• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Odorant discrimination using functional near-infrared spectroscopy of the main olfactory bulb in rats

    2013-11-01 01:26:25InwonJungKyungjinYouHyunchoolShinChinsuKohHyungcheulShinJaewooShin

    Inwon Jung, Kyungjin You, Hyunchool Shin, Chinsu Koh, Hyungcheul Shin, Jaewoo Shin

    (1. Dept. of Electronic Engineering, Soongsil University, Seoul 156-743, Korea;2. Dept. of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea)

    Odorant discrimination using functional near-infrared spectroscopy of the main olfactory bulb in rats

    Inwon Jung1, Kyungjin You1, Hyunchool Shin1, Chinsu Koh2, Hyungcheul Shin2, Jaewoo Shin2

    (1. Dept. of Electronic Engineering, Soongsil University, Seoul 156-743, Korea;2. Dept. of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea)

    We characterize the hemodynamic response changes in the main olfactory bulb (MOB) of anesthetized rats with near-infrared spectroscopy (NIRS) during the presentation of three different odorants: (i) plain air as a reference (Blank), (ii) 2-heptanone (HEP), and (iii) isopropylbenzene (Ib). Odorants generate different changes in the concentrations of oxy-hemoglobin. Our results suggest that NIRS technology might be useful in discriminating various odorants in a non-invasive manner using animals with a superb olfactory system.

    brain-machine interface (BMI); functional near-infrared spectroscopy (fNIRS); main olfactory bulb (MOB); oxyhemoglobin (HbO2); Beer-Lambert law; maximum likelihood estimation (MLE)

    Near infrared spectroscopy (NRIS) is a technique that enables noninvasive measurement of concentration changes and optical coefficients (scattering and absorption coefficients) in chromophores such as oxyhemoglobin (HbO2), deoxyhemoglobin (Hbr), myoglobin, cytochrome oxidase, water, lipid and protein, and in human tissues using lights that are harmless to the human body. Since Jobsis first measured tissue oxygenation in human tissues[1], NRIS has been used extensively not only in the analysis of the metabolic process in human tissues, including neuroimaging, which visualizes brain activation; the diagnosis of breast cancer; neuroscience using small animals; and brain-machine interfaces (BMI), but also in the analysis of crop quality. In particular, near infrared rays in wavelength of 600-900 nm have fewer occurrences of scattering and absorption in human tissues compared with other wavelength. Thus, information inside the human body can be obtained using those rays.

    Concentration changes in HbO2and Hbr are due to hemodynamic responses in blood vessels. An increased amount of HbO2flows in the surrounding tissues when the human metabolism becomes active. This study attempts to measure hemodynamic response changes in the main olfactory bulb (MOB) of rats when they are stimulated with odorants, using Imagent equipment in the frequency domain type. In order to measure hemodynamic changes, wavelength around 800 nm, where the absorbencies of HbO2and Hbr become equal, is selected. In addition, 690 nm and 830 nm laser diodes are used in Imagent system and optical coefficients are derived from the changes in the signal intensities of phase and light. Using the optical coefficients derived, odorants are reversely inferred from the hemodynamic changes in main olfactory bulb (MOB) of rats when they were stimulated by odorants.

    Fig.1 Absorbencies of HbO2 and Hbr become equal at around 800 nm. In Imagent system used in this experiment, HbO2 and Hbr are measured using the near infrared rays in wavelengths of 830 nm and 690 nm, respectively

    This study performed an analysis on how concentration changes in the MOB of rats, according to odor stimulations, and their variations, according to the lapse of time, influence the reverse inference of odorants. When analyzing the concentration changes in the MOB of rats, this study use only the information of HbO2.

    1 Materials and methods

    1.1 Experiment protocol

    The experiment is performed in the Medicine and Physiology Laboratory, Hallym University, using Sprague Dawley (SD) rats (350-400 g, male), which are provided by the animal center of Orient Bio Co. The laboratory is maintained at 23±2℃ and 55±10% humidity. Rats can freely take food and water in their cages. Rats are anesthetized by intraperitoneal injection using urethane (20%, 1.25 g/kg body weight). After fixing the rats on a stereotaxic device, their scalps are incised. Signals are then obtained after arranging optical fibers according to the location of coordinates.

    Using the 16 source-channel frequency-domain NIRS system (Imagent, ISS, IL, USA), hemodynamic responses in the olfactory bulb are measured. This system uses two wavelengths, 690 nm and 830 nm, and each channel includes two 400-μm core diameter optical fibers (FT-400EMT, Thorlabs, NJ, USA) of 690 nm and 830 nm wavelengths.

