• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Odorant discrimination using functional near-infrared spectroscopy of the main olfactory bulb in rats

    2013-11-01 01:26:25InwonJungKyungjinYouHyunchoolShinChinsuKohHyungcheulShinJaewooShin

    Inwon Jung, Kyungjin You, Hyunchool Shin, Chinsu Koh, Hyungcheul Shin, Jaewoo Shin

    (1. Dept. of Electronic Engineering, Soongsil University, Seoul 156-743, Korea;2. Dept. of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea)

    Odorant discrimination using functional near-infrared spectroscopy of the main olfactory bulb in rats

    Inwon Jung1, Kyungjin You1, Hyunchool Shin1, Chinsu Koh2, Hyungcheul Shin2, Jaewoo Shin2

    (1. Dept. of Electronic Engineering, Soongsil University, Seoul 156-743, Korea;2. Dept. of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea)

    We characterize the hemodynamic response changes in the main olfactory bulb (MOB) of anesthetized rats with near-infrared spectroscopy (NIRS) during the presentation of three different odorants: (i) plain air as a reference (Blank), (ii) 2-heptanone (HEP), and (iii) isopropylbenzene (Ib). Odorants generate different changes in the concentrations of oxy-hemoglobin. Our results suggest that NIRS technology might be useful in discriminating various odorants in a non-invasive manner using animals with a superb olfactory system.

    brain-machine interface (BMI); functional near-infrared spectroscopy (fNIRS); main olfactory bulb (MOB); oxyhemoglobin (HbO2); Beer-Lambert law; maximum likelihood estimation (MLE)

    Near infrared spectroscopy (NRIS) is a technique that enables noninvasive measurement of concentration changes and optical coefficients (scattering and absorption coefficients) in chromophores such as oxyhemoglobin (HbO2), deoxyhemoglobin (Hbr), myoglobin, cytochrome oxidase, water, lipid and protein, and in human tissues using lights that are harmless to the human body. Since Jobsis first measured tissue oxygenation in human tissues[1], NRIS has been used extensively not only in the analysis of the metabolic process in human tissues, including neuroimaging, which visualizes brain activation; the diagnosis of breast cancer; neuroscience using small animals; and brain-machine interfaces (BMI), but also in the analysis of crop quality. In particular, near infrared rays in wavelength of 600-900 nm have fewer occurrences of scattering and absorption in human tissues compared with other wavelength. Thus, information inside the human body can be obtained using those rays.

    Concentration changes in HbO2and Hbr are due to hemodynamic responses in blood vessels. An increased amount of HbO2flows in the surrounding tissues when the human metabolism becomes active. This study attempts to measure hemodynamic response changes in the main olfactory bulb (MOB) of rats when they are stimulated with odorants, using Imagent equipment in the frequency domain type. In order to measure hemodynamic changes, wavelength around 800 nm, where the absorbencies of HbO2and Hbr become equal, is selected. In addition, 690 nm and 830 nm laser diodes are used in Imagent system and optical coefficients are derived from the changes in the signal intensities of phase and light. Using the optical coefficients derived, odorants are reversely inferred from the hemodynamic changes in main olfactory bulb (MOB) of rats when they were stimulated by odorants.

    Fig.1 Absorbencies of HbO2 and Hbr become equal at around 800 nm. In Imagent system used in this experiment, HbO2 and Hbr are measured using the near infrared rays in wavelengths of 830 nm and 690 nm, respectively

    This study performed an analysis on how concentration changes in the MOB of rats, according to odor stimulations, and their variations, according to the lapse of time, influence the reverse inference of odorants. When analyzing the concentration changes in the MOB of rats, this study use only the information of HbO2.

    1 Materials and methods

    1.1 Experiment protocol

    The experiment is performed in the Medicine and Physiology Laboratory, Hallym University, using Sprague Dawley (SD) rats (350-400 g, male), which are provided by the animal center of Orient Bio Co. The laboratory is maintained at 23±2℃ and 55±10% humidity. Rats can freely take food and water in their cages. Rats are anesthetized by intraperitoneal injection using urethane (20%, 1.25 g/kg body weight). After fixing the rats on a stereotaxic device, their scalps are incised. Signals are then obtained after arranging optical fibers according to the location of coordinates.

    Using the 16 source-channel frequency-domain NIRS system (Imagent, ISS, IL, USA), hemodynamic responses in the olfactory bulb are measured. This system uses two wavelengths, 690 nm and 830 nm, and each channel includes two 400-μm core diameter optical fibers (FT-400EMT, Thorlabs, NJ, USA) of 690 nm and 830 nm wavelengths.

