• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved ant colony algorithm and its application in optimal routing problem

    2013-11-01 01:29:39SONGJinjuan宋錦娟BAIYanping白艷萍
    關(guān)鍵詞:艷萍

    SONG Jin-juan (宋錦娟),BAI Yan-ping (白艷萍)

    (Dept. of Mathematics, North University of China, Taiyuan 030051, China)

    An improved ant colony algorithm and its application in optimal routing problem

    SONG Jin-juan (宋錦娟),BAI Yan-ping (白艷萍)

    (Dept. of Mathematics, North University of China, Taiyuan 030051, China)

    Ant colony system (ACS), a kind of ant colony algorithm, is an effective way of solving shortest path problem, however, it has some defects. In this paper, ACS is improved for avoiding getting stuck in a local minimum, whose defects mainly include the following two aspects: initial pheromone solution and pheromone updating. In order to learn the advantages of improved ant colony system (IACS), experiments are conducted for some times. First, it is applied to 8 traveling salesman problem (TSP) instances, and compared with three self-organizing map (SOM) algorithms. Then the author analyzes the space complexity and convergence of two algorithms and compares them. Simulation results show that IACS has much better performance in solving TSP, and it has certain theoretical reference value and practical significance.

    ant colony system (ACS); pheromone; traveling salesman problem; spcae complexity

    0 Introduction

    The traveling salesman problem (TSP)[1]is an important problem and also a hot topic in today’s social studies. It is similar to job-shop scheduling,quadratic assignment problem, all of which can be summarized to combinatorial optimization problem. There are many heuristic intelligent algorithms for solving TSP, such as genetic algorithm(GA)[2], simulated annealing (SA)[3], self-organizing map (SOM)[4,5], ant colony algorithm(ACA)[6,7], and so on.

    The intelligent algorithm ACS, a kind of improved ACA, has many characteristics such as parallelism, positive feedback and collaboration, however, it still easily gets stuck in a local minimum. So in this paper, an improved ant colony system (IACS) is presented. A new way of calculating initial pheromone value is proposed and ACS global updating rule is adjusted, in which, in addition to the globally shortest path, the pheromone in globally longest path is also updated. Furthermore, the max-min ant system[8]is introduced to effectively stagnation phenomenon caused by great difference of pheromone between the shortest path and the longest path, which can improve the global searching range and avoid local minimum.At last, the rationality and validity of IACS are verified through computer simulation.

    1 Description of TSP

    The traveling salesman problem is a well-known NP-hard combinatorial optimization problem. TSP[1,9-11]is described as follows: Given a set of N cities, there is a salesman who tries to find the shortest closed path to visit the above N cities under the condition that each city is visited exactly once. It can also be described mathematically as follows: let C be a collection of N cities, where C={c1,c2,…,cN}; and d(ci,cj)∈R+stands for the distance between two cities, where ci,cj∈C(1≤i, j≤N). To achieve a city sequence {cω(1), cω(2), …, cω(N)} under the condition that it makes objective function

    be the smallest, where ω(1),ω(2),… , ω(N) is a full array of 1,2,…,N.

    2 Model of ACS

    In ACS, while building a path of TSP, ants can visit edges and change their pheromone level by using the local updating rule. Once all ants have completed their paths, the pheromone level is updated by using the global updating rule.

    2.1 ACS state transition rule

    In ACS, the state transition rule can be described as follows: an ant positioned on node i chooses the city j to move to using the rule given by

    2.2 ACS local updating rule

    After choosing a city (that means to visit a edge), the pheromone level of this edge is updated by the local updating rule:

    where ξ∈[0,1] is the local pheromone decaying parameter, and τ0is the initial pheromone concentration value of all edges.

    2.3 ACS global updating rule

    When all ants have completed their closed paths, only the globally best ant who builds the shortest path from the beginning of the trial is allowed to deposit pheromone. The pheromone level is updated by the global updating rule:

    where

    where ρ∈(0,1) is global pheromone decaying parameter, Δτijis pheromone increment of edge in this circulation, and Lgbis the length of the globally optimal path found so far.

    3 IACS

    The ACS is an improved ant colony optimization algorithm, the performance of which is improved remarkably, and it is greatly effective in solving TSP and other shortest path problems. However, it still easily gets stuck in a local minimum, so in this paper, some respects must be discussed in the following.

