì)菌沉淀,在紫外線下觀察,與空白的BL21(DE3)菌株沉淀相比,具有很強(qiáng)的熒光 (未顯示);Western blotting檢測(cè)得到特異性的條帶(圖 1)。
大規(guī)模培養(yǎng)后,菌體沉淀裂解離心后,可直接觀察到上清呈現(xiàn)綠色,提示目的蛋白在菌體內(nèi)主要以可溶型而非包涵體形式存在。將此上清通過(guò)Ni-NTA柱子,可清楚地觀察到蛋白與柱子結(jié)合,洗脫后洗脫液呈綠色。將親和層析各步驟的樣品進(jìn)行SDS-PAGE蛋白凝膠電泳,考馬斯亮藍(lán)染色,脫色后發(fā)現(xiàn)+36GFP蛋白的純度隨著洗脫次數(shù)的增加純度提高,最后一次洗脫幾乎無(wú)其他雜帶 (圖 2)。
圖1 +36GFP蛋白表達(dá)的Western blotting驗(yàn)證Fig. 1 Identification of the expressed +36GFP protein in E. coli by Western blotting. C: blank, bacterial with no plasmids; 1?4: bacterial colonies containing vector pET+36GFP–HA2, the primary antibody was mouse anti-His antibody and secondary antibody was goat anti-mouse IgG-HRP, and the positive band was visible at about 31 kDa; M: protein marker.
流式細(xì)胞儀分析顯示,在293細(xì)胞、HepG2細(xì)胞、A549細(xì)胞和B16細(xì)胞中,低濃度的+36GFP蛋白即具有很高的轉(zhuǎn)導(dǎo)效率,且隨著濃度升高轉(zhuǎn)導(dǎo)效率增加,呈現(xiàn)濃度依賴性,當(dāng)濃度達(dá)到一定值時(shí)轉(zhuǎn)導(dǎo)效率趨于穩(wěn)定 (圖3)。其穿透率的具體百分比在表1中列出。與對(duì)照組比較,激光共聚焦觀察到+36GFP蛋白對(duì) A549細(xì)胞的轉(zhuǎn)導(dǎo)效果非常顯著 (圖4)。
凝膠阻滯分析顯示,+36GFP能夠與帶負(fù)電的質(zhì)粒DNA結(jié)合,阻滯DNA在凝膠中遷移。圖中明顯觀察到,隨著+36GFP體積比例增加,蛋白對(duì)質(zhì)粒的阻滯作用越來(lái)越大,呈現(xiàn)明顯的濃度依賴性,最后DNA被完全地阻滯在了上樣孔中 (圖 5)。
圖2 +36GFP蛋白通過(guò)His-tag親和純化各階段樣品的SDS-PAGE電泳Fig. 2 SDS-PAGE analysis of various stages samples from His-tag affinity chromatography of +36GFP protein. 1: the first washing; 2: the second washing; 3:the first elution; 4: the second elution; 5: the third elution; M: protein marker.
表1 +36GFP對(duì)各類細(xì)胞轉(zhuǎn)導(dǎo)效率的流式細(xì)胞儀檢測(cè)Table 1 Transduction efficiency of +36GFP protein to various cells tested by flow cytometry
圖3 +36GFP對(duì)各類細(xì)胞轉(zhuǎn)導(dǎo)效率的流式細(xì)胞儀檢測(cè)Fig. 3 Transduction efficiency of +36GFP protein to various cells assayed by flow cytometry. (A?D)The +36GFP protein was used to transduce a variety of mammalian cell lines including 293 cells, HepG2 cells, A549 cells and B16 cells at specified protein concentrations respectively. FACS analysis was performed on a BD Flow cytometry at 25 °C.
圖4 +36GFP蛋白對(duì)A549細(xì)胞轉(zhuǎn)導(dǎo)效率的激光共聚焦檢測(cè)Fig. 4 Transduction efficiency of +36GFP protein to A549 cells observed under laser scanning confocal microscope.(A?C) The internalization of +36GFP in A549 cells after co-incubation for 4 h at 37 °C. (A) The image of UV. (B) The image of visible light. (C)The image is an overlay of two channels: white (visible light)and UV. (D?F)Control.
圖5 +36GFP蛋白包裹質(zhì)粒DNA的凝膠阻滯實(shí)驗(yàn)Fig. 5 Gel-shift assay of plasmid DNA packaged by+36GFP protein. M: DNA marker; 1?5: the volume ratio of +36GFP protein and plasmid DNA was 4:1, 9:1, 14:1,19:1 and 24:1, respectively.