    Fig.2 Experiment arrangement

    Optical fibers are arranged as shown in Fig.2(a) and the actual experiment is shown in Fig.2(b). In NIRS channels, sources and detectors are separated by 7 mm and the penetration of near infrared rays into the cortex area is 2 mm deep. Once optical fibers are arranged in the due location of coordinates, they are fixed to the rats’ skulls using dental cement (KetacCem, 3M, USA). Sampling is performed at 28.4 Hz in NIRS system.

    The rats are stimulated with diluted odors by connecting each bottle containing a chemical and a silicone tube. The chemicals used in the experiment are (i) natural air (Blank), (ii) 2-heptanone (Hep), and (iii) Isopropylbenzene (Ib).

    1.2 Theory

    In order to measure hemodynamic changes in the MOB of rats, the concentration changes in HbO2and Hbr are calculated using the Beer-Lambert law. Transitivity (T) is derived by

    Absorbance(=optical density) A is

    where L is pathlength, the distance between the source and detector; Bλis differential pathlength factor[4](dimension less constant to account for photon path lengthening effect of scattering) corresponds to wavelength λ.

    In general, matrix-vector equation is

    where S is the total number of wavelength types, M is the total number of matter types.

    A=LBEC.

    (4)

    What we interested in is concentration vector

    (5)

    In this experiments, S=2 (830nm, 690nm) and M=2(Oxy-Hemoglobin, Deoxy-Hemoglobin).

    During the progress of the experiment, intensity values occasionally exhibit an overall increase with the lapse of time because temperature increases in Imagent equipment. In such a case, the increase of intensity can be reduced by using a second polynomial line fitting. An overall increase or decrease phenomenon can be removed using the difference between raw data and a fitting line. Moreover, an approximation to the original intensity value can be enabled by adding the average value of raw data again.

    The signals of concentration changes using an altered Beer-Lambert law appear in the form of containing a large amount of high-frequency substances. As a result, as shown in Fig.3[5], low-frequency filtering is performed with a cut-off frequency of 0.125 Hz in order to obtain a cleaner pattern of concentration changes.

    Fig.3 Experimental results

    The concentration changes calculated from HbO2and Hbr are different. The initial values of concentration changes in each channel or trial are also different.

    Therefore, an offset is set up to adjust the initial value of concentration changes at each trial. The point of stimulation is set at 0 s. Using the average gap in concentration changes between the post-stimulation line and the pre-stimulation base line during the time of -25 to -5 s, the initial gap in concentration changes is reduced for each trial.

    1.3 Setting up features and decoding

    The average and standard deviations of the concentration changes of HbO2from the point of stimulation to 30 s after a round of trials are shown in Fig.4. Each odor stimulation produces a different time of maximum concentration change and a different change value. Therefore, decoding is performed using the maximum value of concentrauion changes for each odor stimulation.

    Fig.4 Average and standard deviations of concentration chaoges in the three odorants for 30 s after the stimulation point of all trials which applied pre-processing

    However, as the point to reach the maximum concentration change varies in each trial, it is difficult to provide high reliability, regardless of success rates. For this reason, this study sets up a sliding window with size of 3 s and a center of 1.5 s, and thereby the average of concentration changes is used as a feature.

    A probability density function is modeled using Gaussian distribution. The probability density function based on the Gaussian distribution is formed as the below X equation.

    where k is the type of odor stimulation used in the experiment and n is the number of channels. μn(k) is the average of the training data and σn(k) is the standard deviation of the training data.

    To reversely infer the unknown chemical k using the probability density value of each chemical obtained from the Gaussian modeling, the maximum likelihood estimation (MLE) technique is employed. that maximizes p(x1(k),x2(k),…,xN(k)), which is the probability density function of the unknown chemical k denoted as

    If each channel is assumed to be probabilistic and independent from the others[5,6], an equation can be developed as

    (10)

    This function can be viewed as a multi-dimensional entropy likelihood function to each chemical response. Maximum likelihood estimation is a nonlinear classification method that estimates the likelihood for every number of cases, and finds a value that generates the highest likelihood. The chemical that maximizes is estimated according to this. This study uses only one out of a total of eight trials as the test data, and the remaining seven trials are used as the training data. With this combination, eight data sets are used to be infer odorants.