    Fig.2 Experiment arrangement

    Optical fibers are arranged as shown in Fig.2(a) and the actual experiment is shown in Fig.2(b). In NIRS channels, sources and detectors are separated by 7 mm and the penetration of near infrared rays into the cortex area is 2 mm deep. Once optical fibers are arranged in the due location of coordinates, they are fixed to the rats’ skulls using dental cement (KetacCem, 3M, USA). Sampling is performed at 28.4 Hz in NIRS system.

    The rats are stimulated with diluted odors by connecting each bottle containing a chemical and a silicone tube. The chemicals used in the experiment are (i) natural air (Blank), (ii) 2-heptanone (Hep), and (iii) Isopropylbenzene (Ib).

    1.2 Theory

    In order to measure hemodynamic changes in the MOB of rats, the concentration changes in HbO2and Hbr are calculated using the Beer-Lambert law. Transitivity (T) is derived by

    Absorbance(=optical density) A is

    where L is pathlength, the distance between the source and detector; Bλis differential pathlength factor[4](dimension less constant to account for photon path lengthening effect of scattering) corresponds to wavelength λ.

    In general, matrix-vector equation is

    where S is the total number of wavelength types, M is the total number of matter types.

    A=LBEC.

    (4)

    What we interested in is concentration vector

    (5)

    In this experiments, S=2 (830nm, 690nm) and M=2(Oxy-Hemoglobin, Deoxy-Hemoglobin).

    During the progress of the experiment, intensity values occasionally exhibit an overall increase with the lapse of time because temperature increases in Imagent equipment. In such a case, the increase of intensity can be reduced by using a second polynomial line fitting. An overall increase or decrease phenomenon can be removed using the difference between raw data and a fitting line. Moreover, an approximation to the original intensity value can be enabled by adding the average value of raw data again.

    The signals of concentration changes using an altered Beer-Lambert law appear in the form of containing a large amount of high-frequency substances. As a result, as shown in Fig.3[5], low-frequency filtering is performed with a cut-off frequency of 0.125 Hz in order to obtain a cleaner pattern of concentration changes.

    Fig.3 Experimental results

    The concentration changes calculated from HbO2and Hbr are different. The initial values of concentration changes in each channel or trial are also different.

    Therefore, an offset is set up to adjust the initial value of concentration changes at each trial. The point of stimulation is set at 0 s. Using the average gap in concentration changes between the post-stimulation line and the pre-stimulation base line during the time of -25 to -5 s, the initial gap in concentration changes is reduced for each trial.

    1.3 Setting up features and decoding

    The average and standard deviations of the concentration changes of HbO2from the point of stimulation to 30 s after a round of trials are shown in Fig.4. Each odor stimulation produces a different time of maximum concentration change and a different change value. Therefore, decoding is performed using the maximum value of concentrauion changes for each odor stimulation.

    Fig.4 Average and standard deviations of concentration chaoges in the three odorants for 30 s after the stimulation point of all trials which applied pre-processing

    However, as the point to reach the maximum concentration change varies in each trial, it is difficult to provide high reliability, regardless of success rates. For this reason, this study sets up a sliding window with size of 3 s and a center of 1.5 s, and thereby the average of concentration changes is used as a feature.

    A probability density function is modeled using Gaussian distribution. The probability density function based on the Gaussian distribution is formed as the below X equation.

    where k is the type of odor stimulation used in the experiment and n is the number of channels. μn(k) is the average of the training data and σn(k) is the standard deviation of the training data.

    To reversely infer the unknown chemical k using the probability density value of each chemical obtained from the Gaussian modeling, the maximum likelihood estimation (MLE) technique is employed. that maximizes p(x1(k),x2(k),…,xN(k)), which is the probability density function of the unknown chemical k denoted as

    If each channel is assumed to be probabilistic and independent from the others[5,6], an equation can be developed as

    (10)

    This function can be viewed as a multi-dimensional entropy likelihood function to each chemical response. Maximum likelihood estimation is a nonlinear classification method that estimates the likelihood for every number of cases, and finds a value that generates the highest likelihood. The chemical that maximizes is estimated according to this. This study uses only one out of a total of eight trials as the test data, and the remaining seven trials are used as the training data. With this combination, eight data sets are used to be infer odorants.

