• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved ant colony algorithm and its application in optimal routing problem

    2013-11-01 01:29:39SONGJinjuan宋錦娟BAIYanping白艷萍
    關(guān)鍵詞:艷萍

    SONG Jin-juan (宋錦娟),BAI Yan-ping (白艷萍)

    (Dept. of Mathematics, North University of China, Taiyuan 030051, China)

    An improved ant colony algorithm and its application in optimal routing problem

    SONG Jin-juan (宋錦娟),BAI Yan-ping (白艷萍)

    (Dept. of Mathematics, North University of China, Taiyuan 030051, China)

    Ant colony system (ACS), a kind of ant colony algorithm, is an effective way of solving shortest path problem, however, it has some defects. In this paper, ACS is improved for avoiding getting stuck in a local minimum, whose defects mainly include the following two aspects: initial pheromone solution and pheromone updating. In order to learn the advantages of improved ant colony system (IACS), experiments are conducted for some times. First, it is applied to 8 traveling salesman problem (TSP) instances, and compared with three self-organizing map (SOM) algorithms. Then the author analyzes the space complexity and convergence of two algorithms and compares them. Simulation results show that IACS has much better performance in solving TSP, and it has certain theoretical reference value and practical significance.

    ant colony system (ACS); pheromone; traveling salesman problem; spcae complexity

    0 Introduction

    The traveling salesman problem (TSP)[1]is an important problem and also a hot topic in today’s social studies. It is similar to job-shop scheduling,quadratic assignment problem, all of which can be summarized to combinatorial optimization problem. There are many heuristic intelligent algorithms for solving TSP, such as genetic algorithm(GA)[2], simulated annealing (SA)[3], self-organizing map (SOM)[4,5], ant colony algorithm(ACA)[6,7], and so on.

    The intelligent algorithm ACS, a kind of improved ACA, has many characteristics such as parallelism, positive feedback and collaboration, however, it still easily gets stuck in a local minimum. So in this paper, an improved ant colony system (IACS) is presented. A new way of calculating initial pheromone value is proposed and ACS global updating rule is adjusted, in which, in addition to the globally shortest path, the pheromone in globally longest path is also updated. Furthermore, the max-min ant system[8]is introduced to effectively stagnation phenomenon caused by great difference of pheromone between the shortest path and the longest path, which can improve the global searching range and avoid local minimum.At last, the rationality and validity of IACS are verified through computer simulation.

    1 Description of TSP

    The traveling salesman problem is a well-known NP-hard combinatorial optimization problem. TSP[1,9-11]is described as follows: Given a set of N cities, there is a salesman who tries to find the shortest closed path to visit the above N cities under the condition that each city is visited exactly once. It can also be described mathematically as follows: let C be a collection of N cities, where C={c1,c2,…,cN}; and d(ci,cj)∈R+stands for the distance between two cities, where ci,cj∈C(1≤i, j≤N). To achieve a city sequence {cω(1), cω(2), …, cω(N)} under the condition that it makes objective function

    be the smallest, where ω(1),ω(2),… , ω(N) is a full array of 1,2,…,N.

    2 Model of ACS

    In ACS, while building a path of TSP, ants can visit edges and change their pheromone level by using the local updating rule. Once all ants have completed their paths, the pheromone level is updated by using the global updating rule.

    2.1 ACS state transition rule

    In ACS, the state transition rule can be described as follows: an ant positioned on node i chooses the city j to move to using the rule given by

    2.2 ACS local updating rule

    After choosing a city (that means to visit a edge), the pheromone level of this edge is updated by the local updating rule:

    where ξ∈[0,1] is the local pheromone decaying parameter, and τ0is the initial pheromone concentration value of all edges.

    2.3 ACS global updating rule

    When all ants have completed their closed paths, only the globally best ant who builds the shortest path from the beginning of the trial is allowed to deposit pheromone. The pheromone level is updated by the global updating rule:

    where

    where ρ∈(0,1) is global pheromone decaying parameter, Δτijis pheromone increment of edge in this circulation, and Lgbis the length of the globally optimal path found so far.

    3 IACS

    The ACS is an improved ant colony optimization algorithm, the performance of which is improved remarkably, and it is greatly effective in solving TSP and other shortest path problems. However, it still easily gets stuck in a local minimum, so in this paper, some respects must be discussed in the following.

