• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Odorant discrimination using functional near-infrared spectroscopy of the main olfactory bulb in rats

    2013-11-01 01:26:25InwonJungKyungjinYouHyunchoolShinChinsuKohHyungcheulShinJaewooShin

    Inwon Jung, Kyungjin You, Hyunchool Shin, Chinsu Koh, Hyungcheul Shin, Jaewoo Shin

    (1. Dept. of Electronic Engineering, Soongsil University, Seoul 156-743, Korea;2. Dept. of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea)

    Odorant discrimination using functional near-infrared spectroscopy of the main olfactory bulb in rats

    Inwon Jung1, Kyungjin You1, Hyunchool Shin1, Chinsu Koh2, Hyungcheul Shin2, Jaewoo Shin2

    (1. Dept. of Electronic Engineering, Soongsil University, Seoul 156-743, Korea;2. Dept. of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea)

    We characterize the hemodynamic response changes in the main olfactory bulb (MOB) of anesthetized rats with near-infrared spectroscopy (NIRS) during the presentation of three different odorants: (i) plain air as a reference (Blank), (ii) 2-heptanone (HEP), and (iii) isopropylbenzene (Ib). Odorants generate different changes in the concentrations of oxy-hemoglobin. Our results suggest that NIRS technology might be useful in discriminating various odorants in a non-invasive manner using animals with a superb olfactory system.

    brain-machine interface (BMI); functional near-infrared spectroscopy (fNIRS); main olfactory bulb (MOB); oxyhemoglobin (HbO2); Beer-Lambert law; maximum likelihood estimation (MLE)

    Near infrared spectroscopy (NRIS) is a technique that enables noninvasive measurement of concentration changes and optical coefficients (scattering and absorption coefficients) in chromophores such as oxyhemoglobin (HbO2), deoxyhemoglobin (Hbr), myoglobin, cytochrome oxidase, water, lipid and protein, and in human tissues using lights that are harmless to the human body. Since Jobsis first measured tissue oxygenation in human tissues[1], NRIS has been used extensively not only in the analysis of the metabolic process in human tissues, including neuroimaging, which visualizes brain activation; the diagnosis of breast cancer; neuroscience using small animals; and brain-machine interfaces (BMI), but also in the analysis of crop quality. In particular, near infrared rays in wavelength of 600-900 nm have fewer occurrences of scattering and absorption in human tissues compared with other wavelength. Thus, information inside the human body can be obtained using those rays.

    Concentration changes in HbO2and Hbr are due to hemodynamic responses in blood vessels. An increased amount of HbO2flows in the surrounding tissues when the human metabolism becomes active. This study attempts to measure hemodynamic response changes in the main olfactory bulb (MOB) of rats when they are stimulated with odorants, using Imagent equipment in the frequency domain type. In order to measure hemodynamic changes, wavelength around 800 nm, where the absorbencies of HbO2and Hbr become equal, is selected. In addition, 690 nm and 830 nm laser diodes are used in Imagent system and optical coefficients are derived from the changes in the signal intensities of phase and light. Using the optical coefficients derived, odorants are reversely inferred from the hemodynamic changes in main olfactory bulb (MOB) of rats when they were stimulated by odorants.

    Fig.1 Absorbencies of HbO2 and Hbr become equal at around 800 nm. In Imagent system used in this experiment, HbO2 and Hbr are measured using the near infrared rays in wavelengths of 830 nm and 690 nm, respectively

    This study performed an analysis on how concentration changes in the MOB of rats, according to odor stimulations, and their variations, according to the lapse of time, influence the reverse inference of odorants. When analyzing the concentration changes in the MOB of rats, this study use only the information of HbO2.

    1 Materials and methods

    1.1 Experiment protocol

    The experiment is performed in the Medicine and Physiology Laboratory, Hallym University, using Sprague Dawley (SD) rats (350-400 g, male), which are provided by the animal center of Orient Bio Co. The laboratory is maintained at 23±2℃ and 55±10% humidity. Rats can freely take food and water in their cages. Rats are anesthetized by intraperitoneal injection using urethane (20%, 1.25 g/kg body weight). After fixing the rats on a stereotaxic device, their scalps are incised. Signals are then obtained after arranging optical fibers according to the location of coordinates.