    3.1 Way of getting initial pheromone

    3.2 Pheromone updating rule

    In ACS, only the pheromone in globally shortest path is allowed to be updated, but in this paper, in addition to the globally shortest path, the pheromone in globally longest path is also updated. The pheromone updating rules in globally shortest and longest path are expressed as

    where ρ is the global pheromone decaying parameter, Lbestand Lworstare the length of the shortest and longest path, respectively.

    3.3 Max-min pheromone system

    After pheromone being updated, in order to effectively suppress stagnation phenomenon caused by great difference of pheromone between the shortest and the longest path, the pheromone in every edge is limited in a range [τmin,τmax][8], where τmin=10, τmax=0.0001.

    4 Steps of IACS

    The steps of IACS are represented as follows:

    Step 1: Parameter initialization

    Different parameter settings have different influence on experimental results of algorithm, so some experiments are conducted by setting a large number of different parameters, and ultimately the optimal parameter combination is got: α=1,β=2,ζ=0.5,ρ=0.6,q0=0.9, m=5,MaxNc=5 000, where MaxNc represent the maximum number of iteration.

    Step 2: Finding the optimal path

    In this paper, a set of m ants are placed on n starting nodes (n cities) randomly, and the starting nodes which have been visited by ants are placed in the current solution set tabuk. Each ant will visit the next city j by applying the state transition rules Eqs.(2) and (3), then j is also placed in the current solution set tabuk.

    Step 3: Pheromone local updating

    The pheromone in the paths!that ants have passed is updated by local updating rule, Eq.(4), then it is determined whether pheromone τij(where τijis the pheromone of path ) is contained in the range [τmin,τmax], if τij>τmax, let τij=τmax; if τij<τmin, let τij=τmin; otherwise, let τijbe itself.

    Step 4: Repeating step 2 and 3 until all ants complete their closed path.

    Step 5: After iterations of the above four steps, there will be m closed paths, comparing the lengths of m paths, the optimal solution and the worst solution are got and stored. Then the pheromone in the shortest path and the longest path is updated by Eqs.(7) and (8).

    Step 6: A set of m ants are placed on n starting nodes (n cities) randomly again, according to step 2, 3 and 4 for optimization, which is repeated, until the 1 000 iterations.

    Step 7: The program of path optimization ends until the number of iterations reaches the maximum value. Comparing with the 1 000 optimal solutions of 1 000 iterations, the globally optimal solution will be got, which is also the optimal solution of this algorithm searching for.

    5 Experimental results

    In order to verify the validity of IACS, 8 examples (such as lin105,ch130, ch150, rat195 and KroA200,etc.) obtained from the general TSPLIB[12]are adopted for experiments. For each example, it is conducted for 10 times, and then the best, average value and the relative error. The experimental results are shown in are calculated, respectively Table 1 and Table 2.

    Table 1 Comparison of the best value and time of two algorithms for 10 times

    Table 2 Comparison of the average value and relative error of two algorithms

    The above comparison of experimental results shows that the optimal value and average value obtained by the improved algorithm are greatly better, and relative error is much smaller than that of ACS, so the improved algorithm introduced in this paper is an effective algorithm. The following diagrams are the experimental results of the improved algorithm. (x stands for longitude, Y stands for latitude, and the unit for each of them is radian.)

    Fig.1 Optimal path graph of ch130

    Fig.2 Optimal path graph of eil51

    Fig.3 Optimal path graph of KroA200

    Fig.4 Optimal path graph of lin105

    Fig.5 Optimal path graph of ch150

    Fig.6 Optimal path graph of rat195

    Fig.7 Optimal path graph of st70

    Fig.8 Optimal path graph of pr152

    In order to further verify the fact that the improved algorithm has better performance, the results obtained by the improved algorithm are compared with that by three kinds of SOM algorithms: Favata-Walke Algorithm (F-W), non-corrdinate self-organizing may (NCSOM) and asymmetric self-organizing map (ASOM)[13]. The comparison results are shown in Table 3.

    Table 3 Comparison results of four algorithms

    From Table 3, it can be seen that for each example of TSP, the experimental results of the improved algorithm are greatly better than other three algorithms. And every optimal value obtained is almost close to the known optimal value.

    Finally, the author takes Chinese 34 cities-TSP, a practical problem, for example and makes a comparison between ISOM and ACS based in optimal pathing values and the time. Table 4 and Table 5 show the coordinates of Chinese 34 cities and the comparison of the results of two algorithms, respectively.