    3.1 Way of getting initial pheromone

    3.2 Pheromone updating rule

    In ACS, only the pheromone in globally shortest path is allowed to be updated, but in this paper, in addition to the globally shortest path, the pheromone in globally longest path is also updated. The pheromone updating rules in globally shortest and longest path are expressed as

    where ρ is the global pheromone decaying parameter, Lbestand Lworstare the length of the shortest and longest path, respectively.

    3.3 Max-min pheromone system

    After pheromone being updated, in order to effectively suppress stagnation phenomenon caused by great difference of pheromone between the shortest and the longest path, the pheromone in every edge is limited in a range [τmin,τmax][8], where τmin=10, τmax=0.0001.

    4 Steps of IACS

    The steps of IACS are represented as follows:

    Step 1: Parameter initialization

    Different parameter settings have different influence on experimental results of algorithm, so some experiments are conducted by setting a large number of different parameters, and ultimately the optimal parameter combination is got: α=1,β=2,ζ=0.5,ρ=0.6,q0=0.9, m=5,MaxNc=5 000, where MaxNc represent the maximum number of iteration.

    Step 2: Finding the optimal path

    In this paper, a set of m ants are placed on n starting nodes (n cities) randomly, and the starting nodes which have been visited by ants are placed in the current solution set tabuk. Each ant will visit the next city j by applying the state transition rules Eqs.(2) and (3), then j is also placed in the current solution set tabuk.

    Step 3: Pheromone local updating

    The pheromone in the paths!that ants have passed is updated by local updating rule, Eq.(4), then it is determined whether pheromone τij(where τijis the pheromone of path ) is contained in the range [τmin,τmax], if τij>τmax, let τij=τmax; if τij<τmin, let τij=τmin; otherwise, let τijbe itself.

    Step 4: Repeating step 2 and 3 until all ants complete their closed path.

    Step 5: After iterations of the above four steps, there will be m closed paths, comparing the lengths of m paths, the optimal solution and the worst solution are got and stored. Then the pheromone in the shortest path and the longest path is updated by Eqs.(7) and (8).

    Step 6: A set of m ants are placed on n starting nodes (n cities) randomly again, according to step 2, 3 and 4 for optimization, which is repeated, until the 1 000 iterations.

    Step 7: The program of path optimization ends until the number of iterations reaches the maximum value. Comparing with the 1 000 optimal solutions of 1 000 iterations, the globally optimal solution will be got, which is also the optimal solution of this algorithm searching for.

    5 Experimental results

    In order to verify the validity of IACS, 8 examples (such as lin105,ch130, ch150, rat195 and KroA200,etc.) obtained from the general TSPLIB[12]are adopted for experiments. For each example, it is conducted for 10 times, and then the best, average value and the relative error. The experimental results are shown in are calculated, respectively Table 1 and Table 2.

    Table 1 Comparison of the best value and time of two algorithms for 10 times

    Table 2 Comparison of the average value and relative error of two algorithms

    The above comparison of experimental results shows that the optimal value and average value obtained by the improved algorithm are greatly better, and relative error is much smaller than that of ACS, so the improved algorithm introduced in this paper is an effective algorithm. The following diagrams are the experimental results of the improved algorithm. (x stands for longitude, Y stands for latitude, and the unit for each of them is radian.)

    Fig.1 Optimal path graph of ch130

    Fig.2 Optimal path graph of eil51

    Fig.3 Optimal path graph of KroA200

    Fig.4 Optimal path graph of lin105

    Fig.5 Optimal path graph of ch150

    Fig.6 Optimal path graph of rat195

    Fig.7 Optimal path graph of st70

    Fig.8 Optimal path graph of pr152

    In order to further verify the fact that the improved algorithm has better performance, the results obtained by the improved algorithm are compared with that by three kinds of SOM algorithms: Favata-Walke Algorithm (F-W), non-corrdinate self-organizing may (NCSOM) and asymmetric self-organizing map (ASOM)[13]. The comparison results are shown in Table 3.

    Table 3 Comparison results of four algorithms

    From Table 3, it can be seen that for each example of TSP, the experimental results of the improved algorithm are greatly better than other three algorithms. And every optimal value obtained is almost close to the known optimal value.

    Finally, the author takes Chinese 34 cities-TSP, a practical problem, for example and makes a comparison between ISOM and ACS based in optimal pathing values and the time. Table 4 and Table 5 show the coordinates of Chinese 34 cities and the comparison of the results of two algorithms, respectively.