    2 Results

    2.1 Decoding using max peaks

    Fig.4 shows that the concentration changes of blood flow in the MOB of rats vary according to different chemicals of odor stimulation. Fig.5 confirms that maximum concentration changes vary according to odor stimulations. In addition, the average of the maximum concentration changes is set as a feature.

    Fig.5 Average and standard deviations of the maximum values of concentration changes for 30 s after three types of odor stimulation

    Fig.6 shows the results when the Gaussian modeling is built based on the average and standard deviations of concentration changes at the point when the maximum concentration change occurrs for 30 s after the stimulation point. From the results of the Gaussian modeling in Hep, Ib and Blank, it is easy to distinguish between Blank and Hep, but Ib exhibits a high probability of being classified as either Hep or Blank. The performance of decoding is shown in Fig.7 when MLE is used to the Gaussian model.

    Fig.6 Gaussian model using the average and standard deviations of the maximum values of concentration changes for 30 s after odor stimulation

    Fig.7 Performance results of decoding when the maximum value of concentrations changes is set as a feature. As estimated from the model in Fig.6, the performance of Ib is the lowest among the three types of odor stimulation

    The Gaussian distribution suggests a relatively higher probability of the classification of Ib as Hep or Blank. Accordingly, the actual results of decoding confirmed that Ib has a lower performance compared to Hep and Blank, as shown in Fig.7. The overall performance of decoding is high at 83.3%. However, when the average of the maximum values of concentration changes is set as a feature, the decoding results become without the consideration of time information, which increases the need to use a different feature.

    2.2 Decoding using the average of concentration changes according to lapse of time

    After odor stimulation, the concentration of HbO2increases with time and then decreases after a certain lapse of time (Fig.4). Based on this phenomenon, the earlier mentioned Gaussian modeling and MLE are performed according to the lapse of time after odor stimulation by setting the average of HbO2’s concentration changes as a feature while using a sliding window with a window size of 3 s and a center of 1.5 s. As the gaps in concentration changes among individual chemicals for about 5 s after odor stimulation, with an offset set up, are negligible, the odorants are hardly distinguishable. However, Fig.4 shows that the gaps in concentration changes among individual chemicals become greater with the passage of time, making the identification of odorants easier. Similarly, as the gaps narrow again, the identification becomes more difficult. The decoding performances based on each central time slot are presented in Fig.8. The decoding performance for 10.5 to 13.5 s is indicated at 92%. Meanwhile, the decoding success rate remained at about 40% from the point of stimulation to 4.5 s, suggesting difficulty in distinguishing among odorants. While the decoding performance from 13.5 to 21 s appeares relatively high, the decoding performance from 22.5 s drops markedly. Such findings confirm that the highest decoding performance is realized around the time of 10 to 14 s.

    Fig.8 Time-based performance results of decoding with the window size of 3 s and the center of 1.5 s. This shows the highest decoding performance during 10.5 to 13.5 s

    3 Conclusion

    This study measures hemodynamic response changes occurring when odor stimulation is applied to MOB of rats using NIRS. And the concentration changes in HbO2and Hbr are calculated using Beer-Lambert law. Meanwhile, an analysis is given using HbO2only, given that the concentration changes in Hbr are relatively smaller than in HbO2.

    The method of inferring odorants using the scale of concentration changes creates high performances. But, this does not take into account time information, resulting in difficulty in increasing reliability. Thus, the inference of odorants with time information is performed. The experiment shows that concentration changes reach their peak at around 15 s after odor stimulation, and then decline gradually. Based on this result, the actual performance of decoding is expected to be highest at around 15 s and this has been confirmed. Given the limitations of the present work, additional experiments are planned to increase the reliability of our findings by increasing the number of trials used for analysis.

    [1] Jobsis F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science, 1977, 198(4323): 1264-1267.

    [2] Lee H J, Shin H C, et al, Odor-dependent hemodynamic responses measured with NIRS in the main olfactory bulb of anesthetized rats. Experimental Neurobiology, 2011, 20: 189-196.

    [3] Crespi F, Bandera A, Donini M, et al. Non-invasive in vivo infrared laser spectroscopy to analyse endogenous oxy-haemoglobin, deoxy-haemoglobin, and blood volume in the rat CNS. Journal of Neuroscience Methods, 2005, 145(1/2): 11-22.

    [4] Duncan A, Meek J H, Clemence M, et al. Optical pathlength measurements on adult head, calf and forearm and the new born infant using phase resolved optical spectroscopy. Phyics in Medicine and Biology, 1995, 40(5): 295-304.