    Table 4 Coordinates of Chinese 34 cities

    Table 5 Comparison of the results of two algorithms

    For the instance Chinese 34 cities-TSP, the optimal path graphs and their corresponing schematic diagrams of variation of global optimal path for two algorithms are shown in Figs.9-12.

    Fig.9 Diagram of variation of global optimal path for IACS

    Fig.10 Optimal path graph for IACS

    Fig.11 Diagram of variation of global optimal path for ACS

    Fig.12 Optimal path graph for ACS

    6 Algorithm complexity and convergence

    Consindering the space complexity of algorithm, we need to analyse the data applied to the algorithm in the process of realization. The data mainly come from two aspects: the description of the problem and the auxiliary data for the realization of algorithm. Taking TSP for example, first, if the scale of TSP is n, we need a n-dimensional two order distance matrix describing the characteristics of the problem itself. For ACS, another n-dimensional two order matrix is needed to describe pheromone concentration of globally shortest path for each iteration. Then, in the process of searching for optimal solution, a n-order one-dimensional matrix is required to establish a tabu list for each ant in order to ensure that the cities visited are no longer chosen in one iteration. In conclusion, we can easily find that the space complexity of ACS algorithm for each iteration may be evaluated as follows: O(n×n)+O(M×n), where M is the number of ants. In IACS algorithm, two n-dimensional two-order matrices are required to describe pheromone concentration of global shortest path and longest path, respectively, so the space complexity of IACS algorithm for each iteration may be evaluated as: O(n×n×n)+O(M×n).

    From the comparison between Figs.17 and 19, we can find that ISOM almost reaches the global optimal value when the 600th iteration, while SOM has not reached the global optimal value when the 2 500th iteration. In summary, in spite of a litter higher space complexity of IACS, it has a faster convergence and can achieve better quality results than ACS.

    7 Conclusion and discussion

    This paper proposes a kind of improved intnlligent ant colony optimization algorithm based on the ACS easily falling into a local optimum, and introduces a kind of new pheromone updating rule and the max-min pheromone system, which makes the ability of the ACS in searching for the globally optimal pth stronger. From the experimental results above, it can easily be found that the improved algorithm has very good searching ability in TSP. However, from Table 1, it can be found that the time of two algorithm is greatly long, which is a aspect need to be improved in the future.

    [1] Balachandar S R, Kannan K. Randomized gravitational emulation search algorithm for symmetric traveling salesman problem. Applied Mathematics and Computation, 2007, 192(2): 413-421.

    [2] Goldberg D E. Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston, 1989.

    [3] Van Laarhoven P J, Aarts E H. Simulated annealing: theory and applications. Springer, 1987.

    [4] Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 59-69.

    [5] Fort J C. Solving a combinatorial problem via self-organizing process: an application of the Kohonen algorithm to the traveling salesman problem. Biological Cybernetics, 1988, 59(1): 33-40.

    [6] Dorigo M, Gambardella L M, Ant colony system: a cooperative learning approach to the traveling salesman problem, IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-56.

    [7] Mullen R J, Monekosso D, Barman S, et al. A review of ant algorithms. Expert Systems with Applications, 2009, 36 (6): 9608-9617.

    [8] Stützle T, Hoos H H. Max-min ant system. Future Generation Computer Systems, 2000, 16(8): 889-914.

    [9] ZHANG Wen-dong, BAI Yan-ping, HU Hong-ping. The incorporation of an efficient initialization method and parameter adaptation using self-organizing maps to solve the TSP. Applied Mathematics and Computation, 2006, 172(1): 603-623.

    [10] CHENG Chi-bin, MAO Chun-pin. A modified ant colony system for solving the traveling salesman problem with time windows. Mathematical and Computer Modelling, 2007, 46(9/10): 1225-1235.

    [11] Yadlapalli S, Malik W A, Darbha S, et al. A lagrangian-based algorithm for a multiple depot, multiple traveling salesmen problem. Nonlinear Analysis: Real World Applications, 2009, 10(4): 1990-1999.

