• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Acetonitrile (CH3CN) and methyl isocyanide(CH3NC) adsorption on Pt(111) surface: a DFT study

    2013-11-01 01:30:15HANXinyan韓新艷RENJunCAODuanlin曹端林ZHUJiaping朱佳平

    HAN Xin-yan (韓新艷), REN Jun (任 君), CAO Duan-lin (曹端林), ZHU Jia-ping (朱佳平)

    (College of Chemical Engineering and environment, North Universtiy of China, Taiyuan 030051, China)

    Acetonitrile (CH3CN) and methyl isocyanide(CH3NC) adsorption on Pt(111) surface: a DFT study

    HAN Xin-yan (韓新艷), REN Jun (任 君), CAO Duan-lin (曹端林), ZHU Jia-ping (朱佳平)

    (College of Chemical Engineering and environment, North Universtiy of China, Taiyuan 030051, China)

    The adsorption of CH3CN and CH3NC on the Pt(111) surface at the 1/4 monolayer (ML) coverage has been carried out at the level of density functional theory for understanding hydrogenation processes of nitriles. The most favored adsorption structure for CH3CN is the C—N bond almost parallel to the surface with the C—N bond interaction with adjacent surface Pt atoms. For CH3NC, the most stable configuration is the CH3NC locates at the face center cubic (fcc) site with the C-atom bonded to three Pt atoms. In addition, the HCN and HNC adsorption has been computed, and the adsorption pattern is nearly similar to the CH3CN and CH3NC, respectively. The adsorbed molecules rehybridize on the surface, becoming non-linear with a bent C—C—N or C—N—C angle. Furthermore, the binding mechanism of these molecules on the Pt(111) surface is also analyzed.

    acetonitrile; methyl isocyanide; adsorption; Pt(111) surface; density functional theory(DFT)

    Acetonitrile (CH3CN) and its isomer, methyl isocyanide (CH3NC), have been relatively often used for determining geometrical structure and bonding configuration on single crystal metal surfaces[9-17]. Their application is based on the fact that these compounds are isoelectronic with CO (the most frequently applied probe molecule). While CO generally bonds on Group VIII metals via a synergistic bonding scheme with both donation from the metal into empty 2π*orbitals on CO and donation from the filled 6σ orbital of CO to the metal, methyl isocyanide is a significantly weaker π-acid since its 2π*level lies much higher in energy than that of CO. Therefore, it is interesting, from a fundamental point of view, to compare the surface chemistry of these molecules. In addition, heterogeneous catalytic transformation of acetonitrile has rarely been investigated. Experimental studies on the ultra violet (UV) irradiation of CH3CN adsorbed on TiO2in the presence of oxygen indicated[10]the formation of H2O, CO2, surface CO3and surface isocyanate (NCO). The formation of surface CH3CONH2, η2(N,O)—CH3CONH, CH3COO(a), HCOO(a), NCO(a) and CN-containing species was observed, when the UV irradiation of CH3CN adsorbed on TiO2was performed in the absence of oxygen[11].

    Isocyanide adsorption has been studied previously on various metal surfaces. On Pt(111) surface[12,14], CH3CN was found to adsorb weakly to the surface in a parallel structure (through both the terminal carbon and the nitrogen), and CH3NC was found to bond strongly in an upright structure with the terminal carbon bonded to two metal atoms. Acetonitrile (methyl cyanide) was investigated further on Pt(111)[13]and again found to adsorb parallel to the surface with a possible interaction between the β-hydrogens and the surface. The conclusion that CN axis is parallel to the bridge and the adsorption energy is the largest are also calculated by Alexis Markovits and Christian Minot[14].On supported Pt/SiO2, similar results were found for both compounds. On powdered Au, isocyanides were bound weakly to the metal in a linear structure with the terminal carbon bonded to one metal atom. Isocyanides were found to adsorb strongly on Ni(111) and Ni(100) in a parallel structure[15-17]. On Rh(111) surface[16], the isocyanide bonds strongly also in a parallel structure at low coverage. On supported Rh/Al2O3[17], the isocyanide was found to stand up again. Finally, on Ag(311)[18], isocyanides bond wealy in a parallel or close to parallel orientation. So, the adsorption of cyanide on the metal surface has not been investigated systematically.

    Quantum chemical methods have become new tools for investigating the structure of active surfaces and determining reaction mechanisms. With recent development, density functional theory (DFT) is capable of providing qualitative and, in many cases, quantitative insights into surface science and catalysis. In this paper, we report a systematic DFT study on CH3CN and CH3NC adsorption on Pt(111) in order to get insight into their surfaces and structures. Furthermore, the aim of the present work is to determine the surface species formed on Pt(111) and to detect the gas products during the interaction of acetonitrile with noble metal catalysts. This study would be helpful to find an effective catalyst in breaking of C—N bond of cyanide compounds.