    [5] ZHANG Quan, Strangman G E, Ganis G. Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: How well and when does it work? NeuroImage, 2009, 45(3): 788-794.

    [6] Shin H C, Aggarwal V, Acharya S, et al. Neural decoding of finger movements using Skellam-based maximum-likelihood decoding. IEEE Transactions on Biomedical Engineering, 2010, 57(3): 754-760.

    [7] Jazayeri M, Movshon J A, Optimal representation of sensory information by neural populations. Nature Neuroscience, 2006, 9(5): 690-696.

    [8] You K J, Ham H G, Lee H J, et al, Odor discrimination using neural decoding of the main olfactory bulb in rats. IEEE Transactions on Biomedical Engineering, 2011, 58(5): 1208-1215.

    date: 2012-08-23

    The MKE(The Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-2006); Brain Research Center (BRC)(2012K001127), The MKE(10033634-2012-21) ; National Research Foundation of Korea (NRF)(2012-0005787)

    Hyunchool Shin (Shinhc@ssu.ac.kr)

    CLD number: TN219 Document code: A

    1674-8042(2013)01-0089-05

    10.3969/j.issn.1674-8042.2013.01.019

    香蕉国产在线看| 卡戴珊不雅视频在线播放| 国产黄色视频一区二区在线观看| 国产又爽黄色视频| 亚洲欧美精品自产自拍| 国产97色在线日韩免费| 国产av国产精品国产| 在线精品无人区一区二区三| 国产成人精品无人区| 成人国产av品久久久| a级毛片黄视频| 久久久久久久国产电影| 久久久久国产网址| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 好男人视频免费观看在线| 晚上一个人看的免费电影| a级片在线免费高清观看视频| 永久免费av网站大全| 七月丁香在线播放| 9191精品国产免费久久| 韩国精品一区二区三区| 黑丝袜美女国产一区| 久久久久精品久久久久真实原创| 国精品久久久久久国模美| 激情视频va一区二区三区| 亚洲人成网站在线观看播放| 婷婷色麻豆天堂久久| 男女边吃奶边做爰视频| a级毛片黄视频| 999久久久国产精品视频| 亚洲精品美女久久久久99蜜臀 | 黄频高清免费视频| 啦啦啦在线观看免费高清www| 一区二区三区乱码不卡18| 免费黄网站久久成人精品| 亚洲国产日韩一区二区| 成人黄色视频免费在线看| 男女边吃奶边做爰视频| 激情视频va一区二区三区| 亚洲欧美成人精品一区二区| 婷婷色麻豆天堂久久| www.熟女人妻精品国产| 国产日韩欧美视频二区| 亚洲,欧美精品.