激光共聚焦觀察質(zhì)粒 LeGO-1×T/BSD 的表達(dá)情況。該質(zhì)粒經(jīng) Lipofectamine2000攜帶入細(xì)胞后,在 HepG2細(xì)胞中表達(dá)強(qiáng)度較高,在波長(zhǎng)為540 nm的綠光下可觀察到細(xì)胞中紅熒光較強(qiáng)。20 μL、50 μL、100 μL 的+36GFP 蛋白也可攜帶質(zhì)粒進(jìn)入細(xì)胞,報(bào)告基因也可以表達(dá),但是蛋白的表達(dá)量要低于脂質(zhì)體轉(zhuǎn)染組 (圖6)。這可能是因?yàn)榈鞍讛y帶質(zhì)粒進(jìn)入細(xì)胞后要經(jīng)歷囊泡包裹、蛋白降解、質(zhì)粒釋放等步驟,這就使質(zhì)粒表達(dá)紅熒光的時(shí)間要晚于脂質(zhì)體。至于+36GFP攜帶質(zhì)粒轉(zhuǎn)導(dǎo)細(xì)胞后蛋白何時(shí)表達(dá)量最高,是否呈現(xiàn)濃度依賴性,我們將進(jìn)一步利用流式細(xì)胞儀技術(shù)證明。
圖6 +36GFP蛋白對(duì)HepG2細(xì)胞轉(zhuǎn)染效率的激光共聚焦檢測(cè)Fig. 6 Transfection efficiency of +36GFP protein to HepG2 cells observed under laser scanning confocal microscope.(A) 5 μL Lipofectamine2000 transfection reagent transfected 2 μg plasmid LeGO-1×T/BSD (0.4 μg/μL) into HepG2 cells. (A1) The image is an overlay of two channels: white (visible light) and red (540 nm light). (A2) The image of 540 nm light. (A3) The image of visible light. (B?D) 20 μL, 50 μL and 100 μL +36GFP protein (0.9 μg/μL) with 2 μg plasmid LeGO-1×T/BSD (0.4 μg/μL). (B1, C1, D1) The overlay of two channels: white (visible light) and red (540 nm light). (B2, C2, D2)The image of 540 nm light. (B3, C3, D3)The image of visible light. (E)Control, only 2 μg plasmid,no Lipofectamine2000 and no +36GFP protein.
流式細(xì)胞儀FL2-H通道檢測(cè)293細(xì)胞中報(bào)告基因的表達(dá)情況。凝膠阻滯實(shí)驗(yàn)中,我們得出結(jié)論當(dāng)?shù)鞍着c質(zhì)粒的體積比大于24∶1,+36GFP蛋白可完全結(jié)合質(zhì)粒LeGO-1×T/BSD阻滯其在凝膠中的遷移。因而此實(shí)驗(yàn)中我們?cè)O(shè)計(jì)了4組實(shí)驗(yàn),蛋白與質(zhì)粒的體積比依次是25∶1、50∶1、100∶1和200∶1,流式檢測(cè)結(jié)果顯示紅熒光蛋白的表達(dá)量隨著體積比的增大而增高 (圖 7A)。相比較于HepG2細(xì)胞轉(zhuǎn)染實(shí)驗(yàn),該實(shí)驗(yàn)中轉(zhuǎn)染時(shí)間從 24 h延長(zhǎng)至48 h,梯度拉大,流式細(xì)胞儀統(tǒng)一計(jì)數(shù)10 000個(gè)細(xì)胞中有紅熒光表達(dá)的細(xì)胞所占的百分比,隨著體積比增大百分比依次為 55.22%、73.58%、85.46%和89.24% (圖7B),呈現(xiàn)劑量效應(yīng)關(guān)系。
圖7 +36GFP蛋白對(duì)293細(xì)胞轉(zhuǎn)染效率的流式細(xì)胞檢測(cè)Fig. 7 Transfection efficiency of +36GFP protein to 293 cells tested by flow cytometry. (A)Flow cytometry analysis showing amounts of expressed red fluorescent protein in 293 cells treated with various ratio of +36GFP vs plasmid DNA and washed three times with PBS containing heparin to remove cell surface-bound GFP. (B)Histogram of the expressed red fluorescent protein.