    [12] Ruprecht-karls-universitat heidelberg. Symmetric traveling salesman problem (TSP): TSP data, best solutions for symmetric TSPs. [2012-08-15]. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

    [13] WU Ling-yun. The application for neural networks in combinatorial optimization and DNA sequencing. Department of Mathematics, Academy of Sciences, China, 2002: 51-56.

    date: 2012-09-30

    National Natural Science Foundation of China (No.61275120)

    SONG Jin-juan (jinjuansong666@163.com)

    CLD number: TP301.6 Document code: A

    1674-8042(2013)01-0023-07

    10.3969/j.issn.1674-8042.2013.01.006

    猜你喜歡
    艷萍
    Weighted norm inequalities for commutators of the Kato square root of second order elliptic operators on Rn
    基于JavaScript編程語言之 閉包技術(shù)在焦點(diǎn)輪播上的應(yīng)用
    A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY*
    藏在毛衣里的愛
    新少年(2021年3期)2021-03-28 02:30:27
    春分
    NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY?
    詠江石
    我的發(fā)現(xiàn)
    學(xué)吹泡泡
    可愛的小手套
    欧美激情久久久久久爽电影| 91久久精品国产一区二区成人| 日韩三级伦理在线观看| 女生性感内裤真人,穿戴方法视频| 久久久久国内视频| 亚洲欧美清纯卡通| 99热全是精品| 欧美丝袜亚洲另类| 18+在线观看网站| 国产成人一区二区在线| 亚洲乱码一区二区免费版| 麻豆国产97在线/欧美| 男人的好看免费观看在线视频| 午夜福利成人在线免费观看| 特级一级黄色大片| .国产精品久久| 精品久久久久久久久亚洲| 日韩,欧美,国产一区二区三区 | 在线免费观看不下载黄p国产| 国产精品一区二区免费欧美| 在线天堂最新版资源| 男女做爰动态图高潮gif福利片| 日本爱情动作片www.在线观看 | 国内揄拍国产精品人妻在线| 卡戴珊不雅视频在线播放| 久久草成人影院| 亚洲国产日韩欧美精品在线观看| 国产精品久久久久久亚洲av鲁大| 欧美一区二区亚洲| 免费看日本二区| 久久久久免费精品人妻一区二区| 亚洲人成网站在线播放欧美日韩| 精品乱码久久久久久99久播| 老司机影院成人| 国产高清三级在线| 免费在线观看影片大全网站| 成年女人永久免费观看视频| 欧美色欧美亚洲另类二区| 在线国产一区二区在线| 亚洲av中文av极速乱| 国产一区二区激情短视频| 禁无遮挡网站| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av天美| 国产欧美日韩精品一区二区| 欧美三级亚洲精品| 99在线人妻在线中文字幕| 毛片女人毛片| 国产在线男女| 亚洲乱码一区二区免费版| 露出奶头的视频| 热99re8久久精品国产| 免费一级毛片在线播放高清视频| 悠悠久久av| 亚洲熟妇中文字幕五十中出| 亚洲欧美中文字幕日韩二区| 日韩欧美在线乱码| 