    Table 4 Coordinates of Chinese 34 cities

    Table 5 Comparison of the results of two algorithms

    For the instance Chinese 34 cities-TSP, the optimal path graphs and their corresponing schematic diagrams of variation of global optimal path for two algorithms are shown in Figs.9-12.

    Fig.9 Diagram of variation of global optimal path for IACS

    Fig.10 Optimal path graph for IACS

    Fig.11 Diagram of variation of global optimal path for ACS

    Fig.12 Optimal path graph for ACS

    6 Algorithm complexity and convergence

    Consindering the space complexity of algorithm, we need to analyse the data applied to the algorithm in the process of realization. The data mainly come from two aspects: the description of the problem and the auxiliary data for the realization of algorithm. Taking TSP for example, first, if the scale of TSP is n, we need a n-dimensional two order distance matrix describing the characteristics of the problem itself. For ACS, another n-dimensional two order matrix is needed to describe pheromone concentration of globally shortest path for each iteration. Then, in the process of searching for optimal solution, a n-order one-dimensional matrix is required to establish a tabu list for each ant in order to ensure that the cities visited are no longer chosen in one iteration. In conclusion, we can easily find that the space complexity of ACS algorithm for each iteration may be evaluated as follows: O(n×n)+O(M×n), where M is the number of ants. In IACS algorithm, two n-dimensional two-order matrices are required to describe pheromone concentration of global shortest path and longest path, respectively, so the space complexity of IACS algorithm for each iteration may be evaluated as: O(n×n×n)+O(M×n).

    From the comparison between Figs.17 and 19, we can find that ISOM almost reaches the global optimal value when the 600th iteration, while SOM has not reached the global optimal value when the 2 500th iteration. In summary, in spite of a litter higher space complexity of IACS, it has a faster convergence and can achieve better quality results than ACS.

    7 Conclusion and discussion

    This paper proposes a kind of improved intnlligent ant colony optimization algorithm based on the ACS easily falling into a local optimum, and introduces a kind of new pheromone updating rule and the max-min pheromone system, which makes the ability of the ACS in searching for the globally optimal pth stronger. From the experimental results above, it can easily be found that the improved algorithm has very good searching ability in TSP. However, from Table 1, it can be found that the time of two algorithm is greatly long, which is a aspect need to be improved in the future.

    [1] Balachandar S R, Kannan K. Randomized gravitational emulation search algorithm for symmetric traveling salesman problem. Applied Mathematics and Computation, 2007, 192(2): 413-421.

    [2] Goldberg D E. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston, 1989.

    [3] Van Laarhoven P J, Aarts E H. Simulated annealing: theory and applications. Springer, 1987.

    [4] Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 59-69.

    [5] Fort J C. Solving a combinatorial problem via self-organizing process: an application of the Kohonen algorithm to the traveling salesman problem. Biological Cybernetics, 1988, 59(1): 33-40.

    [6] Dorigo M, Gambardella L M, Ant colony system: a cooperative learning approach to the traveling salesman problem, IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-56.

    [7] Mullen R J, Monekosso D, Barman S, et al. A review of ant algorithms. Expert Systems with Applications, 2009, 36 (6): 9608-9617.

    [8] Stützle T, Hoos H H. Max-min ant system. Future Generation Computer Systems, 2000, 16(8): 889-914.

    [9] ZHANG Wen-dong, BAI Yan-ping, HU Hong-ping. The incorporation of an efficient initialization method and parameter adaptation using self-organizing maps to solve the TSP. Applied Mathematics and Computation, 2006, 172(1): 603-623.

    [10] CHENG Chi-bin, MAO Chun-pin. A modified ant colony system for solving the traveling salesman problem with time windows. Mathematical and Computer Modelling, 2007, 46(9/10): 1225-1235.

    [11] Yadlapalli S, Malik W A, Darbha S, et al. A lagrangian-based algorithm for a multiple depot, multiple traveling salesmen problem. Nonlinear Analysis: Real World Applications, 2009, 10(4): 1990-1999.