    2 Results

    2.1 Decoding using max peaks

    Fig.4 shows that the concentration changes of blood flow in the MOB of rats vary according to different chemicals of odor stimulation. Fig.5 confirms that maximum concentration changes vary according to odor stimulations. In addition, the average of the maximum concentration changes is set as a feature.

    Fig.5 Average and standard deviations of the maximum values of concentration changes for 30 s after three types of odor stimulation

    Fig.6 shows the results when the Gaussian modeling is built based on the average and standard deviations of concentration changes at the point when the maximum concentration change occurrs for 30 s after the stimulation point. From the results of the Gaussian modeling in Hep, Ib and Blank, it is easy to distinguish between Blank and Hep, but Ib exhibits a high probability of being classified as either Hep or Blank. The performance of decoding is shown in Fig.7 when MLE is used to the Gaussian model.

    Fig.6 Gaussian model using the average and standard deviations of the maximum values of concentration changes for 30 s after odor stimulation

    Fig.7 Performance results of decoding when the maximum value of concentrations changes is set as a feature. As estimated from the model in Fig.6, the performance of Ib is the lowest among the three types of odor stimulation

    The Gaussian distribution suggests a relatively higher probability of the classification of Ib as Hep or Blank. Accordingly, the actual results of decoding confirmed that Ib has a lower performance compared to Hep and Blank, as shown in Fig.7. The overall performance of decoding is high at 83.3%. However, when the average of the maximum values of concentration changes is set as a feature, the decoding results become without the consideration of time information, which increases the need to use a different feature.

    2.2 Decoding using the average of concentration changes according to lapse of time

    After odor stimulation, the concentration of HbO2increases with time and then decreases after a certain lapse of time (Fig.4). Based on this phenomenon, the earlier mentioned Gaussian modeling and MLE are performed according to the lapse of time after odor stimulation by setting the average of HbO2’s concentration changes as a feature while using a sliding window with a window size of 3 s and a center of 1.5 s. As the gaps in concentration changes among individual chemicals for about 5 s after odor stimulation, with an offset set up, are negligible, the odorants are hardly distinguishable. However, Fig.4 shows that the gaps in concentration changes among individual chemicals become greater with the passage of time, making the identification of odorants easier. Similarly, as the gaps narrow again, the identification becomes more difficult. The decoding performances based on each central time slot are presented in Fig.8. The decoding performance for 10.5 to 13.5 s is indicated at 92%. Meanwhile, the decoding success rate remained at about 40% from the point of stimulation to 4.5 s, suggesting difficulty in distinguishing among odorants. While the decoding performance from 13.5 to 21 s appeares relatively high, the decoding performance from 22.5 s drops markedly. Such findings confirm that the highest decoding performance is realized around the time of 10 to 14 s.

    Fig.8 Time-based performance results of decoding with the window size of 3 s and the center of 1.5 s. This shows the highest decoding performance during 10.5 to 13.5 s

    3 Conclusion

    This study measures hemodynamic response changes occurring when odor stimulation is applied to MOB of rats using NIRS. And the concentration changes in HbO2and Hbr are calculated using Beer-Lambert law. Meanwhile, an analysis is given using HbO2only, given that the concentration changes in Hbr are relatively smaller than in HbO2.

    The method of inferring odorants using the scale of concentration changes creates high performances. But, this does not take into account time information, resulting in difficulty in increasing reliability. Thus, the inference of odorants with time information is performed. The experiment shows that concentration changes reach their peak at around 15 s after odor stimulation, and then decline gradually. Based on this result, the actual performance of decoding is expected to be highest at around 15 s and this has been confirmed. Given the limitations of the present work, additional experiments are planned to increase the reliability of our findings by increasing the number of trials used for analysis.

    [1] Jobsis F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science, 1977, 198(4323): 1264-1267.

    [2] Lee H J, Shin H C, et al, Odor-dependent hemodynamic responses measured with NIRS in the main olfactory bulb of anesthetized rats. Experimental Neurobiology, 2011, 20: 189-196.

    [3] Crespi F, Bandera A, Donini M, et al. Non-invasive in vivo infrared laser spectroscopy to analyse endogenous oxy-haemoglobin, deoxy-haemoglobin, and blood volume in the rat CNS. Journal of Neuroscience Methods, 2005, 145(1/2): 11-22.

    [4] Duncan A, Meek J H, Clemence M, et al. Optical pathlength measurements on adult head, calf and forearm and the new born infant using phase resolved optical spectroscopy. Phyics in Medicine and Biology, 1995, 40(5): 295-304.