    Using the 16 source-channel frequency-domain NIRS system (Imagent, ISS, IL, USA), hemodynamic responses in the olfactory bulb are measured. This system uses two wavelengths, 690 nm and 830 nm, and each channel includes two 400-μm core diameter optical fibers (FT-400EMT, Thorlabs, NJ, USA) of 690 nm and 830 nm wavelengths.

    Fig.2 Experiment arrangement

    Optical fibers are arranged as shown in Fig.2(a) and the actual experiment is shown in Fig.2(b). In NIRS channels, sources and detectors are separated by 7 mm and the penetration of near infrared rays into the cortex area is 2 mm deep. Once optical fibers are arranged in the due location of coordinates, they are fixed to the rats’ skulls using dental cement (KetacCem, 3M, USA). Sampling is performed at 28.4 Hz in NIRS system.

    The rats are stimulated with diluted odors by connecting each bottle containing a chemical and a silicone tube. The chemicals used in the experiment are (i) natural air (Blank), (ii) 2-heptanone (Hep), and (iii) Isopropylbenzene (Ib).

    1.2 Theory

    In order to measure hemodynamic changes in the MOB of rats, the concentration changes in HbO2and Hbr are calculated using the Beer-Lambert law. Transitivity (T) is derived by

    Absorbance(=optical density) A is

    where L is pathlength, the distance between the source and detector; Bλis differential pathlength factor[4](dimension less constant to account for photon path lengthening effect of scattering) corresponds to wavelength λ.

    In general, matrix-vector equation is

    where S is the total number of wavelength types, M is the total number of matter types.

    A=LBEC.

    (4)

    What we interested in is concentration vector

    (5)

    In this experiments, S=2 (830nm, 690nm) and M=2(Oxy-Hemoglobin, Deoxy-Hemoglobin).

    During the progress of the experiment, intensity values occasionally exhibit an overall increase with the lapse of time because temperature increases in Imagent equipment. In such a case, the increase of intensity can be reduced by using a second polynomial line fitting. An overall increase or decrease phenomenon can be removed using the difference between raw data and a fitting line. Moreover, an approximation to the original intensity value can be enabled by adding the average value of raw data again.

    The signals of concentration changes using an altered Beer-Lambert law appear in the form of containing a large amount of high-frequency substances. As a result, as shown in Fig.3[5], low-frequency filtering is performed with a cut-off frequency of 0.125 Hz in order to obtain a cleaner pattern of concentration changes.

    Fig.3 Experimental results

    The concentration changes calculated from HbO2and Hbr are different. The initial values of concentration changes in each channel or trial are also different.

    Therefore, an offset is set up to adjust the initial value of concentration changes at each trial. The point of stimulation is set at 0 s. Using the average gap in concentration changes between the post-stimulation line and the pre-stimulation base line during the time of -25 to -5 s, the initial gap in concentration changes is reduced for each trial.

    1.3 Setting up features and decoding

    The average and standard deviations of the concentration changes of HbO2from the point of stimulation to 30 s after a round of trials are shown in Fig.4. Each odor stimulation produces a different time of maximum concentration change and a different change value. Therefore, decoding is performed using the maximum value of concentrauion changes for each odor stimulation.

    Fig.4 Average and standard deviations of concentration chaoges in the three odorants for 30 s after the stimulation point of all trials which applied pre-processing

    However, as the point to reach the maximum concentration change varies in each trial, it is difficult to provide high reliability, regardless of success rates. For this reason, this study sets up a sliding window with size of 3 s and a center of 1.5 s, and thereby the average of concentration changes is used as a feature.

    A probability density function is modeled using Gaussian distribution. The probability density function based on the Gaussian distribution is formed as the below X equation.

    where k is the type of odor stimulation used in the experiment and n is the number of channels. μn(k) is the average of the training data and σn(k) is the standard deviation of the training data.

    To reversely infer the unknown chemical k using the probability density value of each chemical obtained from the Gaussian modeling, the maximum likelihood estimation (MLE) technique is employed. that maximizes p(x1(k),x2(k),…,xN(k)), which is the probability density function of the unknown chemical k denoted as

    If each channel is assumed to be probabilistic and independent from the others[5,6], an equation can be developed as

    (10)

    This function can be viewed as a multi-dimensional entropy likelihood function to each chemical response. Maximum likelihood estimation is a nonlinear classification method that estimates the likelihood for every number of cases, and finds a value that generates the highest likelihood. The chemical that maximizes is estimated according to this. This study uses only one out of a total of eight trials as the test data, and the remaining seven trials are used as the training data. With this combination, eight data sets are used to be infer odorants.