    [12] Ruprecht-karls-universitat heidelberg. Symmetric traveling salesman problem (TSP): TSP data, best solutions for symmetric TSPs. [2012-08-15]. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

    [13] WU Ling-yun. The application for neural networks in combinatorial optimization and DNA sequencing. Department of Mathematics, Academy of Sciences, China, 2002: 51-56.

    date: 2012-09-30

    National Natural Science Foundation of China (No.61275120)

    SONG Jin-juan (jinjuansong666@163.com)

    CLD number: TP301.6 Document code: A

    1674-8042(2013)01-0023-07

    10.3969/j.issn.1674-8042.2013.01.006

    猜你喜歡
    艷萍
    Weighted norm inequalities for commutators of the Kato square root of second order elliptic operators on Rn
    基于JavaScript編程語言之 閉包技術(shù)在焦點(diǎn)輪播上的應(yīng)用
    A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY*
    藏在毛衣里的愛
    新少年(2021年3期)2021-03-28 02:30:27
    春分
    NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY?
    詠江石
    我的發(fā)現(xiàn)
    學(xué)吹泡泡
    可愛的小手套
    avwww免费| 爱豆传媒免费全集在线观看| 中文字幕人妻丝袜制服| 精品国产露脸久久av麻豆| 国产成人精品久久久久久| 久久久亚洲精品成人影院| 交换朋友夫妻互换小说| 国产极品天堂在线| 观看av在线不卡| 69精品国产乱码久久久| 亚洲伊人久久精品综合| av网站在线播放免费| 男女边吃奶边做爰视频| 久久精品久久精品一区二区三区| 国产精品久久久久成人av| 久久精品久久精品一区二区三区| 国产不卡av网站在线观看| 在线 av 中文字幕| √禁漫天堂资源中文www| av一本久久久久| 人人澡人人妻人| 国产免费一区二区三区四区乱码| 国产老妇伦熟女老妇高清| 精品国产超薄肉色丝袜足j| 亚洲图色成人| 欧美在线黄色| 黄片小视频在线播放| 日韩熟女老妇一区二区性免费视频| 制服丝袜香蕉在线| 欧美日韩成人在线一区二区| 国产欧美日韩综合在线一区二区| 国产精品免费大片| 亚洲精品av麻豆狂野| netflix在线观看网站| 亚洲天堂av无毛| 成人手机av| 精品一区二区三区四区五区乱码 | 亚洲欧美清纯卡通| 观看美女的网站| 亚洲一级一片aⅴ在线观看| 99热国产这里只有精品6| 国产男人的电影天堂91| 黑人欧美特级aaaaaa片| 亚洲国产欧美网| 水蜜桃什么品种好| 女人被躁到高潮嗷嗷叫费观| 免费黄频网站在线观看国产| 久久毛片免费看一区二区三区| 亚洲国产日韩一区二区| 男女免费视频国产| 欧美日韩福利视频一区二区| 大片电影免费在线观看免费| 亚洲 欧美一区二区三区| 五月天丁香电影| 妹子高潮喷水视频| 亚洲av在线观看美女高潮| 99久久人妻综合| 欧美 日韩 精品 国产| 