    [5] ZHANG Quan, Strangman G E, Ganis G. Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: How well and when does it work? NeuroImage, 2009, 45(3): 788-794.

    [6] Shin H C, Aggarwal V, Acharya S, et al. Neural decoding of finger movements using Skellam-based maximum-likelihood decoding. IEEE Transactions on Biomedical Engineering, 2010, 57(3): 754-760.

    [7] Jazayeri M, Movshon J A, Optimal representation of sensory information by neural populations. Nature Neuroscience, 2006, 9(5): 690-696.

    [8] You K J, Ham H G, Lee H J, et al, Odor discrimination using neural decoding of the main olfactory bulb in rats. IEEE Transactions on Biomedical Engineering, 2011, 58(5): 1208-1215.

    date: 2012-08-23

    The MKE(The Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-2006); Brain Research Center (BRC)(2012K001127), The MKE(10033634-2012-21) ; National Research Foundation of Korea (NRF)(2012-0005787)

    Hyunchool Shin (Shinhc@ssu.ac.kr)

    CLD number: TN219 Document code: A

    1674-8042(2013)01-0089-05

    10.3969/j.issn.1674-8042.2013.01.019

    kizo精华| 国产免费一区二区三区四区乱码| 少妇人妻精品综合一区二区| 一区二区日韩欧美中文字幕 | 国产在线视频一区二区| 91aial.com中文字幕在线观看| 国产精品欧美亚洲77777| 午夜福利影视在线免费观看| 91精品国产九色| h视频一区二区三区| 亚洲欧美精品自产自拍| 九九久久精品国产亚洲av麻豆| 精品少妇久久久久久888优播| 亚洲欧美中文字幕日韩二区| 免费黄网站久久成人精品| 欧美人与善性xxx| a级毛片在线看网站| 国产精品国产三级国产av玫瑰| 91精品伊人久久大香线蕉| 国产无遮挡羞羞视频在线观看| 少妇被粗大的猛进出69影院 | 三级国产精品片| 97精品久久久久久久久久精品| 高清欧美精品videossex| 亚洲欧美一区二区三区国产| 99热6这里只有精品| 热99国产精品久久久久久7| 日韩亚洲欧美综合| 啦啦啦啦在线视频资源| 99久久人妻综合| 99久久精品一区二区三区| 蜜桃在线观看..| 亚洲精品一二三| 伊人久久精品亚洲午夜| 免费av不卡在线播放| 高清黄色对白视频在线免费看| 天天躁夜夜躁狠狠久久av| av又黄又爽大尺度在线免费看| 午夜91福利影院| 丝瓜视频免费看黄片| 性高湖久久久久久久久免费观看| 精品久久久久久电影网| 国产精品久久久久成人av| 99久久人妻综合| 老司机影院毛片| 亚洲国产精品专区欧美| 好男人视频免费观看在线| 黑人巨大精品欧美一区二区蜜桃 | av播播在线观看一区| 亚洲欧洲精品一区二区精品久久久 | 婷婷色av中文字幕| 欧美激情极品国产一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 