1990年 Wolff等發(fā)現(xiàn),將表達(dá)報(bào)道基因的質(zhì)粒直接注入骨骼肌后能檢測(cè)到報(bào)道基因的表達(dá)[31],但直接注射裸露的DNA或質(zhì)粒DNA進(jìn)入細(xì)胞,DNA的表達(dá)效率很低;與直接注射裸DNA相比,采用電穿孔法可使DNA的表達(dá)效率高1 000倍[32],但對(duì)細(xì)胞損害較大;微粒轟擊法,即“基因槍”,對(duì)目的DNA沒(méi)有要求,可大可小,也可以是RNA、蛋白質(zhì)、化學(xué)藥物等多種物質(zhì),且無(wú)明顯的致細(xì)胞變性反應(yīng),但其對(duì)實(shí)驗(yàn)條件的要求相對(duì)較高[33]。目前實(shí)驗(yàn)室應(yīng)用最廣泛的是陽(yáng)離子脂質(zhì)體轉(zhuǎn)染。外源DNA與脂質(zhì)體結(jié)合,形成載體-DNA復(fù)合物,利用這種復(fù)合物將外源DNA導(dǎo)入靶細(xì)胞,最終使外源基因在靶細(xì)胞中獲得表達(dá),但陽(yáng)離子脂質(zhì)體對(duì)細(xì)胞具有一定的毒性且轉(zhuǎn)染效率因細(xì)胞不同而有所差異。
本研究成功表達(dá)并純化了+36GFP蛋白,并證實(shí)+36GFP確有很強(qiáng)的細(xì)胞穿透性,而且細(xì)胞種類差異性很小。+36GFP穿透細(xì)胞膜的機(jī)理,國(guó)外許多科研人員已經(jīng)進(jìn)行了相應(yīng)的研究[34]。+36GFP蛋白自身帶有36個(gè)靜電荷,相互存在很強(qiáng)的靜電排斥作用而不容易聚沉,蛋白溶液更為穩(wěn)定,不僅方便了整個(gè)蛋白表達(dá)純化的操作過(guò)程,而且有利于蛋白保存、蛋白功能研究及進(jìn)一步的開(kāi)發(fā)應(yīng)用。根據(jù)脂質(zhì)體轉(zhuǎn)染原理,帶正電的脂質(zhì)體顆粒可以包裹帶負(fù)電的質(zhì)粒分子,然后將其攜帶入細(xì)胞。+36GFP表面帶有36個(gè)正電荷,同樣可以與帶負(fù)電的核酸分子結(jié)合,充當(dāng)一種轉(zhuǎn)染試劑。本研究中,我們首先進(jìn)行了凝膠阻滯實(shí)驗(yàn),驗(yàn)證了當(dāng)?shù)鞍缀唾|(zhì)粒DNA相互間達(dá)到一定的比例時(shí),蛋白會(huì)完全將DNA包裹住,阻滯其在凝膠中的遷移。HepG2轉(zhuǎn)染實(shí)驗(yàn)證實(shí)脂質(zhì)體和+36GFP蛋白都可攜帶質(zhì)粒進(jìn)入細(xì)胞,而且質(zhì)粒上的紅熒光蛋白可以成功表達(dá)。在實(shí)驗(yàn)的過(guò)程中,我們發(fā)現(xiàn)脂質(zhì)體轉(zhuǎn)染會(huì)對(duì)細(xì)胞造成一定的細(xì)胞毒作用,而+36GFP蛋白對(duì)細(xì)胞的生長(zhǎng)幾乎沒(méi)有影響。激光共聚焦圖片中可觀察到,+36GFP轉(zhuǎn)染的紅熒光蛋白的表達(dá)量要低于脂質(zhì)體。我們分析出現(xiàn)這種現(xiàn)象的原因可能是+36GFP蛋白攜帶質(zhì)粒進(jìn)入細(xì)胞后,+36GFP-質(zhì)粒復(fù)合物要經(jīng)歷一個(gè)囊泡包裹和蛋白降解的過(guò)程,之后質(zhì)粒被釋放紅熒光蛋白得以表達(dá),這就使得+36GFP轉(zhuǎn)染需要的時(shí)間大于脂質(zhì)體轉(zhuǎn)染。為此我們又設(shè)計(jì)了293細(xì)胞轉(zhuǎn)染實(shí)驗(yàn),依次增高蛋白相對(duì)質(zhì)粒的比例,然后把轉(zhuǎn)染時(shí)間從24 h延長(zhǎng)至48 h,得到了預(yù)期的結(jié)果。隨著比例的增加,紅熒光蛋白的表達(dá)量呈現(xiàn)劑量效應(yīng)關(guān)系。
理想的轉(zhuǎn)染方法應(yīng)該具有價(jià)廉易得、性質(zhì)穩(wěn)定、轉(zhuǎn)染率高、沒(méi)有細(xì)胞種類差異、沒(méi)有細(xì)胞毒性等特點(diǎn),而本文中+36GFP蛋白似乎為我們找到一種理想的轉(zhuǎn)染方法帶來(lái)了一些新啟發(fā)。除了尋找理想轉(zhuǎn)染方法,+36GFP蛋白的許多特性也使我們看到了它巨大的應(yīng)用前景。其實(shí)David R.Liu博士這種通過(guò)替換蛋白非保守氨基酸,重構(gòu)蛋白表面電荷的方法,也可以應(yīng)用于其他蛋白,可能為研究其他蛋白并賦予其細(xì)胞穿透性及抗凝聚等新特征提供一種非常新穎又有效的策略。
[1]Carlotti F, Bazuine M, Kekarainen T, et al.Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes. Mol Ther, 2004, 9(2):209?217.