欧美日韩精品网址| 妹子高潮喷水视频| 亚洲国产毛片av蜜桃av| 国产伦理片在线播放av一区| 精品国产露脸久久av麻豆| 国产极品天堂在线| 日韩制服骚丝袜av| 午夜久久久在线观看| 日日爽夜夜爽网站| 欧美 亚洲 国产 日韩一| 999精品在线视频| 欧美97在线视频| 另类亚洲欧美激情| 制服诱惑二区| 亚洲婷婷狠狠爱综合网| 免费少妇av软件| 高清黄色对白视频在线免费看| 国产男人的电影天堂91| 黄网站色视频无遮挡免费观看| 久久天堂一区二区三区四区| 男人操女人黄网站| 色播在线永久视频| 日本欧美视频一区| 亚洲av国产av综合av卡| 亚洲,一卡二卡三卡| 亚洲国产成人一精品久久久| 国产精品av久久久久免费| 亚洲一级一片aⅴ在线观看| 免费日韩欧美在线观看| a级片在线免费高清观看视频| 18在线观看网站| 9色porny在线观看| 亚洲图色成人| 高清黄色对白视频在线免费看| 日韩中文字幕视频在线看片| 男男h啪啪无遮挡| 好男人视频免费观看在线| √禁漫天堂资源中文www| 国产精品一区二区在线不卡| 大片免费播放器 马上看| 少妇人妻精品综合一区二区| 国产日韩欧美亚洲二区| 精品少妇黑人巨大在线播放| 亚洲精品aⅴ在线观看| 精品久久久久久电影网| 亚洲情色 制服丝袜| 亚洲欧美中文字幕日韩二区| 国产爽快片一区二区三区| 午夜免费观看性视频| 精品国产一区二区三区久久久樱花| 青草久久国产| 国产人伦9x9x在线观看| 无限看片的www在线观看| 国产乱来视频区| 免费看av在线观看网站| 国产乱来视频区| 亚洲av在线观看美女高潮| 极品少妇高潮喷水抽搐| 韩国精品一区二区三区| 国产成人午夜福利电影在线观看| 老司机影院毛片| 中文欧美无线码| 国产亚洲午夜精品一区二区久久| 色播在线永久视频| 亚洲精品国产区一区二| 另类亚洲欧美激情| 亚洲欧美一区二区三区黑人| 婷婷色综合大香蕉| 欧美少妇被猛烈插入视频| 亚洲精品国产av成人精品| 女的被弄到高潮叫床怎么办| 国产一卡二卡三卡精品 | 久久久精品国产亚洲av高清涩受| 精品第一国产精品| 亚洲少妇的诱惑av| 久久精品国产亚洲av高清一级| 伦理电影免费视频| 在线亚洲精品国产二区图片欧美| 久久精品国产亚洲av高清一级| 男女国产视频网站| 女人高潮潮喷娇喘18禁视频| 午夜日本视频在线| 高清不卡的av网站| 日韩电影二区| 国产欧美日韩综合在线一区二区| 午夜激情av网站| 国产成人一区二区在线| 日韩中文字幕视频在线看片| 国产一级毛片在线| 大话2 男鬼变身卡| 18禁裸乳无遮挡动漫免费视频| 91精品伊人久久大香线蕉| 老司机影院成人| 亚洲欧美一区二区三区久久| 啦啦啦 在线观看视频| 亚洲精品日韩在线中文字幕| 成人三级做爰电影| 午夜福利影视在线免费观看| 亚洲av在线观看美女高潮| 永久免费av网站大全| 十分钟在线观看高清视频www| 777久久人妻少妇嫩草av网站| 欧美人与善性xxx| 操美女的视频在线观看| a级毛片黄视频| 国产黄色视频一区二区在线观看| 国产熟女欧美一区二区| 欧美黑人欧美精品刺激| 亚洲av日韩精品久久久久久密 | 精品少妇一区二区三区视频日本电影 | 亚洲国产欧美网| 中文字幕亚洲精品专区| av视频免费观看在线观看| 亚洲第一区二区三区不卡| 日日撸夜夜添| 好男人视频免费观看在线| 国产爽快片一区二区三区| www.av在线官网国产| 亚洲天堂av无毛| 亚洲情色 制服丝袜| 欧美亚洲日本最大视频资源| 欧美日本中文国产一区发布| 两性夫妻黄色片| 中国国产av一级| 久久久久网色| 97精品久久久久久久久久精品| 午夜精品国产一区二区电影| 亚洲,欧美精品.| 亚洲一区二区三区欧美精品| 免费久久久久久久精品成人欧美视频| 成年人午夜在线观看视频| 丝袜喷水一区| 欧美日韩综合久久久久久| 日韩不卡一区二区三区视频在线| 亚洲精品久久午夜乱码| 亚洲精品中文字幕在线视频| 欧美激情 高清一区二区三区| 视频在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 在线观看www视频免费| 性高湖久久久久久久久免费观看| 爱豆传媒免费全集在线观看| 狂野欧美激情性bbbbbb| 欧美黑人欧美精品刺激| 亚洲美女黄色视频免费看| 天美传媒精品一区二区| 国产日韩欧美亚洲二区| 男人操女人黄网站| 亚洲五月色婷婷综合| 波野结衣二区三区在线| 日本爱情动作片www.