纵有疾风起免费观看全集完整版| 日韩,欧美,国产一区二区三区| 久久久国产精品麻豆| 国产欧美亚洲国产| 国产高清不卡午夜福利| 欧美日韩一区二区视频在线观看视频在线| 插逼视频在线观看| 久久久亚洲精品成人影院| 69精品国产乱码久久久| 亚洲一级一片aⅴ在线观看| 大码成人一级视频| 在线观看三级黄色| 久久ye,这里只有精品| 黄片播放在线免费| 午夜免费鲁丝| 日日爽夜夜爽网站| 亚洲精品日本国产第一区| 妹子高潮喷水视频| 日本91视频免费播放| 亚洲欧美成人精品一区二区| 九九在线视频观看精品| 视频在线观看一区二区三区| 国产精品秋霞免费鲁丝片| 久久人人爽人人爽人人片va| 日本爱情动作片www.在线观看| 春色校园在线视频观看| 国产乱来视频区| 一个人免费看片子| 国产精品99久久久久久久久| 国产精品秋霞免费鲁丝片| 中文字幕av电影在线播放| 欧美xxxx性猛交bbbb| 亚洲成人一二三区av| 欧美3d第一页| 国产爽快片一区二区三区| 久久久欧美国产精品| 日韩,欧美,国产一区二区三区| 亚洲av国产av综合av卡| tube8黄色片| 欧美日韩亚洲高清精品| 精品99又大又爽又粗少妇毛片| 色5月婷婷丁香| 成人亚洲欧美一区二区av| 男女啪啪激烈高潮av片| 最黄视频免费看| 高清av免费在线| 黄色怎么调成土黄色| 春色校园在线视频观看| 热re99久久精品国产66热6| 亚洲美女搞黄在线观看| 亚洲av不卡在线观看| 久久久久国产精品人妻一区二区| 99久久精品国产国产毛片| 人妻少妇偷人精品九色| 99久久人妻综合| 久久精品久久久久久久性| a级毛片黄视频| 能在线免费看毛片的网站| 一级毛片我不卡| av国产久精品久网站免费入址| 一二三四中文在线观看免费高清| 久久青草综合色| 日韩成人av中文字幕在线观看| 男女国产视频网站| 多毛熟女@视频| 久久久精品94久久精品| 久久精品久久久久久噜噜老黄| 两个人的视频大全免费| 欧美+日韩+精品| 亚洲精品美女久久av网站| 成人毛片60女人毛片免费| 看非洲黑人一级黄片| 日本av免费视频播放| 国产精品一国产av| 少妇丰满av| 亚洲伊人久久精品综合| 一级毛片 在线播放| 成人国语在线视频| 国产成人精品婷婷| 精品久久久久久久久av| 爱豆传媒免费全集在线观看| 我的女老师完整版在线观看| 97超视频在线观看视频| 精品久久国产蜜桃| 亚洲精品乱久久久久久| 一级毛片电影观看| 久久影院123| 成人漫画全彩无遮挡| 国产成人av激情在线播放 | 亚洲婷婷狠狠爱综合网| 亚洲综合精品二区| 亚洲av免费高清在线观看| 久久久久精品性色| 青春草国产在线视频| 热re99久久精品国产66热6| 另类精品久久| 亚洲精品中文字幕在线视频| 久热久热在线精品观看| 99热这里只有精品一区| 精品亚洲乱码少妇综合久久| 国产乱人偷精品视频| 丝瓜视频免费看黄片| 午夜精品国产一区二区电影| 亚洲少妇的诱惑av| 亚洲国产毛片av蜜桃av| 久久狼人影院| 亚洲精华国产精华液的使用体验| 免费看光身美女| 成人免费观看视频高清| 99国产综合亚洲精品| 中文天堂在线官网| 日韩一本色道免费dvd| 街头女战士在线观看网站| 黑人高潮一二区| 日日摸夜夜添夜夜爱| 久久精品久久久久久久性| 精品人妻在线不人妻| 欧美日韩综合久久久久久| 亚洲熟女精品中文字幕| 精品久久国产蜜桃| 一区二区三区四区激情视频| 啦啦啦中文免费视频观看日本| 毛片一级片免费看久久久久| 午夜福利影视在线免费观看| 99热6这里只有精品| 日韩一区二区视频免费看| 久久狼人影院| av视频免费观看在线观看| 日本黄色日本黄色录像| 你懂的网址亚洲精品在线观看| 亚洲欧美精品自产自拍| 最新的欧美精品一区二区| 国产熟女午夜一区二区三区 | 999精品在线视频| 久久久久久人妻| 在线观看一区二区三区激情| 国产午夜精品一二区理论片| 色5月婷婷丁香| 欧美日韩综合久久久久久| 成人毛片60女人毛片免费| 免费人妻精品一区二区三区视频| 制服人妻中文乱码| 久久久久久伊人网av| 2018国产大陆天天弄谢| 国产精品一区二区在线不卡| 国产成人免费无遮挡视频| 99久国产av精品国产电影| 妹子高潮喷水视频| 自线自在国产av| 两个人免费观看高清视频| 日本黄色日本黄色录像| 肉色欧美久久久久久久蜜桃| 街头女战士在线观看网站| 久久久久久久久大av| 男女国产视频网站| 毛片一级片免费看久久久久| 欧美xxxx性猛交bbbb| 亚洲国产成人一精品久久久| 又黄又爽又刺激的免费视频.