    2 Results

    2.1 Decoding using max peaks

    Fig.4 shows that the concentration changes of blood flow in the MOB of rats vary according to different chemicals of odor stimulation. Fig.5 confirms that maximum concentration changes vary according to odor stimulations. In addition, the average of the maximum concentration changes is set as a feature.

    Fig.5 Average and standard deviations of the maximum values of concentration changes for 30 s after three types of odor stimulation

    Fig.6 shows the results when the Gaussian modeling is built based on the average and standard deviations of concentration changes at the point when the maximum concentration change occurrs for 30 s after the stimulation point. From the results of the Gaussian modeling in Hep, Ib and Blank, it is easy to distinguish between Blank and Hep, but Ib exhibits a high probability of being classified as either Hep or Blank. The performance of decoding is shown in Fig.7 when MLE is used to the Gaussian model.

    Fig.6 Gaussian model using the average and standard deviations of the maximum values of concentration changes for 30 s after odor stimulation

    Fig.7 Performance results of decoding when the maximum value of concentrations changes is set as a feature. As estimated from the model in Fig.6, the performance of Ib is the lowest among the three types of odor stimulation

    The Gaussian distribution suggests a relatively higher probability of the classification of Ib as Hep or Blank. Accordingly, the actual results of decoding confirmed that Ib has a lower performance compared to Hep and Blank, as shown in Fig.7. The overall performance of decoding is high at 83.3%. However, when the average of the maximum values of concentration changes is set as a feature, the decoding results become without the consideration of time information, which increases the need to use a different feature.

    2.2 Decoding using the average of concentration changes according to lapse of time

    After odor stimulation, the concentration of HbO2increases with time and then decreases after a certain lapse of time (Fig.4). Based on this phenomenon, the earlier mentioned Gaussian modeling and MLE are performed according to the lapse of time after odor stimulation by setting the average of HbO2’s concentration changes as a feature while using a sliding window with a window size of 3 s and a center of 1.5 s. As the gaps in concentration changes among individual chemicals for about 5 s after odor stimulation, with an offset set up, are negligible, the odorants are hardly distinguishable. However, Fig.4 shows that the gaps in concentration changes among individual chemicals become greater with the passage of time, making the identification of odorants easier. Similarly, as the gaps narrow again, the identification becomes more difficult. The decoding performances based on each central time slot are presented in Fig.8. The decoding performance for 10.5 to 13.5 s is indicated at 92%. Meanwhile, the decoding success rate remained at about 40% from the point of stimulation to 4.5 s, suggesting difficulty in distinguishing among odorants. While the decoding performance from 13.5 to 21 s appeares relatively high, the decoding performance from 22.5 s drops markedly. Such findings confirm that the highest decoding performance is realized around the time of 10 to 14 s.

    Fig.8 Time-based performance results of decoding with the window size of 3 s and the center of 1.5 s. This shows the highest decoding performance during 10.5 to 13.5 s

    3 Conclusion

    This study measures hemodynamic response changes occurring when odor stimulation is applied to MOB of rats using NIRS. And the concentration changes in HbO2and Hbr are calculated using Beer-Lambert law. Meanwhile, an analysis is given using HbO2only, given that the concentration changes in Hbr are relatively smaller than in HbO2.

    The method of inferring odorants using the scale of concentration changes creates high performances. But, this does not take into account time information, resulting in difficulty in increasing reliability. Thus, the inference of odorants with time information is performed. The experiment shows that concentration changes reach their peak at around 15 s after odor stimulation, and then decline gradually. Based on this result, the actual performance of decoding is expected to be highest at around 15 s and this has been confirmed. Given the limitations of the present work, additional experiments are planned to increase the reliability of our findings by increasing the number of trials used for analysis.

    [1] Jobsis F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science, 1977, 198(4323): 1264-1267.

    [2] Lee H J, Shin H C, et al, Odor-dependent hemodynamic responses measured with NIRS in the main olfactory bulb of anesthetized rats. Experimental Neurobiology, 2011, 20: 189-196.

    [3] Crespi F, Bandera A, Donini M, et al. Non-invasive in vivo infrared laser spectroscopy to analyse endogenous oxy-haemoglobin, deoxy-haemoglobin, and blood volume in the rat CNS. Journal of Neuroscience Methods, 2005, 145(1/2): 11-22.