| 精品人妻偷拍中文字幕| 精品一区在线观看国产| 777久久人妻少妇嫩草av网站| 欧美在线黄色| 麻豆av在线久日| 大片电影免费在线观看免费| 久久久久精品性色| 1024香蕉在线观看| 香蕉国产在线看| 欧美日韩视频高清一区二区三区二| 久久国内精品自在自线图片| 涩涩av久久男人的天堂| 99精国产麻豆久久婷婷| 国产精品人妻久久久影院| 午夜老司机福利剧场| 狠狠精品人妻久久久久久综合| 亚洲成av片中文字幕在线观看 | 亚洲欧美清纯卡通| 精品一品国产午夜福利视频| 最新的欧美精品一区二区| 国产成人精品婷婷| 女性被躁到高潮视频| 午夜福利视频在线观看免费| 久久女婷五月综合色啪小说| av又黄又爽大尺度在线免费看| 99九九在线精品视频| 晚上一个人看的免费电影| 日本黄色日本黄色录像| 日韩伦理黄色片| 亚洲精品久久午夜乱码| 老熟女久久久| 你懂的网址亚洲精品在线观看| 七月丁香在线播放| 最近2019中文字幕mv第一页| 成年人免费黄色播放视频| 波多野结衣一区麻豆| 天堂8中文在线网| 成人二区视频| 夫妻性生交免费视频一级片| av免费在线看不卡| 欧美精品亚洲一区二区| 国产在线视频一区二区| 免费不卡的大黄色大毛片视频在线观看| 午夜福利影视在线免费观看| 少妇的逼水好多| 日产精品乱码卡一卡2卡三| 制服人妻中文乱码| 九九爱精品视频在线观看| 成人亚洲精品一区在线观看| 中文字幕色久视频| 侵犯人妻中文字幕一二三四区| 1024香蕉在线观看| 国产精品秋霞免费鲁丝片| 日韩欧美精品免费久久| 日韩欧美一区视频在线观看| 亚洲精品久久久久久婷婷小说| 黑人欧美特级aaaaaa片| 日日啪夜夜爽| 一级,二级,三级黄色视频| 中文字幕最新亚洲高清| 男人舔女人的私密视频| 波野结衣二区三区在线| 色吧在线观看| 国产精品国产三级国产专区5o| 人人妻人人爽人人添夜夜欢视频| 美女国产视频在线观看| 777久久人妻少妇嫩草av网站| 国产又色又爽无遮挡免| 亚洲欧洲国产日韩| 2021少妇久久久久久久久久久| 精品视频人人做人人爽| 制服诱惑二区| 一本大道久久a久久精品| 国产淫语在线视频| 欧美日韩一级在线毛片| 久久午夜福利片| 免费黄频网站在线观看国产| 2022亚洲国产成人精品| 卡戴珊不雅视频在线播放| 91成人精品电影| 国产女主播在线喷水免费视频网站| 夫妻午夜视频| 久久久久久久国产电影| 伊人亚洲综合成人网| 激情五月婷婷亚洲| 精品99又大又爽又粗少妇毛片| 亚洲成人av在线免费| 亚洲综合色网址| 狂野欧美激情性bbbbbb| 亚洲经典国产精华液单| xxx大片免费视频| 国产精品免费视频内射| 看十八女毛片水多多多| 欧美中文综合在线视频| 免费看av在线观看网站| 成年美女黄网站色视频大全免费| 一二三四在线观看免费中文在| 欧美激情 高清一区二区三区| 婷婷色综合大香蕉| 亚洲精品日本国产第一区| 午夜福利乱码中文字幕| 久久精品久久久久久噜噜老黄| av电影中文网址| 精品人妻在线不人妻| 国产精品成人在线| 婷婷色综合www| 久久精品aⅴ一区二区三区四区 | 天堂8中文在线网| 国产深夜福利视频在线观看| 男女下面插进去视频免费观看| 国产片内射在线| 亚洲国产成人一精品久久久| 国产成人精品久久二区二区91 | 9191精品国产免费久久| 1024香蕉在线观看| 少妇的丰满在线观看| 亚洲精品第二区| 精品酒店卫生间| 一本色道久久久久久精品综合| 国产精品熟女久久久久浪| 国产成人午夜福利电影在线观看| 亚洲伊人久久精品综合| 久久精品夜色国产| 色网站视频免费| 欧美中文综合在线视频| 亚洲国产欧美日韩在线播放| 午夜福利网站1000一区二区三区| 国产片内射在线| 另类精品久久| 高清视频免费观看一区二区| 久久久久久久久久久免费av| 啦啦啦啦在线视频资源| 成年动漫av网址| 热99久久久久精品小说推荐| 叶爱在线成人免费视频播放| 美女大奶头黄色视频| 国产国语露脸激情在线看| 一级片'在线观看视频| 欧美另类一区| 国产黄色视频一区二区在线观看| 狂野欧美激情性bbbbbb| 女性被躁到高潮视频| 日韩制服丝袜自拍偷拍| 免费在线观看完整版高清| 中文欧美无线码| 制服人妻中文乱码| 国产乱来视频区| 青春草视频在线免费观看| 久久久国产精品麻豆| 五月伊人婷婷丁香| 国产综合精华液| 