| 亚洲精品一二三| 在线天堂最新版资源| 超色免费av| 日本vs欧美在线观看视频| 狂野欧美激情性xxxx在线观看| 好男人视频免费观看在线| 最近的中文字幕免费完整| 如何舔出高潮| 日韩精品免费视频一区二区三区 | 一边摸一边做爽爽视频免费| 亚洲不卡免费看| 久久这里有精品视频免费| 国产白丝娇喘喷水9色精品| 日韩av不卡免费在线播放| 亚洲欧洲国产日韩| 午夜激情久久久久久久| 久久99热这里只频精品6学生| 女性被躁到高潮视频| 如何舔出高潮| 青春草视频在线免费观看| 亚洲在久久综合| 狠狠婷婷综合久久久久久88av| 街头女战士在线观看网站| 黑人欧美特级aaaaaa片| 国产乱来视频区| 国产精品人妻久久久久久| 国产免费一级a男人的天堂| 成人国产av品久久久| 成年美女黄网站色视频大全免费 | 国产乱来视频区| 欧美一级a爱片免费观看看| 国产成人freesex在线| 亚洲一区二区三区欧美精品| 爱豆传媒免费全集在线观看| 免费观看无遮挡的男女| 99热这里只有是精品在线观看| 国产免费又黄又爽又色| 久久久久久久久久久免费av| 欧美日韩成人在线一区二区| 在线观看三级黄色| videossex国产| 三上悠亚av全集在线观看| 少妇的逼水好多| 高清午夜精品一区二区三区| 免费观看a级毛片全部| 色哟哟·www| 亚洲综合精品二区| 香蕉精品网在线| 热99久久久久精品小说推荐| 夜夜看夜夜爽夜夜摸| 一区在线观看完整版| 亚洲欧洲日产国产| 最后的刺客免费高清国语| 亚洲精品中文字幕在线视频| 亚洲精品久久成人aⅴ小说 | 69精品国产乱码久久久| 男女高潮啪啪啪动态图| 亚洲欧美清纯卡通| 三上悠亚av全集在线观看| 欧美激情 高清一区二区三区| 制服丝袜香蕉在线| 亚洲伊人久久精品综合| 久久久久久久精品精品| 亚洲欧美日韩另类电影网站| 夜夜爽夜夜爽视频| 边亲边吃奶的免费视频| 亚洲av男天堂| 男男h啪啪无遮挡| 极品少妇高潮喷水抽搐| 精品熟女少妇av免费看| 日本猛色少妇xxxxx猛交久久| 久久精品国产亚洲网站| 亚洲久久久国产精品| 99热国产这里只有精品6| 99久久综合免费| 国产高清三级在线| 日本免费在线观看一区| 国产一区二区在线观看日韩| 黄片播放在线免费| 51国产日韩欧美| 亚洲欧美色中文字幕在线| 国产av码专区亚洲av| 中文精品一卡2卡3卡4更新| 毛片一级片免费看久久久久| 麻豆乱淫一区二区| 人妻 亚洲 视频| 制服丝袜香蕉在线| 日日撸夜夜添| 毛片一级片免费看久久久久| 美女视频免费永久观看网站| 日韩成人伦理影院| 永久免费av网站大全| 各种免费的搞黄视频| 热re99久久国产66热| 国产精品蜜桃在线观看| 国产精品不卡视频一区二区| 精品人妻偷拍中文字幕| 免费观看性生交大片5| 亚洲精品第二区| 成人综合一区亚洲| 国产免费福利视频在线观看| 亚洲一级一片aⅴ在线观看| 国产免费一区二区三区四区乱码| 亚洲美女搞黄在线观看| 日韩熟女老妇一区二区性免费视频| 国产精品无大码| 国产视频首页在线观看| 日韩 亚洲 欧美在线| 国产亚洲av片在线观看秒播厂| .