国产真实伦视频高清在线观看| 丰满乱子伦码专区| 又爽又黄无遮挡网站| 一区二区三区免费毛片| 久久精品国产鲁丝片午夜精品| 网址你懂的国产日韩在线| 日本 av在线| 久久6这里有精品| 女的被弄到高潮叫床怎么办| 黄色日韩在线| 五月玫瑰六月丁香| 好男人在线观看高清免费视频| 亚洲在线自拍视频| 老熟妇仑乱视频hdxx| 亚洲内射少妇av| 在线免费十八禁| 国产av麻豆久久久久久久| 1000部很黄的大片| 一级毛片久久久久久久久女| 国产单亲对白刺激| 又黄又爽又免费观看的视频| 久久精品国产自在天天线| 亚洲aⅴ乱码一区二区在线播放| 色av中文字幕| 三级经典国产精品| 十八禁网站免费在线| 1024手机看黄色片| 国产精品不卡视频一区二区| 少妇人妻一区二区三区视频| 中国美女看黄片| 国产综合懂色| 国产乱人视频| 亚洲av第一区精品v没综合| 晚上一个人看的免费电影| 婷婷亚洲欧美| 亚洲熟妇中文字幕五十中出| 日本黄色片子视频| 三级男女做爰猛烈吃奶摸视频| www.色视频.com| 99riav亚洲国产免费| av在线老鸭窝| 久久欧美精品欧美久久欧美| 成人午夜高清在线视频| 内地一区二区视频在线| av在线蜜桃| 九色成人免费人妻av| 能在线免费观看的黄片| 久久久久久久久久成人| 菩萨蛮人人尽说江南好唐韦庄 | 日韩欧美三级三区| 美女 人体艺术 gogo| 亚洲精华国产精华液的使用体验 | 日本爱情动作片www.在线观看 | 亚洲内射少妇av| 国产中年淑女户外野战色| 中文资源天堂在线| 久久精品国产亚洲av香蕉五月| 亚洲精品久久国产高清桃花| 免费一级毛片在线播放高清视频| 3wmmmm亚洲av在线观看| 给我免费播放毛片高清在线观看| 可以在线观看毛片的网站| av在线观看视频网站免费| av在线天堂中文字幕| 中出人妻视频一区二区| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人av| 国产单亲对白刺激| 欧美区成人在线视频| 国产一区亚洲一区在线观看| 国产精品一二三区在线看| 人妻制服诱惑在线中文字幕| 国产精品久久久久久精品电影| 男插女下体视频免费在线播放| 欧美最黄视频在线播放免费| 亚洲精品日韩av片在线观看| 一级毛片我不卡| 日韩大尺度精品在线看网址| 国产一区二区三区av在线 | 在线播放国产精品三级| 成人av一区二区三区在线看| 亚洲av第一区精品v没综合| 国内久久婷婷六月综合欲色啪| 免费观看在线日韩| 综合色丁香网| 国产色爽女视频免费观看| 一进一出抽搐gif免费好疼| 色综合站精品国产| 九九爱精品视频在线观看| 在线观看免费视频日本深夜| 亚洲18禁久久av| 亚洲七黄色美女视频| 晚上一个人看的免费电影| 亚洲成av人片在线播放无| 12—13女人毛片做爰片一| 欧美性猛交╳xxx乱大交人| 成人亚洲精品av一区二区| 一个人看的www免费观看视频| 日韩欧美三级三区| 99热6这里只有精品| 日本熟妇午夜| 久久人人爽人人爽人人片va| 欧美成人免费av一区二区三区| 在线观看66精品国产| 天堂动漫精品| 久久久国产成人精品二区| av天堂中文字幕网| 国产精品三级大全| 国产精品一二三区在线看| 日韩成人伦理影院| 久久国产乱子免费精品| 好男人在线观看高清免费视频| 久久亚洲国产成人精品v| 亚洲美女黄片视频| 中文字幕熟女人妻在线| 中文字幕精品亚洲无线码一区| 免费看光身美女| 免费不卡的大黄色大毛片视频在线观看 | 成人午夜高清在线视频| av专区在线播放| 国产精品无大码| 美女内射精品一级片tv| 国产伦在线观看视频一区| 国产蜜桃级精品一区二区三区| 精品人妻熟女av久视频| 成人亚洲欧美一区二区av| 国产精品日韩av在线免费观看| 成年女人毛片免费观看观看9| 国产精品亚洲一级av第二区| 九九热线精品视视频播放| 亚洲成a人片在线一区二区| 免费av不卡在线播放| 床上黄色一级片| 久久精品国产99精品国产亚洲性色| .