在线观看| 午夜影院在线不卡| 国产极品粉嫩免费观看在线| 国产亚洲一区二区精品| 交换朋友夫妻互换小说| 亚洲综合精品二区| 看十八女毛片水多多多| 午夜免费鲁丝| 精品国产一区二区三区四区第35| 操美女的视频在线观看| 妹子高潮喷水视频| 亚洲激情五月婷婷啪啪| 亚洲国产欧美网| 久久天堂一区二区三区四区| 亚洲国产av新网站| 国产成人免费无遮挡视频| www.自偷自拍.com| 99re6热这里在线精品视频| 香蕉国产在线看| 久久综合国产亚洲精品| 久久久久久免费高清国产稀缺| 岛国毛片在线播放| 久久精品久久久久久噜噜老黄| 国产av国产精品国产| 国产精品蜜桃在线观看| 岛国毛片在线播放| 精品一区二区免费观看| 亚洲精品国产av成人精品| 一级爰片在线观看| 最近最新中文字幕大全免费视频 | 久久ye,这里只有精品| 国产精品国产三级国产专区5o| 国产一卡二卡三卡精品 | 久久精品国产综合久久久| 搡老岳熟女国产| 婷婷色麻豆天堂久久| 欧美国产精品一级二级三级| 亚洲三区欧美一区| 欧美人与善性xxx| 精品国产乱码久久久久久小说| 在线观看免费高清a一片| 乱人伦中国视频| 中文字幕另类日韩欧美亚洲嫩草| 精品久久蜜臀av无| 天天躁日日躁夜夜躁夜夜| 在线观看一区二区三区激情| 满18在线观看网站| 一边亲一边摸免费视频| 久久精品亚洲熟妇少妇任你| 99久久人妻综合| 亚洲精品美女久久久久99蜜臀 | 别揉我奶头~嗯~啊~动态视频 | 高清黄色对白视频在线免费看| 久久性视频一级片| 久久久久国产一级毛片高清牌| 王馨瑶露胸无遮挡在线观看| 久久久久久久大尺度免费视频| 久久av网站| 青草久久国产| 我的亚洲天堂| 啦啦啦啦在线视频资源| 国产av一区二区精品久久| 亚洲精品日韩在线中文字幕| 久久青草综合色| 日本91视频免费播放| 国产女主播在线喷水免费视频网站| 美女扒开内裤让男人捅视频| 国产野战对白在线观看| 亚洲国产av新网站| 熟妇人妻不卡中文字幕| 在线观看免费午夜福利视频| 免费看av在线观看网站| 免费人妻精品一区二区三区视频| 在线免费观看不下载黄p国产| 狠狠婷婷综合久久久久久88av| 国产av国产精品国产| 国产一卡二卡三卡精品 | 成年av动漫网址| 亚洲人成电影观看| 国产精品一区二区精品视频观看| 午夜福利网站1000一区二区三区| 夜夜骑夜夜射夜夜干| 成人免费观看视频高清| 日日摸夜夜添夜夜爱| 亚洲精品一二三| 777米奇影视久久| 精品亚洲乱码少妇综合久久| 国产精品秋霞免费鲁丝片| 欧美亚洲日本最大视频资源| 这个男人来自地球电影免费观看 | 乱人伦中国视频| 水蜜桃什么品种好| 亚洲久久久国产精品| 香蕉国产在线看| 少妇被粗大猛烈的视频| 精品人妻熟女毛片av久久网站| 国产成人精品福利久久| 男人操女人黄网站| 免费av中文字幕在线| 午夜福利,免费看| 日本爱情动作片www.在线观看| 91精品国产国语对白视频| xxxhd国产人妻xxx| 国产免费又黄又爽又色| 黄片无遮挡物在线观看| av电影中文网址| h视频一区二区三区| 纵有疾风起免费观看全集完整版| 国产成人一区二区在线| 99精品久久久久人妻精品| 老司机深夜福利视频在线观看 | 日韩欧美精品免费久久| 尾随美女入室| 色综合欧美亚洲国产小说| 少妇人妻精品综合一区二区| 国产不卡av网站在线观看| 亚洲天堂av无毛| 一边摸一边抽搐一进一出视频| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆 | 亚洲激情五月婷婷啪啪| 91精品国产国语对白视频| 一区二区日韩欧美中文字幕| 两性夫妻黄色片| 高清不卡的av网站| 丝袜喷水一区| 麻豆av在线久日| 