    [4] Duncan A, Meek J H, Clemence M, et al. Optical pathlength measurements on adult head, calf and forearm and the new born infant using phase resolved optical spectroscopy. Phyics in Medicine and Biology, 1995, 40(5): 295-304.

    [5] ZHANG Quan, Strangman G E, Ganis G. Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: How well and when does it work? NeuroImage, 2009, 45(3): 788-794.

    [6] Shin H C, Aggarwal V, Acharya S, et al. Neural decoding of finger movements using Skellam-based maximum-likelihood decoding. IEEE Transactions on Biomedical Engineering, 2010, 57(3): 754-760.

    [7] Jazayeri M, Movshon J A, Optimal representation of sensory information by neural populations. Nature Neuroscience, 2006, 9(5): 690-696.

    [8] You K J, Ham H G, Lee H J, et al, Odor discrimination using neural decoding of the main olfactory bulb in rats. IEEE Transactions on Biomedical Engineering, 2011, 58(5): 1208-1215.

    date: 2012-08-23

    The MKE(The Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-2006); Brain Research Center (BRC)(2012K001127), The MKE(10033634-2012-21) ; National Research Foundation of Korea (NRF)(2012-0005787)

    Hyunchool Shin (Shinhc@ssu.ac.kr)

    CLD number: TN219 Document code: A

    1674-8042(2013)01-0089-05

    10.3969/j.issn.1674-8042.2013.01.019

    一区二区三区四区激情视频 | 成人美女网站在线观看视频| 国产探花极品一区二区| 22中文网久久字幕| 男女做爰动态图高潮gif福利片| av在线天堂中文字幕| 久久午夜亚洲精品久久| 日本一本二区三区精品| 欧美日韩综合久久久久久| av国产免费在线观看| 亚洲国产欧美在线一区| 好男人视频免费观看在线| 亚洲一区高清亚洲精品| 成人欧美大片| 寂寞人妻少妇视频99o| 村上凉子中文字幕在线| 一个人免费在线观看电影| 99热6这里只有精品| 天堂网av新在线| av福利片在线观看| 日日撸夜夜添| 亚洲va在线va天堂va国产| 国产精品久久电影中文字幕| 成年版毛片免费区| 色噜噜av男人的天堂激情| 欧美日韩乱码在线| 国产麻豆成人av免费视频| 真实男女啪啪啪动态图| 身体一侧抽搐| 亚洲精品粉嫩美女一区| 国产精品美女特级片免费视频播放器| 赤兔流量卡办理| 国产女主播在线喷水免费视频网站 | 欧美一级a爱片免费观看看| 国产精品一区二区在线观看99 | 久久精品国产亚洲av涩爱 | 亚洲图色成人| 欧美日韩综合久久久久久| avwww免费| 综合色丁香网| 