国产精品久久| 97在线视频观看| 人妻久久中文字幕网| 日本黄色视频三级网站网址| 狠狠狠狠99中文字幕| 久久久精品大字幕| 日韩欧美精品v在线| 欧美成人一区二区免费高清观看| 成人欧美大片| 国产成人91sexporn| 久久精品夜色国产| 国产一级毛片七仙女欲春2| 偷拍熟女少妇极品色| 国产av一区在线观看免费| 日韩精品青青久久久久久| 亚洲高清免费不卡视频| 国产成人一区二区在线| 亚洲av免费在线观看| 亚洲精品456在线播放app| 少妇高潮的动态图| 国产精品精品国产色婷婷| 国产av一区在线观看免费| 欧美又色又爽又黄视频| 精品久久久久久久末码| 精品少妇黑人巨大在线播放 | 久久99热这里只有精品18| 51国产日韩欧美| 伦精品一区二区三区| 丰满人妻一区二区三区视频av| 在线看三级毛片| 中文亚洲av片在线观看爽| 中国国产av一级| 国产高清三级在线| 久久精品国产亚洲av香蕉五月| 99热6这里只有精品| 精品不卡国产一区二区三区| 欧美日韩乱码在线| 日韩欧美在线乱码| 亚洲内射少妇av| 蜜桃久久精品国产亚洲av| 亚洲激情五月婷婷啪啪| 国产精品嫩草影院av在线观看| 精品少妇黑人巨大在线播放 | 日日撸夜夜添| 老司机福利观看| 中文字幕av成人在线电影| 久久午夜福利片| 日日摸夜夜添夜夜添av毛片| АⅤ资源中文在线天堂| 精品久久久久久久久久久久久| 99国产极品粉嫩在线观看| 午夜免费激情av| 伊人久久精品亚洲午夜| 日韩强制内射视频| 老师上课跳d突然被开到最大视频| 无遮挡黄片免费观看| 亚洲国产色片| 精品一区二区三区视频在线观看免费| 中国国产av一级| 精品久久久久久久久久久久久| 身体一侧抽搐| 久久午夜福利片| 亚洲成av人片在线播放无| 亚洲av免费在线观看| 免费看av在线观看网站| 久久久午夜欧美精品| 男插女下体视频免费在线播放| 国产精品乱码一区二三区的特点| 变态另类丝袜制服| 久久久久久久亚洲中文字幕| 日韩欧美一区二区三区在线观看| 一级av片app| 成人av一区二区三区在线看| videossex国产| 国产精品99久久久久久久久| 亚洲人成网站在线播| 久久久久久九九精品二区国产| 成人无遮挡网站| 国产午夜精品论理片| 国产精品一区二区三区四区久久| 国产在视频线在精品| 欧美日韩在线观看h| 国产欧美日韩一区二区精品| 国产亚洲精品久久久久久毛片| 国产高清有码在线观看视频| 午夜视频国产福利| av免费在线看不卡| 国产乱人偷精品视频| 人人妻,人人澡人人爽秒播| 99国产精品一区二区蜜桃av| 国产伦一二天堂av在线观看| 淫秽高清视频在线观看| 啦啦啦观看免费观看视频高清| 少妇人妻一区二区三区视频| 桃色一区二区三区在线观看| 在线观看av片永久免费下载| 久99久视频精品免费| 国产老妇女一区| 女人十人毛片免费观看3o分钟| 18+在线观看网站| 欧美精品国产亚洲| 午夜久久久久精精品| 亚洲精品成人久久久久久| 韩国av在线不卡| 精品熟女少妇av免费看| 99久久无色码亚洲精品果冻| 欧美不卡视频在线免费观看| 免费看美女性在线毛片视频| 国产伦在线观看视频一区| 久久久久久国产a免费观看| 亚洲美女搞黄在线观看 | 九九爱精品视频在线观看| 免费看a级黄色片| 国产成人aa在线观看| 成人特级黄色片久久久久久久| 免费人成视频x8x8入口观看| 白带黄色成豆腐渣| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩东京热| 久久久久久大精品| 成人精品一区二区免费| 亚洲无线在线观看| 小蜜桃在线观看免费完整版高清| 成人国产麻豆网| 亚洲成a人片在线一区二区| 天天躁夜夜躁狠狠久久av| 久久国内精品自在自线图片| 国产极品精品免费视频能看的| 亚洲aⅴ乱码一区二区在线播放| 欧美激情国产日韩精品一区| 男女之事视频高清在线观看| 成人永久免费在线观看视频| 深爱激情五月婷婷| 97超碰精品成人国产| 色哟哟·www| 啦啦啦观看免费观看视频高清| 亚洲一级一片aⅴ在线观看| 色尼玛亚洲综合影院| av国产免费在线观看| 日本黄色片子视频| 午夜福利18| 97超级碰碰碰精品色视频在线观看| 国产高清视频在线播放一区| 国产片特级美女逼逼视频| 小说图片视频综合网站| 