    1 Methods and models

    All calculation are done with the Cambridge sequential total energy package[19]. DFT calculation within the generalized gradient approximation (GGA) using the Perdew, Burke and Ernzerhof (PBE) functional[20]was carried out to study nitromethane adsorption on the surfaces of Pt(111). Ionic cores were described by the ultrasoft pseudopotential[21], and the Kohn-Sham one-electron states were expanded in a plane wave basis set up to 340 eV. The difference of the adsorption energy at the level of cutoff between 340 and 360 eV was about 0.02 eV. A Fermi smearing of 0.1 eV was utilized. Brillouin zone integration was approximated by a sum over special k-points chosen using the Monkhorst-Pack scheme[22]. A spin-restricted approach was used for clean surface models since polarization effects were found to be negligible. The convergence criteria for structure optimization and energy calculation were set to (a) self-consisten field (SCF) tolerance of 2.0 ×10-6eV/atom, (b) energy tolerance of 2.0 ×10-5eV/atom, (c) maximum force tolerance of 0.05 eV/-, and (d) maximum displacement tolerance of 2.0 ×10-3-. A4× 4 × 1 k-grid sampling within the Brillouin zones was used in the p(2×2) unit cell and a vacuum region of 15 -. We also tested the k-point sampling by using the 5×5×1 Monkhorst-Pack meshes for the unit cell, and the change in energy is less than 0.03 eV. Although the PBE functional can give reliable optimized geometry, it tends to overbind adsorbate on metal surface[23,24]. We further carried out the RPBE single point energy calculations on the PBE optimized geometries and use the RPBE energy for discussion.

    In order to describe the interaction between adsorbates and Pt-slab, we defined the adsorption energy as

    where E(slab), E(adsorbates) and E(adsorbates / slab) are the total energy of the optimized slab of the surface, gas-phase adsorbate and adsorbate-slab complex, respectively.

    2 Results and discussion

    2.1 CH3CN adsorption on Pt(111) surface

    Initially, we checked that the properties of the isolated CH3CN were accurately reproduced. The calculated gas phase C—N and C—C bond lengths is 1.169 and 1.435 -, respectively. The C—C—N angle is 179.5 - in good agreement with experiment value (C—N:1.158 -, C—C: 1.460 -, and C—C—N: 180.0 -). The Pt(111) surface exhibits four high-symmetry adsorption sites as shown in Fig.1. The adsorbed species could be located on top, bridge, face cerder cubic kinds of (fcc) hollow or hexagonal close-packed (hcp) hollow sites, hereafter labeled t, b, f and h, respectively. We designated all possible adsorption structures for CH3CN on the surface, top, bridge, fcc hollow or hcp hollow, based upon the position of the N atom, only three relatively stable configuration were obtained in Fig.1. The calculated adsorption energies and structural parameters for CH3CN are listed in Table 1. In I (2-fold bridge site), CH3CN interacts with two adjacent Pt atoms via the C—N bond and forms one Pt—N and one Pt—C bond and the C—N axis almost parallel to the surface. The C—N bond is elongated compared to free CH3CN (1.252 vs 1.15 -) (Fig.1). The C—C bond is stretched to 1.474- corresponding to gas phase calculated value 1.435 -, and the C—C—N bond angle is reduced to 129.1 -. The length of Pt—N and Pt—C bonds is 2.032 and 2.053 -, respectively. These results are close to those reported for the acetonitrile adsorption on Ni(111)[25], which showed that a rehybridization of the acetonitrile molecule into a sp2 configuration. In II (top1 site), the acetonitrile molecule linearly adsorbed on the surface by one C atom atop on one Pt and it bonded to the surface only by the nitrogen atom with the C—N axis almost perpendicular to the surface. The C—N bond length is about 1.166 - and the C—C—N bond angle is 178.7 -. For the bridge adsorption, each of the possible bridge adsorption sites on the surface was considered, but the acetonitrile molecule adsorption configuration changed from bridge to top site during optimization (III, top2 site). The C—C bond length is about 1.667-. As given in Table 1, I is the most stable adsorbed form with the largest adsorption energy (-0.48 eV), while II and III have lower adsorption energies (-0.33 and -0.30 eV).