国产精品久久| 亚洲欧洲国产日韩| 高清不卡的av网站| 欧美亚洲日本最大视频资源| 午夜福利,免费看| 国产精品偷伦视频观看了| 国产片内射在线| 午夜激情av网站| 精品一品国产午夜福利视频| 久久人妻熟女aⅴ| 97超视频在线观看视频| 插阴视频在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲无线观看免费| 婷婷色麻豆天堂久久| 免费av中文字幕在线| av女优亚洲男人天堂| 国产日韩欧美在线精品| 亚洲第一区二区三区不卡| 亚洲精品色激情综合| 成人无遮挡网站| 亚洲图色成人| 欧美最新免费一区二区三区| 日韩制服骚丝袜av| 好男人视频免费观看在线| 亚洲国产精品国产精品| 国产高清不卡午夜福利| 26uuu在线亚洲综合色| 黄色毛片三级朝国网站| 亚洲不卡免费看| 少妇高潮的动态图| 日韩伦理黄色片| 男男h啪啪无遮挡| 国产爽快片一区二区三区| 成人免费观看视频高清| 九九久久精品国产亚洲av麻豆| 久久韩国三级中文字幕| 九九爱精品视频在线观看| 国产男女超爽视频在线观看| 桃花免费在线播放| 亚洲综合精品二区| 精品久久久噜噜| 亚洲精品日韩av片在线观看| 亚洲av免费高清在线观看| 国产探花极品一区二区| 欧美精品国产亚洲| 如何舔出高潮| 男的添女的下面高潮视频| 卡戴珊不雅视频在线播放| 欧美变态另类bdsm刘玥| 美女国产视频在线观看| 久久99热6这里只有精品| 中文字幕人妻丝袜制服| 综合色丁香网| 精品视频人人做人人爽| 观看av在线不卡| av电影中文网址| 人妻 亚洲 视频| 久久久久精品久久久久真实原创| 国产精品嫩草影院av在线观看| 欧美激情国产日韩精品一区| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久精品电影小说| 久久久欧美国产精品| 最新中文字幕久久久久| 插阴视频在线观看视频| 午夜福利视频在线观看免费| 人体艺术视频欧美日本| 又粗又硬又长又爽又黄的视频| 精品人妻熟女av久视频| 亚洲欧美成人精品一区二区| 制服诱惑二区| 精品少妇内射三级| 欧美一级a爱片免费观看看| 一级,二级,三级黄色视频| 综合色丁香网| 国产深夜福利视频在线观看| 日本-黄色视频高清免费观看| 免费久久久久久久精品成人欧美视频 | 亚洲成人av在线免费| 亚洲国产欧美在线一区| 亚洲精品第二区| 亚洲国产日韩一区二区| 国产成人91sexporn| 免费日韩欧美在线观看| 欧美变态另类bdsm刘玥| 国产熟女午夜一区二区三区 | 不卡视频在线观看欧美| 九九久久精品国产亚洲av麻豆| 在线 av 中文字幕| 亚洲国产精品999| 日韩不卡一区二区三区视频在线| 国产精品久久久久成人av| 18+在线观看网站| 久久久久精品久久久久真实原创| 一区二区三区乱码不卡18| 日韩精品免费视频一区二区三区 | 少妇被粗大的猛进出69影院 | 亚洲在久久综合| www.色视频.com| 欧美精品亚洲一区二区| 精品少妇黑人巨大在线播放| 国产精品秋霞免费鲁丝片| 成年人午夜在线观看视频| 91精品一卡2卡3卡4卡| 国产国语露脸激情在线看| 99久国产av精品国产电影| 在线播放无遮挡| 搡女人真爽免费视频火全软件| 亚洲av免费高清在线观看| 国产伦理片在线播放av一区| 日本wwww免费看| a 毛片基地| 日韩,欧美,国产一区二区三区| 日韩三级伦理在线观看| 麻豆精品久久久久久蜜桃| 亚洲成色77777| 国产精品三级大全| 中文字幕制服av| 亚洲国产精品一区二区三区在线| 人人妻人人添人人爽欧美一区卜| 国产av一区二区精品久久| 亚洲综合色网址| 成年人午夜在线观看视频| 午夜福利,免费看| 少妇人妻久久综合中文| 欧美精品亚洲一区二区| 岛国毛片在线播放| 亚洲综合色网址| 亚洲国产欧美日韩在线播放| 精品熟女少妇av免费看| 黄片播放在线免费| tube8黄色片| 亚洲熟女精品中文字幕| 高清欧美精品videossex| 人人妻人人爽人人添夜夜欢视频| 日日撸夜夜添| 妹子高潮喷水视频| 亚洲国产精品一区二区三区在线| 视频中文字幕在线观看| 久久久久久久亚洲中文字幕| 99re6热这里在线精品视频| 少妇被粗大猛烈的视频| 国内精品宾馆在线| 国产探花极品一区二区| 黑人高潮一二区| 欧美亚洲日本最大视频资源| 午夜福利在线观看免费完整高清在| 久久综合国产亚洲精品| 国产高清三级在线| 午夜av观看不卡| 成年人午夜在线观看视频| 看免费成人av毛片| 有码 亚洲区| 黑人巨大精品欧美一区二区蜜桃 | 满18在线观看网站| 校园人妻丝袜中文字幕| 日韩视频在线欧美| 婷婷色综合大香蕉| 熟女人妻精品中文字幕| 亚洲av二区三区四区| 