久久久久九九精品影院| 亚洲av二区三区四区| av在线播放精品| 国产午夜精品论理片| 国产一区二区在线av高清观看| 亚洲在线观看片| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美| 亚洲av成人av| 免费观看精品视频网站| 女生性感内裤真人,穿戴方法视频| 国产色婷婷99| 国产黄a三级三级三级人| 亚洲欧美日韩高清在线视频| АⅤ资源中文在线天堂| 看片在线看免费视频| 国产一区二区激情短视频| 国产精品电影一区二区三区| 久久精品影院6| 黄色欧美视频在线观看| 国产成人福利小说| 看片在线看免费视频| 亚洲国产欧美人成| 亚洲欧美成人精品一区二区| 亚洲av一区综合| 中国美白少妇内射xxxbb| 激情 狠狠 欧美| 少妇的逼水好多| 国产一区二区激情短视频| 国产伦精品一区二区三区四那| 免费不卡的大黄色大毛片视频在线观看 | 国国产精品蜜臀av免费| a级一级毛片免费在线观看| 国产av不卡久久| 亚洲欧美日韩高清在线视频| 日韩精品有码人妻一区| 国产精品永久免费网站| 国产精品一及| 欧洲精品卡2卡3卡4卡5卡区| 日产精品乱码卡一卡2卡三| 亚洲国产精品成人久久小说 | 久久婷婷人人爽人人干人人爱| 欧美中文日本在线观看视频| 亚洲国产精品sss在线观看| 蜜桃亚洲精品一区二区三区| 看非洲黑人一级黄片| 国产中年淑女户外野战色| 91久久精品电影网| 午夜激情欧美在线| 人人妻人人澡欧美一区二区| 免费看日本二区| 日韩中字成人| 又爽又黄a免费视频| 色综合亚洲欧美另类图片| 精品久久久久久久久久久久久| 亚洲av.av天堂| 最近最新中文字幕大全电影3| 久久精品久久久久久噜噜老黄 | 麻豆乱淫一区二区| av在线观看视频网站免费| 干丝袜人妻中文字幕| 久久国产乱子免费精品| 日本在线视频免费播放| 亚洲av免费在线观看| 免费观看精品视频网站| 亚洲无线在线观看| 国产免费男女视频| av卡一久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品影视一区二区三区av| 免费av不卡在线播放| 亚洲va在线va天堂va国产| 亚洲国产高清在线一区二区三| 精品欧美国产一区二区三| 12—13女人毛片做爰片一| 久99久视频精品免费| 22中文网久久字幕| 非洲黑人性xxxx精品又粗又长| 人人妻,人人澡人人爽秒播| 99在线视频只有这里精品首页| 你懂的网址亚洲精品在线观看 | 天天躁日日操中文字幕| 亚洲中文字幕日韩| 日韩 亚洲 欧美在线| 国产精品久久久久久亚洲av鲁大| 久久草成人影院| 国内揄拍国产精品人妻在线| 久久久a久久爽久久v久久| 哪里可以看免费的av片| 麻豆一二三区av精品| 18禁在线播放成人免费| 日韩精品中文字幕看吧| 美女cb高潮喷水在线观看| 久久精品91蜜桃| 成人性生交大片免费视频hd| av在线观看视频网站免费| 特大巨黑吊av在线直播| 亚洲一级一片aⅴ在线观看| 联通29元200g的流量卡| 欧美性猛交╳xxx乱大交人| 国产精品乱码一区二三区的特点| 国模一区二区三区四区视频| 12—13女人毛片做爰片一| 久久精品夜色国产| 成人美女网站在线观看视频| 哪里可以看免费的av片| 亚洲成av人片在线播放无| 91在线精品国自产拍蜜月| 免费av不卡在线播放| 午夜精品在线福利| 蜜臀久久99精品久久宅男| 亚洲欧美精品综合久久99| 丰满的人妻完整版| av专区在线播放| 免费看美女性在线毛片视频| 99久久九九国产精品国产免费| 高清毛片免费观看视频网站| 国内少妇人妻偷人精品xxx网站| 久久久久性生活片| eeuss影院久久| 国产综合懂色| 国产精品爽爽va在线观看网站| 日本熟妇午夜| 免费观看的影片在线观看| 国产精品综合久久久久久久免费| 麻豆av噜噜一区二区三区| 男女下面进入的视频免费午夜| 久久人妻av系列| 有码 亚洲区| 内射极品少妇av片p| 久久午夜福利片| 成人av一区二区三区在线看| 男人狂女人下面高潮的视频| 久久久成人免费电影| 欧美一级a爱片免费观看看| 嫩草影院精品99| 成年版毛片免费区| 99在线视频只有这里精品首页| 2021天堂中文幕一二区在线观| 高清毛片免费看| 国产亚洲91精品色在线| 亚洲无线观看免费| 国产精品久久视频播放| ponron亚洲| 欧美3d第一页| 亚洲综合色惰| 亚洲av中文字字幕乱码综合| or卡值多少钱| 免费av不卡在线播放| 亚洲欧美中文字幕日韩二区| av国产免费在线观看| 又黄又爽又刺激的免费视频.