    Fig.1 Adsorption of CH3CN, CH3NC, HCN and HNC on Pt(111) surface at 1/4 ML

    Table 1 Calculated adsorption energies (Eads, eV) and structural parameters (d, - and θ, deg) for CH3CN, CH3NC, HCN and HNC adsorption on the Pt(111)-2×2 surfaces

    2.2 CH3NC adsorption on Pt(111) surface

    The interaction of isocyanides with transition metals has been extensively studied in the context of organometallic chemistry. Recently, scanning tunneling microscopy(STM)[26]and reflection absorption infrared spectroscopy and temperature-programmed desorption(TPD)[27]were used to investigate the adsorption of methyl isocyanide (CNCH3) on the Pt(111) surface and its reaction to form methylaminocarbyne(CNHCH3). It indicated that methyl isocyanide is found to adsorb at on-topsites at low coverage and at both on-top and 2-fold bridge sites at higher coverage. In this section, we have mainly focused on the structure of the adsorbed molecule and the adsorption site. For CH3NC adsorption, Fig.1 shows four adsorption forms (IV, V, VI and VII). In IV, the CH3NC locates at the fcc site with the C-atom bonded to three Pt atoms and the Pt—C bond lengths are 2.109, 2.116 and 2.135, respectively. The C—C—N bond angle is 178.9 - and the two C—N bond lengths are 1.210 and 1.389 -, respectively. In V, the CH3NC is situated at hcp site by the C-atom adsorption and the length of the Pt—C bond is changed from 2.101 to 2.125 -. The C—N bond is stretched about 0.044 and 0.22 -, respectively. In V, the CH3NC adsorbed at the hcp site with the C-atom interaction with three Pt atoms on the surface with three Pt—C distances of 2.101, 2.125 and 2.115 -. The two C—N bond lengths are extended to 1.213 and 1.387 -, respectively. The C—C—N bond angle is 162.1 -. In VI, the carbon of the CH3NC bridges on two Pt atoms with Pt—C bond lengths of 2.042 and 2.031 - and the C—N distances of 1.393 and 1.201 -. In IV, the carbon of the CH3NC atop on one Pt atom with the C—N distances of 1.397 and 1.177 -. In Table 1, IV is the most stable adsorption mode (-1.57 eV), followed by V(-1.55 eV), while VI and IV are much less stable (-1.50 and -1.48 eV). It is interesting to note that the CH3NC adsorption on hcp site is similar to the fcc site due to the very small of the energy difference (-0.02 eV). Considering a possible equilibrium between the two states, the chance of the CH3NC adsorption on fcc and hcp sites is same thermodynamically. On this basis, the CH3NC should dissociate dominantly and directly on the two sites, while the bridge and top sites play a minor role.

    Fig.2 PDOS of the CH3CN (a), CH3NC (b), HCN (c) and HNC (d) adsorption on Pt(111) surface

    2.3 HCN and HNC adsorption on Pt(111) surface

    3 Electronic structure and density of states

    4 Conclusion

    The adsorption of CH3CN, CH3NC, HCN and HNC on the Pt(111) surface has been computed at the level of density functional theory for understanding hydrogenation processes of nitriles. At the 1/4 ML low coverage, the most favored adsorption structure for CH3CN is the C—N bond almost parallel to the surface with the C—N bond interaction with adjacent surface Pt atoms. For CH3NC, the most stable configuration is the CH3NC locates at the fcc site with the C-atom bonded to three Pt atoms. For the HCN and HNC adsorption, the adsorption pattern is nearly similarly to the CH3CN and CH3NC, respectively.

    The binding mechanism of CO to the Pt(111) surface at the 1/4ML is also analyzed by the DOS analysis. Compared with 5σ and 2π*bands of the free CN fragment, HCN and HNC, the 5σ band of the adsorbed CH3CN, CH3NC, HCN and HNC shifts strongly downwards, and part of the 2π*bands of the adsorbed CH3CN, CH3NC, HCN and HNC lies quite below the Fermi level. This indicates a charge transfer from the Pt(111) surface to the CH3CN, CH3NC, HCN and HNC. As a consequence, C—N bonds are activated.

    [2] De Bellefon C, Fouilloux P. Homogeneous and heterogeneous hydrogenation of nitriles in a liquid phase: chemical, mechanistic, and catalytic aspects. Catalysis Reviews: Science and Engineering, 1994, 36(3): 459.

    [3] Barrault J, Pouilloux Y. Synthesis of fatty amines. Selectivity control in presence of multifunctional catalysts. Catalysis Today, 1997, 37(2): 137-153.

    [4] Huang Y Y , Sachtler W M H. On the mechanism of catalytic hydrogenation of nitriles to amines over supported metal catalysts. Applied Catalysis A:General, 1999, 182(2): 365-378.