国产成人aa在线观看| 欧美97在线视频| 久久久久久久久久人人人人人人| av片东京热男人的天堂| 久久韩国三级中文字幕| 超碰97精品在线观看| 国产又色又爽无遮挡免| 人体艺术视频欧美日本| 精品一区二区免费观看| 啦啦啦视频在线资源免费观看| 国产日韩欧美视频二区| 一区二区日韩欧美中文字幕| 国产成人精品久久久久久| 大码成人一级视频| 精品久久久精品久久久| 国产欧美日韩一区二区三区在线| 十八禁网站网址无遮挡| 午夜福利网站1000一区二区三区| 国产精品人妻久久久影院| 日本欧美国产在线视频| 精品亚洲成a人片在线观看| 不卡视频在线观看欧美| 边亲边吃奶的免费视频| 久久久久国产一级毛片高清牌| 国产精品久久久久成人av| 日本91视频免费播放| 夫妻性生交免费视频一级片| 成人黄色视频免费在线看| 国产综合精华液| 99热全是精品| 少妇被粗大的猛进出69影院| 午夜福利网站1000一区二区三区| 久久久国产一区二区| 美女国产高潮福利片在线看| 男女午夜视频在线观看| 人人妻人人澡人人爽人人夜夜| 日韩伦理黄色片| 男男h啪啪无遮挡| 国产深夜福利视频在线观看| 欧美日韩综合久久久久久| 国产精品亚洲av一区麻豆 | 免费播放大片免费观看视频在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产av蜜桃| 十八禁网站网址无遮挡| 如日韩欧美国产精品一区二区三区| 国产高清国产精品国产三级| 国产无遮挡羞羞视频在线观看| 亚洲久久久国产精品| 少妇人妻 视频| 王馨瑶露胸无遮挡在线观看| 极品少妇高潮喷水抽搐| 一级毛片黄色毛片免费观看视频| 极品人妻少妇av视频| 亚洲精品国产av成人精品| 欧美97在线视频| 久久久久久久久久久久大奶| 国产精品欧美亚洲77777| 亚洲欧美中文字幕日韩二区| 久热这里只有精品99| 一级片免费观看大全| av一本久久久久| 久久人人爽人人片av| 99国产精品免费福利视频| 日本色播在线视频| 久久99热这里只频精品6学生| 成年av动漫网址| 久久女婷五月综合色啪小说| 久久久国产一区二区| 麻豆乱淫一区二区| 少妇被粗大的猛进出69影院| 久久精品亚洲av国产电影网| 色视频在线一区二区三区| 久久久久久伊人网av| 免费av中文字幕在线| 2021少妇久久久久久久久久久| 久久精品aⅴ一区二区三区四区 | 久久久久久久精品精品| 成年av动漫网址| 大话2 男鬼变身卡| av一本久久久久| 欧美亚洲日本最大视频资源| 色网站视频免费| 久久久国产一区二区| 三级国产精品片| 国产探花极品一区二区| 成人国产麻豆网| 成年人午夜在线观看视频| 精品少妇黑人巨大在线播放| 街头女战士在线观看网站| av电影中文网址| 国产不卡av网站在线观看| 在线观看免费日韩欧美大片| 久久国产亚洲av麻豆专区| 亚洲第一av免费看| 一级,二级,三级黄色视频| 日日爽夜夜爽网站| 少妇精品久久久久久久| 亚洲精品视频女| 人人妻人人添人人爽欧美一区卜| 国产深夜福利视频在线观看| 亚洲欧美一区二区三区黑人 | 亚洲国产看品久久| 亚洲精品视频女| 亚洲精品av麻豆狂野| 国产一区有黄有色的免费视频| 欧美亚洲 丝袜 人妻 在线| 国产日韩一区二区三区精品不卡| 丝袜在线中文字幕| 亚洲经典国产精华液单| 久久久国产一区二区| 亚洲欧美精品综合一区二区三区 | 看非洲黑人一级黄片| 人妻人人澡人人爽人人| 考比视频在线观看| 国产精品偷伦视频观看了| 国产免费一区二区三区四区乱码| 男女无遮挡免费网站观看| 亚洲美女黄色视频免费看| 一二三四中文在线观看免费高清| 国产免费又黄又爽又色| 亚洲人成电影观看| 大片免费播放器 马上看| 99久久人妻综合| 永久免费av网站大全| 综合色丁香网| 91成人精品电影| 国产精品 国内视频| 国产免费视频播放在线视频| 亚洲国产毛片av蜜桃av| 在线看a的网站| 亚洲国产精品一区三区| 伊人久久大香线蕉亚洲五| 叶爱在线成人免费视频播放| 一级毛片电影观看| 中文乱码字字幕精品一区二区三区| 少妇被粗大的猛进出69影院| 