中文字幕最新亚洲高清| 91成人精品电影| 亚洲熟女精品中文字幕| 久久久久网色| 成人亚洲精品一区在线观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品专区欧美| a级毛色黄片| 三级国产精品欧美在线观看| 亚洲婷婷狠狠爱综合网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品久久久精品久久久| 久久精品国产亚洲av涩爱| 久久久国产一区二区| 久久精品国产亚洲av天美| 大香蕉久久成人网| 曰老女人黄片| 一级毛片黄色毛片免费观看视频| 日日爽夜夜爽网站| 亚洲,欧美,日韩| 男女国产视频网站| 精品视频人人做人人爽| 一本—道久久a久久精品蜜桃钙片| 欧美亚洲日本最大视频资源| 国产一区二区在线观看日韩| 晚上一个人看的免费电影| 久久99精品国语久久久| 简卡轻食公司| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产| 亚洲精品久久久久久婷婷小说| 久久99热6这里只有精品| 一区在线观看完整版| 欧美成人精品欧美一级黄| 久久精品久久久久久噜噜老黄| 亚洲图色成人| 亚洲一级一片aⅴ在线观看| 免费少妇av软件| 色哟哟·www| 国产又色又爽无遮挡免| 中国国产av一级| 不卡视频在线观看欧美| 国产成人免费无遮挡视频| 黑丝袜美女国产一区| 亚洲综合精品二区| 亚洲精品一二三| 国产成人精品婷婷| av专区在线播放| 久久影院123| 十八禁网站网址无遮挡| 亚洲色图综合在线观看| 久久久久久久久久人人人人人人| 国语对白做爰xxxⅹ性视频网站| 99视频精品全部免费 在线| 国内精品宾馆在线| 日韩av在线免费看完整版不卡| 久久久精品区二区三区| av播播在线观看一区| 中文字幕亚洲精品专区| 搡女人真爽免费视频火全软件| 精品亚洲成a人片在线观看| 欧美精品国产亚洲| 国产精品人妻久久久久久| 久久ye,这里只有精品| 色5月婷婷丁香| 亚洲欧美日韩卡通动漫| 亚洲中文av在线| 男男h啪啪无遮挡| 日本-黄色视频高清免费观看| 亚洲国产色片| 久久久亚洲精品成人影院| 99热全是精品| 少妇被粗大猛烈的视频| videos熟女内射| 日本猛色少妇xxxxx猛交久久| 亚洲欧美成人精品一区二区| 人人妻人人添人人爽欧美一区卜| 欧美最新免费一区二区三区| 亚洲精品日本国产第一区| 婷婷色麻豆天堂久久| 久久久久久久国产电影| 我的女老师完整版在线观看| 日韩视频在线欧美| 国产亚洲最大av| 亚洲国产精品999| 亚洲色图综合在线观看| 免费高清在线观看日韩| 国产亚洲精品久久久com| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站| 婷婷色麻豆天堂久久| 婷婷色av中文字幕| 草草在线视频免费看| 一级爰片在线观看| 久久久精品94久久精品| 久久精品国产亚洲av涩爱| 久久99热这里只频精品6学生| 国产精品一区二区在线观看99| 在现免费观看毛片| 在线观看免费日韩欧美大片 | av在线观看视频网站免费| 亚洲精品国产av蜜桃| 成人国产av品久久久| 在线观看一区二区三区激情| av一本久久久久| www.av在线官网国产| 我要看黄色一级片免费的| 亚洲精品视频女| 特大巨黑吊av在线直播| 爱豆传媒免费全集在线观看| 国产不卡av网站在线观看| 国精品久久久久久国模美| 国产熟女欧美一区二区| 国产精品99久久99久久久不卡 | 久久97久久精品| av.在线天堂| 久久久久国产精品人妻一区二区| 日韩中字成人| 夜夜爽夜夜爽视频| 丰满迷人的少妇在线观看| 夫妻性生交免费视频一级片| 日韩 亚洲 欧美在线| 看非洲黑人一级黄片| 亚洲欧美色中文字幕在线| 高清不卡的av网站| 高清午夜精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 欧美日韩精品成人综合77777| 乱码一卡2卡4卡精品| 色哟哟·www| 岛国毛片在线播放| 99久国产av精品国产电影| 在线观看免费日韩欧美大片 |