99九九在线精品视频| 黄片小视频在线播放| 成人国产麻豆网| 久久久久精品性色| 国产毛片在线视频| 亚洲伊人久久精品综合| 欧美人与性动交α欧美软件| 久久精品国产a三级三级三级| 国产精品av久久久久免费| 美女扒开内裤让男人捅视频| 少妇 在线观看| 久久精品国产亚洲av涩爱| 午夜老司机福利片| 久久久久网色| 欧美黑人欧美精品刺激| 亚洲欧洲国产日韩| 国产精品久久久久成人av| 考比视频在线观看| 国产极品粉嫩免费观看在线| 2021少妇久久久久久久久久久| 国产成人午夜福利电影在线观看| 视频区图区小说| 美女国产高潮福利片在线看| 99国产精品免费福利视频| 菩萨蛮人人尽说江南好唐韦庄| 国产99久久九九免费精品| 国产成人免费观看mmmm| 亚洲精品av麻豆狂野| 午夜影院在线不卡| 欧美日韩视频精品一区| 成年人午夜在线观看视频| 人人妻人人爽人人添夜夜欢视频| 在线观看免费日韩欧美大片| 无限看片的www在线观看| 巨乳人妻的诱惑在线观看| 亚洲av欧美aⅴ国产| 国产视频首页在线观看| 飞空精品影院首页| 久久久久久久久久久免费av| av又黄又爽大尺度在线免费看| 国产日韩欧美视频二区| 亚洲久久久国产精品| 亚洲av福利一区| 青春草亚洲视频在线观看| 久久综合国产亚洲精品| 激情视频va一区二区三区| 欧美黑人欧美精品刺激| 制服诱惑二区| 无限看片的www在线观看| 精品一品国产午夜福利视频| 别揉我奶头~嗯~啊~动态视频 | 日本vs欧美在线观看视频| 伊人久久国产一区二区| 国产精品人妻久久久影院| 巨乳人妻的诱惑在线观看| 亚洲综合色网址| 精品国产一区二区三区四区第35| 精品一区在线观看国产| 精品少妇黑人巨大在线播放| 男男h啪啪无遮挡| 国产高清不卡午夜福利| 欧美人与性动交α欧美软件| 美女大奶头黄色视频| 欧美日韩精品网址| 欧美亚洲 丝袜 人妻 在线| 欧美人与性动交α欧美软件| 色94色欧美一区二区| 王馨瑶露胸无遮挡在线观看| 国产高清不卡午夜福利| 国产av国产精品国产| 18禁国产床啪视频网站| 亚洲精品久久午夜乱码| 免费高清在线观看日韩| 国产老妇伦熟女老妇高清| 母亲3免费完整高清在线观看| 最近的中文字幕免费完整| 亚洲精品,欧美精品| 美女视频免费永久观看网站| 国产一区二区在线观看av| 亚洲成人免费av在线播放| 国产男人的电影天堂91| 蜜桃在线观看..| 久久综合国产亚洲精品| 成人亚洲精品一区在线观看| 亚洲四区av| 午夜福利网站1000一区二区三区| 国产乱来视频区| 日本午夜av视频| 伊人久久大香线蕉亚洲五| 七月丁香在线播放| 一区福利在线观看| 综合色丁香网| 天天添夜夜摸| av女优亚洲男人天堂| 最新的欧美精品一区二区| 精品国产超薄肉色丝袜足j| 在线观看免费午夜福利视频| 天天躁狠狠躁夜夜躁狠狠躁| √禁漫天堂资源中文www| 欧美黄色片欧美黄色片| 丝袜美足系列| 十八禁网站网址无遮挡| 亚洲国产欧美在线一区| 国产精品一国产av| 美国免费a级毛片| 另类亚洲欧美激情| 久久久精品94久久精品| 一区福利在线观看| 国产97色在线日韩免费| 亚洲av综合色区一区| 日韩av不卡免费在线播放| 日韩欧美精品免费久久| 大香蕉久久网| 啦啦啦中文免费视频观看日本| 中文字幕人妻丝袜一区二区 | 在线观看免费高清a一片| 蜜桃在线观看..| 亚洲综合色网址| 新久久久久国产一级毛片| 观看av在线不卡| 国产乱来视频区| 国产女主播在线喷水免费视频网站| 国产免费一区二区三区四区乱码| 久久影院123| 国产人伦9x9x在线观看| 丁香六月天网| 操美女的视频在线观看| 国产爽快片一区二区三区| 69精品国产乱码久久久| 少妇人妻精品综合一区二区| 亚洲国产精品一区二区三区在线| netflix在线观看网站| 久久女婷五月综合色啪小说| 午夜福利视频精品| 国产一区二区三区综合在线观看| 大片电影免费在线观看免费| 日本欧美视频一区| 99久久精品国产亚洲精品| 久久久久久久大尺度免费视频| 这个男人来自地球电影免费观看 | 国产一区二区三区综合在线观看| 