欧美极品一区二区三区四区| 网址你懂的国产日韩在线| 欧美日韩精品成人综合77777| 亚洲av一区综合| 青春草国产在线视频 | 日韩欧美三级三区| 99久久精品国产国产毛片| 99久久成人亚洲精品观看| 免费无遮挡裸体视频| eeuss影院久久| 一夜夜www| 女人被狂操c到高潮| 尾随美女入室| 亚洲成人中文字幕在线播放| 色播亚洲综合网| 成人鲁丝片一二三区免费| 尾随美女入室| 最新中文字幕久久久久| 日韩高清综合在线| 成人综合一区亚洲| 男女啪啪激烈高潮av片| 青青草视频在线视频观看| 国产亚洲欧美98| 亚洲国产日韩欧美精品在线观看| 精华霜和精华液先用哪个| 日韩成人av中文字幕在线观看| 麻豆乱淫一区二区| 天天一区二区日本电影三级| 搡女人真爽免费视频火全软件| 日韩av在线大香蕉| 中文在线观看免费www的网站| av福利片在线观看| 美女国产视频在线观看| 日本欧美国产在线视频| 日韩一区二区视频免费看| 男的添女的下面高潮视频| 国产精品三级大全| 99热这里只有是精品在线观看| 中国美白少妇内射xxxbb| 亚洲精品自拍成人| 少妇人妻一区二区三区视频| 日本爱情动作片www.在线观看| 99热这里只有是精品在线观看| 中文资源天堂在线| 欧美日韩在线观看h| 嫩草影院新地址| 晚上一个人看的免费电影| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| a级毛片a级免费在线| 一级黄片播放器| 91精品一卡2卡3卡4卡| 只有这里有精品99| 国产黄片视频在线免费观看| 一本精品99久久精品77| ponron亚洲| 国产一区二区在线av高清观看| 在线免费十八禁| 看片在线看免费视频| 又粗又爽又猛毛片免费看| 国产精品爽爽va在线观看网站| 人妻系列 视频| 国产午夜精品论理片| 欧美日本亚洲视频在线播放| 99久久无色码亚洲精品果冻| 尤物成人国产欧美一区二区三区| 日本-黄色视频高清免费观看| 国产一区亚洲一区在线观看| 性色avwww在线观看| 亚洲人成网站高清观看| 国产极品天堂在线| 天天躁日日操中文字幕| 日韩视频在线欧美| 91aial.com中文字幕在线观看| 国产黄片视频在线免费观看| 日本一本二区三区精品| 欧美+亚洲+日韩+国产| 国产精品精品国产色婷婷| 一级av片app| 国产毛片a区久久久久| 午夜a级毛片| 久久午夜福利片| 国产高清三级在线| 日本五十路高清| 日本av手机在线免费观看| 蜜桃久久精品国产亚洲av| 99视频精品全部免费 在线| 免费不卡的大黄色大毛片视频在线观看 | 3wmmmm亚洲av在线观看| 男人和女人高潮做爰伦理| 免费人成在线观看视频色| 亚洲精品乱码久久久久久按摩| 黄色视频,在线免费观看| 男人狂女人下面高潮的视频| 熟女电影av网| 国产一区二区三区在线臀色熟女| 成熟少妇高潮喷水视频| 两个人的视频大全免费| 淫秽高清视频在线观看| 99久久人妻综合| 天堂中文最新版在线下载 | 成人美女网站在线观看视频| 边亲边吃奶的免费视频| 国产黄色小视频在线观看| 内地一区二区视频在线| 身体一侧抽搐| 久久6这里有精品| 天堂影院成人在线观看| 身体一侧抽搐| 日本av手机在线免费观看| 九九爱精品视频在线观看| 人体艺术视频欧美日本| 国产精品日韩av在线免费观看| 欧美色欧美亚洲另类二区| 黄色配什么色好看| 少妇的逼好多水| 51国产日韩欧美| 亚洲性久久影院| 欧美bdsm另类| 在线免费十八禁| 91精品一卡2卡3卡4卡| av国产免费在线观看| 中国美女看黄片| 久久久精品大字幕| 深夜a级毛片| 好男人视频免费观看在线| 国产日韩欧美在线精品| 亚洲欧美日韩无卡精品| 久久久久九九精品影院| 国产精品不卡视频一区二区| 精品久久久久久久久亚洲| 久久午夜福利片| 亚洲三级黄色毛片| avwww免费| 男人和女人高潮做爰伦理| 亚洲欧美成人精品一区二区| 丰满的人妻完整版| 非洲黑人性xxxx精品又粗又长| 两性午夜刺激爽爽歪歪视频在线观看| 男女下面进入的视频免费午夜| 国产精华一区二区三区| 国产探花极品一区二区| 欧美精品国产亚洲| 91精品国产九色| av福利片在线观看| 舔av片在线| 校园春色视频在线观看| 