| 亚洲精品粉嫩美女一区| 不卡视频在线观看欧美| 高清毛片免费观看视频网站| 91午夜精品亚洲一区二区三区| 老司机福利观看| 日本精品一区二区三区蜜桃| 亚洲,欧美,日韩| 亚洲va在线va天堂va国产| 97碰自拍视频| 日本在线视频免费播放| 一级毛片电影观看 | 成年av动漫网址| 天堂√8在线中文| 国产免费男女视频| 给我免费播放毛片高清在线观看| 亚洲美女黄片视频| 真实男女啪啪啪动态图| 国产精品女同一区二区软件| 在线天堂最新版资源| 在线免费十八禁| www日本黄色视频网| 亚洲在线观看片| 在线观看美女被高潮喷水网站| 日本成人三级电影网站| 亚洲人与动物交配视频| 草草在线视频免费看| 国产精品野战在线观看| 国产精品精品国产色婷婷| 一个人看的www免费观看视频| 老司机影院成人| 久久国产乱子免费精品| 精品久久久噜噜| 舔av片在线| 少妇高潮的动态图| 麻豆国产av国片精品| 国产真实伦视频高清在线观看| 久久人妻av系列| 国产精品女同一区二区软件| av.在线天堂| 国产亚洲欧美98| 久久中文看片网| 久久久久免费精品人妻一区二区| 高清毛片免费观看视频网站| 日韩精品青青久久久久久| 别揉我奶头 嗯啊视频| 女生性感内裤真人,穿戴方法视频| 大香蕉久久网| 国产麻豆成人av免费视频| 婷婷六月久久综合丁香| 日韩欧美在线乱码| 性色avwww在线观看| 2021天堂中文幕一二区在线观| 国产aⅴ精品一区二区三区波| 18禁在线播放成人免费| 国产午夜福利久久久久久| 亚洲精品456在线播放app| 精品午夜福利在线看| 亚洲欧美日韩东京热| 国产淫片久久久久久久久| 国产精品福利在线免费观看| 久久久久久久亚洲中文字幕| а√天堂www在线а√下载| 两个人的视频大全免费| 精品日产1卡2卡| 色哟哟·www| 亚洲av二区三区四区| 一级黄片播放器| 免费电影在线观看免费观看| 国产午夜精品论理片| 午夜精品在线福利| 国产一区二区在线观看日韩| 真人做人爱边吃奶动态| 久久久久国内视频| 亚洲自拍偷在线| 亚洲欧美日韩高清在线视频| 日日摸夜夜添夜夜爱| ponron亚洲| 国产精品伦人一区二区| 欧美精品国产亚洲| 99久久九九国产精品国产免费| 51国产日韩欧美| 国产精品一及| 不卡视频在线观看欧美| 国产成人aa在线观看| 国产成人91sexporn| 伦精品一区二区三区| 精品一区二区三区视频在线| 国内揄拍国产精品人妻在线| 亚洲成av人片在线播放无| 禁无遮挡网站| 欧美成人a在线观看| 亚洲精品日韩在线中文字幕 | 日本-黄色视频高清免费观看| 国产精品久久久久久久久免| 久久久久久国产a免费观看| 欧美日韩综合久久久久久| 久久久国产成人精品二区| 99在线人妻在线中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 桃色一区二区三区在线观看| 亚洲av成人av| 免费av不卡在线播放| 亚洲一区高清亚洲精品| 亚洲精品粉嫩美女一区| 小说图片视频综合网站| 蜜桃亚洲精品一区二区三区| 97在线视频观看| 高清午夜精品一区二区三区 | 国产精品国产高清国产av| 非洲黑人性xxxx精品又粗又长| 在线免费观看的www视频| 少妇熟女aⅴ在线视频| 熟女人妻精品中文字幕| 我的女老师完整版在线观看| 少妇熟女aⅴ在线视频| 国产中年淑女户外野战色| 五月玫瑰六月丁香| 人人妻人人澡人人爽人人夜夜 | 欧美又色又爽又黄视频| 淫妇啪啪啪对白视频| 夜夜爽天天搞| 国产午夜精品久久久久久一区二区三区 | 夜夜看夜夜爽夜夜摸| 老司机福利观看| 欧美性猛交╳xxx乱大交人| 成人av一区二区三区在线看| 国产在视频线在精品|