欧美日韩精品成人综合77777| 亚洲国产欧美网| 在线观看一区二区三区激情| 亚洲激情五月婷婷啪啪| 亚洲婷婷狠狠爱综合网| 国产精品香港三级国产av潘金莲 | 18禁观看日本| 欧美xxⅹ黑人| 色视频在线一区二区三区| 精品亚洲成国产av| 交换朋友夫妻互换小说| 亚洲 欧美一区二区三区| 少妇精品久久久久久久| 亚洲人成电影观看| 精品久久久精品久久久| 人妻一区二区av| 中文字幕色久视频| 啦啦啦啦在线视频资源| 亚洲av电影在线进入| av片东京热男人的天堂| 麻豆乱淫一区二区| 国产av精品麻豆| av一本久久久久| 97在线人人人人妻| 日韩av不卡免费在线播放| 看免费av毛片| 亚洲国产看品久久| 观看av在线不卡| 在线 av 中文字幕| 欧美日本中文国产一区发布| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品古装| 狠狠婷婷综合久久久久久88av| 国产亚洲最大av| videos熟女内射| 2022亚洲国产成人精品| 日日摸夜夜添夜夜爱| 男人添女人高潮全过程视频| 观看av在线不卡| 中文字幕精品免费在线观看视频| 亚洲国产精品999| 久久久久国产一级毛片高清牌| 国产一级毛片在线| 制服丝袜香蕉在线| 国产精品女同一区二区软件| av在线app专区| 国产精品无大码| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av涩爱| 久久久久久伊人网av| 97精品久久久久久久久久精品| 国产一区二区激情短视频 | 一本大道久久a久久精品| 久久毛片免费看一区二区三区| 久久久久精品久久久久真实原创| 水蜜桃什么品种好| 国产男女超爽视频在线观看| 91久久精品国产一区二区三区| 一个人免费看片子| 制服诱惑二区| 亚洲国产色片| 国产成人精品在线电影| 国产片内射在线| 91成人精品电影| 成人手机av| 水蜜桃什么品种好| 免费高清在线观看日韩| 久久影院123| 成人午夜精彩视频在线观看| 精品一区二区免费观看| 晚上一个人看的免费电影| 天天躁夜夜躁狠狠久久av| 26uuu在线亚洲综合色| a 毛片基地| 欧美最新免费一区二区三区| 久久综合国产亚洲精品| 国产成人精品一,二区| 日韩不卡一区二区三区视频在线| 亚洲欧美精品综合一区二区三区 | 国产成人91sexporn| 亚洲精品第二区| 国产免费现黄频在线看| 久久久久视频综合| 一边摸一边做爽爽视频免费| 免费观看在线日韩| 高清不卡的av网站| 18禁动态无遮挡网站| 日韩av不卡免费在线播放| 啦啦啦视频在线资源免费观看| 日韩在线高清观看一区二区三区| 日韩大片免费观看网站| 在线亚洲精品国产二区图片欧美| 国产在线免费精品| 久久久久人妻精品一区果冻| 天天影视国产精品| 精品一区二区免费观看| 亚洲av综合色区一区| 国产精品 国内视频| 2021少妇久久久久久久久久久| 岛国毛片在线播放| 国产片内射在线| 男人添女人高潮全过程视频| 国产一区二区在线观看av| 国产日韩欧美在线精品| 亚洲人成网站在线观看播放| 亚洲综合色惰| www日本在线高清视频| 欧美人与善性xxx| 97在线视频观看| 精品亚洲成国产av| 老鸭窝网址在线观看| 日韩欧美精品免费久久| 精品少妇黑人巨大在线播放| www.熟女人妻精品国产| 亚洲欧美色中文字幕在线| 国产麻豆69| 老汉色∧v一级毛片| 18在线观看网站| 亚洲国产色片| 国产av码专区亚洲av| 国产成人免费无遮挡视频| 欧美人与善性xxx| 国产一区二区 视频在线| 男人添女人高潮全过程视频| 国产成人免费观看mmmm| 男人舔女人的私密视频| 美女主播在线视频| 国产亚洲一区二区精品| 91午夜精品亚洲一区二区三区| 男人爽女人下面视频在线观看| 久久女婷五月综合色啪小说| 一区二区三区四区激情视频| 欧美老熟妇乱子伦牲交| 啦啦啦在线观看免费高清www| 乱人伦中国视频| av免费观看日本| 国产精品嫩草影院av在线观看| 波野结衣二区三区在线| 国精品久久久久久国模美| 久久久久国产网址| 国产综合精华液| 