永久网站在线| 91久久精品国产一区二区成人| 精品人妻一区二区三区麻豆| 国产亚洲5aaaaa淫片| 99国产精品一区二区蜜桃av| 成人欧美大片| 日韩欧美一区二区三区在线观看| 国内精品宾馆在线| 免费看光身美女| 久久久久久伊人网av| 国产精品久久久久久精品电影小说 | 色5月婷婷丁香| 亚洲美女视频黄频| 日韩 亚洲 欧美在线| 天天一区二区日本电影三级| 久久精品综合一区二区三区| 中出人妻视频一区二区| 1000部很黄的大片| 一级毛片久久久久久久久女| 午夜久久久久精精品| 欧美+亚洲+日韩+国产| 天天躁日日操中文字幕| 亚洲人成网站在线观看播放| 免费电影在线观看免费观看| 晚上一个人看的免费电影| 精品熟女少妇av免费看| 精品免费久久久久久久清纯| 日本一本二区三区精品| 久久精品夜夜夜夜夜久久蜜豆| 国产精品嫩草影院av在线观看| 国产午夜精品论理片| 亚洲综合色惰| 少妇熟女欧美另类| 精品熟女少妇av免费看| 亚洲五月天丁香| 综合色av麻豆| 特大巨黑吊av在线直播| 欧美一区二区精品小视频在线| 中国国产av一级| 亚洲第一电影网av| 久久人人精品亚洲av| videossex国产| 91精品一卡2卡3卡4卡| 国产精品av视频在线免费观看| 欧美色视频一区免费| 内射极品少妇av片p| 国产精品一及| 校园春色视频在线观看| 神马国产精品三级电影在线观看| 国产成人影院久久av| 久久久久久久久中文| 少妇丰满av| 久久久久网色| 成年版毛片免费区| 日本免费a在线| 99热这里只有是精品50| 色噜噜av男人的天堂激情| 久久久久网色| .国产精品久久| 国产精品三级大全| av在线老鸭窝| 午夜a级毛片| 国产精品一区www在线观看| 婷婷亚洲欧美| 青青草视频在线视频观看| av在线老鸭窝| 午夜a级毛片| 午夜激情欧美在线| 寂寞人妻少妇视频99o| 日本爱情动作片www.在线观看| 亚洲欧美日韩高清在线视频| 国产高清激情床上av| 国产日本99.免费观看| 小说图片视频综合网站| 一个人免费在线观看电影| 午夜精品一区二区三区免费看| 国产真实伦视频高清在线观看| 久久久色成人| 国产成人一区二区在线| 久久久精品94久久精品| 又黄又爽又刺激的免费视频.| 人人妻人人澡欧美一区二区| 亚洲国产精品成人久久小说 | 简卡轻食公司| 日本黄色视频三级网站网址| 99久久无色码亚洲精品果冻| 天天一区二区日本电影三级| 最近视频中文字幕2019在线8| 级片在线观看| 午夜a级毛片| 热99re8久久精品国产| 国产老妇女一区| 偷拍熟女少妇极品色| 99精品在免费线老司机午夜| 91麻豆精品激情在线观看国产| 国产精品伦人一区二区| 日韩精品青青久久久久久| 欧美xxxx黑人xx丫x性爽| 中文资源天堂在线| 一级毛片电影观看 | 桃色一区二区三区在线观看| 青春草视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 久久99热这里只有精品18| 亚洲欧美清纯卡通| 在线播放国产精品三级| 悠悠久久av| 一边亲一边摸免费视频| 最近2019中文字幕mv第一页| 尾随美女入室| 国产精品av视频在线免费观看| 亚洲va在线va天堂va国产| 国产av麻豆久久久久久久| 国产极品天堂在线| 亚洲国产精品成人综合色| 亚洲精品乱码久久久v下载方式| 看十八女毛片水多多多| 变态另类丝袜制服| 欧美色欧美亚洲另类二区| 精品少妇黑人巨大在线播放 | 3wmmmm亚洲av在线观看| 亚洲精品久久国产高清桃花| 丝袜喷水一区| 日本免费一区二区三区高清不卡| av免费观看日本| 亚洲aⅴ乱码一区二区在线播放| av黄色大香蕉| 久久精品人妻少妇| 久久久精品欧美日韩精品| 久久精品久久久久久久性| 亚洲在久久综合| 久久精品国产自在天天线| 好男人视频免费观看在线| 直男gayav资源| 99久久久亚洲精品蜜臀av| 一级二级三级毛片免费看| 丝袜喷水一区| 高清日韩中文字幕在线| 99久久人妻综合| 精品久久久久久久久亚洲| 秋霞在线观看毛片| 午夜福利在线在线| 在线免费观看不下载黄p国产| 国产成人精品久久久久久| 夜夜爽天天搞| 国产精品国产高清国产av| 