可以免费在线观看a视频的电影网站 | 久久久久精品人妻al黑| 人妻人人澡人人爽人人| 丝袜人妻中文字幕| 久久精品国产a三级三级三级| 一级片'在线观看视频| 国产毛片在线视频| 女人爽到高潮嗷嗷叫在线视频| 男的添女的下面高潮视频| 久久久精品区二区三区| 极品人妻少妇av视频| 日韩电影二区| 啦啦啦中文免费视频观看日本| 一级毛片黄色毛片免费观看视频| 狂野欧美激情性bbbbbb| 人人妻人人澡人人看| 久久狼人影院| 最近中文字幕高清免费大全6| 欧美日韩一区二区视频在线观看视频在线| 亚洲五月色婷婷综合| 成人国产麻豆网| 日韩精品免费视频一区二区三区| 我的亚洲天堂| 成年美女黄网站色视频大全免费| 黄网站色视频无遮挡免费观看| 国产一区二区在线观看av| 久久精品aⅴ一区二区三区四区| 国产99久久九九免费精品| 天堂中文最新版在线下载| 日韩中文字幕欧美一区二区 | 精品卡一卡二卡四卡免费| 精品福利永久在线观看| 午夜精品国产一区二区电影| 亚洲精品国产一区二区精华液| 亚洲,欧美,日韩| 亚洲精品国产av成人精品| 欧美日韩成人在线一区二区| videos熟女内射| av一本久久久久| 国产精品一区二区在线观看99| a级毛片黄视频| 美女主播在线视频| 国产免费又黄又爽又色| 久久青草综合色| 国产免费福利视频在线观看| 丝袜在线中文字幕| 久久久国产一区二区| 亚洲久久久国产精品| 欧美 亚洲 国产 日韩一| 欧美精品一区二区免费开放| 91成人精品电影| 久久午夜综合久久蜜桃| 一级毛片黄色毛片免费观看视频| 精品国产超薄肉色丝袜足j| 亚洲一级一片aⅴ在线观看| 国产伦理片在线播放av一区| 国语对白做爰xxxⅹ性视频网站| 欧美日韩成人在线一区二区| 午夜福利视频在线观看免费| 国产成人av激情在线播放| 欧美激情高清一区二区三区 | 成人国产麻豆网| 人妻 亚洲 视频| 午夜日韩欧美国产| 1024视频免费在线观看| av在线app专区| 亚洲情色 制服丝袜| 亚洲第一区二区三区不卡| 老司机靠b影院| 亚洲精品国产一区二区精华液| 欧美变态另类bdsm刘玥| 青春草亚洲视频在线观看| 国产免费又黄又爽又色| 久久精品人人爽人人爽视色| 一级毛片电影观看| 少妇被粗大的猛进出69影院| 成人18禁高潮啪啪吃奶动态图| 亚洲成人国产一区在线观看 | 亚洲综合色网址| 日韩视频在线欧美| 多毛熟女@视频| 亚洲人成网站在线观看播放| 看免费av毛片| 人人妻人人澡人人爽人人夜夜| 美国免费a级毛片| 91aial.com中文字幕在线观看| 少妇精品久久久久久久| 久久99热这里只频精品6学生| 欧美在线一区亚洲| 亚洲专区中文字幕在线 | 国产欧美亚洲国产| 久久久久精品性色| 亚洲国产av新网站| 亚洲男人天堂网一区| 老司机深夜福利视频在线观看 | 亚洲人成电影观看| 国产精品久久久av美女十八| 最近中文字幕高清免费大全6| 亚洲av欧美aⅴ国产| 国产在线一区二区三区精| 成人漫画全彩无遮挡| 肉色欧美久久久久久久蜜桃| 如何舔出高潮| 男女高潮啪啪啪动态图| 美女脱内裤让男人舔精品视频| 国产精品一二三区在线看| 精品午夜福利在线看| 女人久久www免费人成看片| 777久久人妻少妇嫩草av网站| 日本vs欧美在线观看视频| 中文字幕人妻丝袜一区二区 | 美女主播在线视频| 少妇被粗大的猛进出69影院| 一本大道久久a久久精品| 午夜av观看不卡| 久久婷婷青草| 一级毛片我不卡| 69精品国产乱码久久久| 欧美变态另类bdsm刘玥| 我要看黄色一级片免费的| 99香蕉大伊视频| 国产精品香港三级国产av潘金莲 | av在线app专区| 最近中文字幕高清免费大全6| 日韩一本色道免费dvd| 国产日韩欧美亚洲二区| av在线播放精品| 国产黄色免费在线视频| 免费少妇av软件| 大片免费播放器 马上看| 免费人妻精品一区二区三区视频| 男人添女人高潮全过程视频| netflix在线观看网站| 波多野结衣一区麻豆| 赤兔流量卡办理| 亚洲四区av| 精品一区二区三区四区五区乱码 | 肉色欧美久久久久久久蜜桃| 亚洲精品国产av蜜桃|