[2]Ma H, Zhu J, Maronski M, et al. Non-classical nuclear localization signal peptides for high efficiency lipofection of primary neurons and neuronal cell lines. Neuroscience, 2002, 112(1):1?5.
[3]McManus MT, Haines BB, Dillon CP, et al. Small interfering RNA-mediated gene silencing in T lymphocytes. J Immunol, 2002, 169(10):5754?5760.
[4]Strait KA, Stricklett PK, Kohan JL, et al. Calcium regulation of endothelin-1 synthesis in rat inner medullary collecting duct. Am J Physiol Renal Physiol, 2007, 293(2): F601?606.
[5]Jantsch J, Turza N, Volke M, et al. Small interfering RNA (siRNA)delivery into murine bone marrow-derived dendritic cells by electroporation. J Immunol Methods, 2008, 337(1):71?77.
[6]Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2002, 2(3): 243?247.
[7]Stewart SA, Dykxhoorn DM, Palliser D, et al.Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA, 2003, 9(4): 493?501.
[8]Akinc A, Zumbuehl A, Goldberg M, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol,2008, 26(5): 561?569.
[9]Segura T, Hubbell JA. Synthesis and in vitro characterization of an ABC triblock copolymer for siRNA delivery. Bioconjug Chem, 2007, 18(3):736?745.
[10]Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed Engl, 2008, 47(8): 1382?1395.
[11]Liu Z, Winters M, Holodniy M, et al. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed Engl, 2007, 46(12): 2023?2027.
[12]Deshayes S, Morris MC, Divita G, et al.Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci, 2005,62(16): 1839?1849.
[13]Meade BR, Dowdy SF. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides.Adv Drug Deliv Rev, 2008, 60(4/5): 530?536.
[14]Peer D, Zhu P, Carman CV, et al. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci USA, 2007, 104(10): 4095?4100.
[15]Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol, 2005, 23(6):709?717.
[16]Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature,2005, 438(7068): 685?689.
[17]Lawrence MS, Phillips KJ, Liu DR. Supercharging proteins can impart unusual resilience. J Am Chem Soc, 2007, 129(33): 10110?10112.
[18]McNaughton BR, Cronican JJ, Thompson DB, et al. Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Acad Sci USA,2009, 106(15): 6111?6116.
[19]Daniels DS, Schepartz A. Intrinsically cell-permeable miniature proteins based on a minimal cationic PPII motif. J Am Chem Soc,2007, 129(47): 14578?14579.
[20]Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell,1988, 55(6): 1189?1193.
[21]Fuchs SM, Raines RT. Arginine grafting to endow cell permeability. ACS Chem Biol, 2007, 2(3):167?170.
[22]Fuchs SM, Rutkoski TJ, Kung VM, et al.Increasing the potency of a cytotoxin with an arginine graft. Protein Eng Des Sel, 2007, 20(10):505?509.
[23]Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein.Cell, 1988, 55(6): 1179?1188.
[24]Smith BA, Daniels DS, Coplin AE, et al. Minimally cationic cell-permeable miniature proteins via alpha-helical arginine display. J Am Chem Soc,2008, 130(10): 2948?2949.
[25]Thoren PE, Persson D, Karlsson M, et al. The antennapedia peptide penetratin translocates across lipid bilayers-the first direct observation. FEBS Lett, 2000, 482(3): 265?268.
[26]Cronican JJ, Thompson DB, Beier KT, et al. Potent delivery of functional proteins into Mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem Biol, 2010, 5(8): 747?752.
[27]Weber K, Bartsch U, Stocking C, et al. A multicolor panel of novel lentiviral "gene ontology"(LeGO)vectors for functional gene analysis. Mol Ther, 2008, 16(4): 698?706.
[28]Weber K, Mock U, Petrowitz B, et al. Lentiviral gene ontology (LeGO)vectors equipped with novel drug-selectable fluorescent proteins: new building blocks for cell marking and multi-gene analysis.Gene Ther, 2010, 17(4): 511?520.
[29]Lu Z, Chen W, Liu R, et al. A novel method for high-level production of psychrophilic TAB5 alkaline phosphatase. Protein Expr Purif, 2010,74(2): 217?222.
[30]Studier FW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif,2005, 41(1): 207?234.
[31]Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science,1990, 247(4949): 1465?1468.
[32]Blair-Parks K, Weston BC, Dean DA. High-level gene transfer to the cornea using electroporation. J Gene Med, 2002, 4(1): 92?100.
[33]Yang NS, Sun WH, McCabe D. Developing particle-mediated gene-transfer technology for research into gene therapy of cancer. Mol Med Today, 1996, 2(11): 476?481.
[34]Thompson DB, Villase?or R, Dorr BM, et al.Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. Chem Biol,2012, 19(7): 831?843