欧美性猛交╳xxx乱大交人| 赤兔流量卡办理| 波多野结衣高清作品| 精品人妻一区二区三区麻豆| 国产精品一及| 国产亚洲av片在线观看秒播厂 | 在线国产一区二区在线| 国产一区二区三区在线臀色熟女| 欧美变态另类bdsm刘玥| 欧美性猛交黑人性爽| 亚洲欧美日韩高清在线视频| 国产高清视频在线观看网站| 尤物成人国产欧美一区二区三区| 日韩制服骚丝袜av| 亚洲图色成人| 久久精品国产亚洲av香蕉五月| 欧美极品一区二区三区四区| 久久久午夜欧美精品| 亚洲国产精品成人综合色| 久久人妻av系列| 日韩av不卡免费在线播放| 黄色视频,在线免费观看| 男人狂女人下面高潮的视频| .国产精品久久| 有码 亚洲区| 欧美色视频一区免费| 99精品在免费线老司机午夜| 午夜福利高清视频| 午夜亚洲福利在线播放| 老女人水多毛片| 欧美又色又爽又黄视频| 亚洲欧美日韩卡通动漫| 国产成人精品一,二区 | 18禁在线播放成人免费| 又爽又黄无遮挡网站| 99久久九九国产精品国产免费| 久久这里只有精品中国| 欧美xxxx黑人xx丫x性爽| 国产高清三级在线| 久久精品91蜜桃| 亚洲欧美精品专区久久| 女人十人毛片免费观看3o分钟| 欧美另类亚洲清纯唯美| 亚洲一区二区三区色噜噜| 嫩草影院精品99| 如何舔出高潮| 亚洲精品自拍成人| 久久精品国产亚洲网站| 亚洲精品久久久久久婷婷小说 | 最近手机中文字幕大全| 在线天堂最新版资源| 欧美成人一区二区免费高清观看| 看十八女毛片水多多多| 色播亚洲综合网| 看免费成人av毛片| 两个人视频免费观看高清| a级一级毛片免费在线观看| 久久久久久久午夜电影| 少妇的逼水好多| 久久久久久久午夜电影| 亚洲欧美成人精品一区二区| 一夜夜www| 伊人久久精品亚洲午夜| 岛国在线免费视频观看| 国产精品乱码一区二三区的特点| 亚洲欧美日韩卡通动漫| 国产黄片美女视频| 精品久久久久久久末码| 国产老妇女一区| 午夜老司机福利剧场| 三级男女做爰猛烈吃奶摸视频| 亚洲精品影视一区二区三区av| 一个人看的www免费观看视频| 免费人成视频x8x8入口观看| 变态另类成人亚洲欧美熟女| 禁无遮挡网站| 国产极品精品免费视频能看的| 毛片女人毛片| 精品一区二区三区人妻视频| 可以在线观看的亚洲视频| 一进一出抽搐gif免费好疼| 亚洲国产精品成人久久小说 | 中文字幕制服av| www日本黄色视频网| 老司机福利观看| 亚洲美女视频黄频| 久久久a久久爽久久v久久| 爱豆传媒免费全集在线观看| 欧美最黄视频在线播放免费| 一级毛片电影观看 | 在线a可以看的网站| 国模一区二区三区四区视频| 欧美不卡视频在线免费观看| 一个人观看的视频www高清免费观看| 黄色配什么色好看| 嫩草影院入口| 在线观看66精品国产| 99riav亚洲国产免费| 三级男女做爰猛烈吃奶摸视频| 18禁裸乳无遮挡免费网站照片| 日本黄色视频三级网站网址| 麻豆成人午夜福利视频| 久久久午夜欧美精品| 国产视频内射| 欧美bdsm另类| 亚洲在线自拍视频| 久久久精品欧美日韩精品| 亚洲欧美日韩东京热| 久久午夜福利片| 身体一侧抽搐| 久久99热6这里只有精品| 五月伊人婷婷丁香| av在线老鸭窝| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| 亚洲aⅴ乱码一区二区在线播放| 女同久久另类99精品国产91| 能在线免费观看的黄片| 成人三级黄色视频| av黄色大香蕉| 97在线视频观看| 国产精品野战在线观看| 欧美日韩乱码在线| 插逼视频在线观看| 热99re8久久精品国产| 国产 一区精品| 亚洲不卡免费看| av又黄又爽大尺度在线免费看 | 久久久久国产网址| 午夜福利视频1000在线观看| 亚洲精品亚洲一区二区| 精品日产1卡2卡| www.色视频.com| 国产精品电影一区二区三区| 校园人妻丝袜中文字幕| 美女脱内裤让男人舔精品视频 | 小说图片视频综合网站| 国产黄色视频一区二区在线观看 | 国产黄片视频在线免费观看| 联通29元200g的流量卡| 嫩草影院精品99| av在线亚洲专区| 亚洲精品影视一区二区三区av| 亚洲国产精品合色在线| 日本av手机在线免费观看| 女人十人毛片免费观看3o分钟| 国产精品.