亚洲男人天堂网一区| 亚洲av男天堂| 飞空精品影院首页| 男女啪啪激烈高潮av片| 亚洲欧美清纯卡通| 日韩熟女老妇一区二区性免费视频| 久久青草综合色| 高清视频免费观看一区二区| 国产精品欧美亚洲77777| 久久精品熟女亚洲av麻豆精品| av又黄又爽大尺度在线免费看| 十八禁高潮呻吟视频| 一区二区av电影网| 飞空精品影院首页| 久久精品亚洲av国产电影网| 亚洲精品国产av成人精品| 波野结衣二区三区在线| 人人妻人人添人人爽欧美一区卜| a级片在线免费高清观看视频| 男女边吃奶边做爰视频| 久久精品aⅴ一区二区三区四区 | 一区二区三区四区激情视频| 欧美+日韩+精品| 色视频在线一区二区三区| 久久久久精品人妻al黑| 亚洲欧洲精品一区二区精品久久久 | 狠狠婷婷综合久久久久久88av| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 国产免费视频播放在线视频| av有码第一页| 看免费av毛片| 国产在线视频一区二区| 观看美女的网站| 亚洲欧美成人精品一区二区| 夫妻午夜视频| 亚洲美女搞黄在线观看| av福利片在线| 欧美亚洲日本最大视频资源| 男人操女人黄网站| 丰满饥渴人妻一区二区三| 黄片无遮挡物在线观看| 丰满饥渴人妻一区二区三| 国产一区二区三区av在线| 啦啦啦啦在线视频资源| 成人黄色视频免费在线看| 女的被弄到高潮叫床怎么办| 69精品国产乱码久久久| 国产精品久久久久久精品古装| 在线观看免费日韩欧美大片| 超碰97精品在线观看| 午夜av观看不卡| 亚洲av综合色区一区| 亚洲色图 男人天堂 中文字幕| 亚洲av综合色区一区| 日本午夜av视频| 欧美 日韩 精品 国产| 欧美日韩精品成人综合77777| 国产精品蜜桃在线观看| 26uuu在线亚洲综合色| 高清在线视频一区二区三区| 少妇人妻久久综合中文| 极品少妇高潮喷水抽搐| 成人国语在线视频| 久久久久久久亚洲中文字幕| 18禁裸乳无遮挡动漫免费视频| 国产免费又黄又爽又色| 免费久久久久久久精品成人欧美视频| 久久久精品免费免费高清| 国产亚洲最大av| 免费在线观看完整版高清| 国产综合精华液| 大香蕉久久网| 精品少妇内射三级| 香蕉丝袜av| 下体分泌物呈黄色| 日韩av在线免费看完整版不卡| 99热全是精品| 街头女战士在线观看网站| 成人二区视频| 国产精品成人在线| 亚洲精品中文字幕在线视频| 欧美日韩精品成人综合77777| 国产精品久久久久久久久免| 亚洲欧洲国产日韩| 精品亚洲乱码少妇综合久久| 各种免费的搞黄视频| 国产淫语在线视频| 久久午夜综合久久蜜桃| 国产成人午夜福利电影在线观看| 国产精品女同一区二区软件| 亚洲国产日韩一区二区| 国产精品久久久久久av不卡| 最近中文字幕2019免费版| 国产精品久久久久成人av| 在线看a的网站| 久久久久国产精品人妻一区二区| 国产探花极品一区二区| 国产综合精华液| 亚洲欧美成人精品一区二区| 我的亚洲天堂| 精品酒店卫生间| 亚洲国产最新在线播放| 中文字幕人妻丝袜制服| 夜夜骑夜夜射夜夜干| 亚洲欧美一区二区三区黑人 | 成年美女黄网站色视频大全免费| 2021少妇久久久久久久久久久| 一级片免费观看大全| 亚洲精品在线美女| 少妇被粗大猛烈的视频| 伊人久久国产一区二区| 十分钟在线观看高清视频www| 男人添女人高潮全过程视频| 国产亚洲最大av| 在线精品无人区一区二区三| 久久精品久久精品一区二区三区| 亚洲经典国产精华液单| 免费日韩欧美在线观看| 午夜日本视频在线| 老汉色∧v一级毛片| 国产精品秋霞免费鲁丝片| 亚洲国产毛片av蜜桃av| 国产精品 欧美亚洲| 久久av网站| 亚洲国产欧美网| 成人毛片60女人毛片免费| 建设人人有责人人尽责人人享有的| 婷婷色综合大香蕉| 精品亚洲成国产av| 男女国产视频网站| 国产精品.久久久| 我要看黄色一级片免费的| 母亲3免费完整高清在线观看 | 人妻一区二区av| 午夜福利视频精品| 丝袜美腿诱惑在线| 国产 精品1| 中文欧美无线码| 精品亚洲成国产av| 国产片内射在线|