久久久| 精品午夜福利在线看| 国产在线男女| 成年女人永久免费观看视频| 国产成人freesex在线| 天美传媒精品一区二区| 熟妇人妻久久中文字幕3abv| 搡老妇女老女人老熟妇| 国产黄片美女视频| 能在线免费观看的黄片| 大型黄色视频在线免费观看| 国产亚洲av嫩草精品影院| 天天躁夜夜躁狠狠久久av| 少妇人妻精品综合一区二区 | 欧美成人一区二区免费高清观看| 日本成人三级电影网站| 乱系列少妇在线播放| 日产精品乱码卡一卡2卡三| 亚洲不卡免费看| 高清日韩中文字幕在线| 国产精品不卡视频一区二区| 精品免费久久久久久久清纯| 亚洲第一区二区三区不卡| 久久久国产成人免费| 成人三级黄色视频| 人妻久久中文字幕网| 爱豆传媒免费全集在线观看| 日韩大尺度精品在线看网址| 午夜亚洲福利在线播放| 黄色一级大片看看| 精品一区二区三区视频在线| 日韩精品青青久久久久久| 蜜桃久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆| 国产av麻豆久久久久久久| 成人特级av手机在线观看| 国产精品一区二区三区四区免费观看| 性插视频无遮挡在线免费观看| .国产精品久久| 国产麻豆成人av免费视频| 国产精品久久久久久亚洲av鲁大| 别揉我奶头 嗯啊视频| 久久99热这里只有精品18| 欧美变态另类bdsm刘玥| 成人漫画全彩无遮挡| 欧美区成人在线视频| 午夜福利视频1000在线观看| 国产一区二区三区av在线 | 国产精品国产三级国产av玫瑰| 国产又黄又爽又无遮挡在线| 国产精品爽爽va在线观看网站| 日日摸夜夜添夜夜添av毛片| 18禁裸乳无遮挡免费网站照片| 成年女人看的毛片在线观看| 久久精品久久久久久久性| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩高清在线视频| 国产一区二区激情短视频| 免费无遮挡裸体视频| 男人的好看免费观看在线视频| 亚洲真实伦在线观看| 久久久国产成人精品二区| 日韩精品有码人妻一区| 老师上课跳d突然被开到最大视频| www.色视频.com| 又爽又黄a免费视频| 亚洲国产欧洲综合997久久,| 欧美变态另类bdsm刘玥| videossex国产| 国产午夜福利久久久久久| 久久草成人影院| 在线观看一区二区三区| 成人午夜精彩视频在线观看| 欧美性感艳星| 日本-黄色视频高清免费观看| 午夜爱爱视频在线播放| 久久婷婷人人爽人人干人人爱| 国产色爽女视频免费观看| 九九在线视频观看精品| 简卡轻食公司| 男人舔奶头视频| 国产在视频线在精品| 欧美精品国产亚洲| 国产精品人妻久久久久久| 一级毛片我不卡| 1000部很黄的大片| 高清毛片免费看| 深夜精品福利| 久久久久免费精品人妻一区二区| 女人十人毛片免费观看3o分钟| 精品人妻偷拍中文字幕| 久久精品久久久久久久性| 国产男人的电影天堂91| 成人午夜精彩视频在线观看| 亚洲精品久久国产高清桃花| 12—13女人毛片做爰片一| 亚洲不卡免费看| 日韩欧美三级三区| 久久久久国产网址| 51国产日韩欧美| 美女大奶头视频| 一级毛片aaaaaa免费看小| 嫩草影院新地址| 日韩人妻高清精品专区| 久久精品久久久久久久性| 国产成人精品婷婷| 中国美白少妇内射xxxbb| 男人和女人高潮做爰伦理| 国产一级毛片七仙女欲春2| 欧美极品一区二区三区四区| 亚洲自偷自拍三级| 赤兔流量卡办理| 禁无遮挡网站| 免费看a级黄色片| 日韩大尺度精品在线看网址| 黄色视频,在线免费观看| 身体一侧抽搐| 99热这里只有是精品在线观看| 亚洲欧美成人综合另类久久久 | 日韩成人伦理影院| 少妇猛男粗大的猛烈进出视频 | 99久久无色码亚洲精品果冻| 国产成人精品久久久久久| 国产精品久久电影中文字幕| 久久99热这里只有精品18| 熟妇人妻久久中文字幕3abv| 久99久视频精品免费| 3wmmmm亚洲av在线观看| 日韩在线高清观看一区二区三区| 国产精品久久久久久av不卡| 黄片无遮挡物在线观看| 久久精品国产鲁丝片午夜精品| 观看美女的网站| 日本成人三级电影网站| 能在线免费观看的黄片| 欧美日韩精品成人综合77777|