    [5] Rode C V, Arai M, Shirai M, et al. Gas-phasehyd-rogenation of nitriles by nickel on various supports. Applied Catalysis A: General, 1997, 148(2): 405-413.

    [7] Verhaak M J F M, van Dillen A J, Geus J W. The selective hydrogenation of acetonitrile on supported nickel catalysts. Catalysis Letters, 1994, 26(1-2): 37-53.

    [8] Medina C F, Tichit D, Coq B, et al. Hydrogenation of acetonitrile on nickel-based catalysts prepared from hydrotalcite-like precursors. Journal of Catalysis, 1997, 167(1): 142-152.

    [9] Kishi K, Ikeda S. Adsorption of acetonitrile on evaporated nickel and palladium films studied by X-ray photoelectron spectroscopy. Surface Science, 1981, 107(2/3): 405-416.

    [10] Zhuang J, Rusu C N, Yates Jr J T. Adsorption and photooxidation of CH3CN on TiO2. The Journal of Physical Chemistry B, 1999, 103(33): 6957-6967.

    [11] Chuang C C, Wu W C, Lee M X, et al. Adsorption and photochemistry of CH3CN and CH3CONH2on powdered TiO2. Physical Chemistry Chemical Physics , 2000, 2(17): 3877-3882.

    [12] Avery N R, Matheson T W. Adsorption and decomposition of methyl iso-cyanide on Pt(111). Surface Science, 1984, 143(1): 110-124.

    [13] Friend C M, Gavin R M, Muetterties E L, et al. Coordination chemistry of metal surfaces-carbon monoxide chemisorption states on Pt(111). Journal of the American Chemical Society, 1980, 102(5): 1717-1719.

    [14] Alexis M, Christian M. Theoretical study of the acetonitrile flip-flop with the electric field orientation: adsorption on a Pt(111) electrode surface. Catalysis Letters, 2003, 91(3-4): 225-234.

    [15] Friend C M, Stein J, Muetterties E L. Coordination chemistry of metal surfaces. 2. Chemistry of acetonitrile and methyl isocyanide on nickel surfaces. Journal of the American Chemical Society, 1981, 103(4): 767-772.

    [16] Semancik S, Haller G L, Yates J T. The adsorption and dissociation of methyl isocyanide on Rh(111) . Journal of Chemical Physics, 1983, 78(11):6970.

    [17] Cavanagh R R, Yates J T. Surface binding of an electronic analog to CO: Infrared evidence for CH3NC chemisorption on Rh/Al2O3. Journal of Chemical Physics, 1981, 75(3): 1551-1559.

    [18] Ceyer S T, Yates J T. Orientation of methyl isocyanide adsorbed on silver(311). Journal of Physical Chemistry, 1985, 89(18): 3842-3845.

    [19] Payne M C, Allan D C, Arias T A, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992, 64(4): 1045-1097.

    [20] Milman V, Winkler B, White J A, et al. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. International Journal of Quantum Chemistry, 2000, 77(5): 895-910.

    [21] White J A, Bird D M. Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations. Physical Review B, 1994, 50(7): 4954-4957.

    [22] Perdew J P, Burke S, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865-3868.

    [23] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990, 41(11): 7892-7895.

    [24] Monkhorst H J, Pack J D. Special points for brillouin-zone integrations. Physical Review B, 1976, 13(12): 5188-5192.

    [25] Hammer B, Hansen L B, N?rskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 1999, 59(11): 7413-7421.

    [26] ZHANG Ying-kai, YANG Wei-tao. Comment on Generalized gradient approximation made simple. Physical Review Letters, 1998, 80(4): 890-890.

    [27] Gardin D E, Barbieri A, Batteas J D, et al. Tensor LEED analysis of the Ni(111)-p(2×2)-CH3CN structure. Surface Science, 1994, 304(3): 316-324.

    [28] Katano S, Herceg E, Trenary M, et al. Single molecule observations of the adsorption sites of methyl isocyanide on Pt(111) by low temperature scanning tunneling microscopy. The Journal of Physical Chemistry B, 2006, 110(41): 20344-20349.

    [29] Kang D H, Trenary M. Formation of methylaminocarbyne from methyl Isocyanide on the Pt(111) surface. The Journal of Physical Chemistry B, 2002, 106(22): 5710-5718.

    [30] Trenary M, Jentz D, Mills P, et al. The surface chemistry of CN and H on Pt(111) , Surface Science, 1996, 368(1): 354-360.

    date: 2012-09-21

    Natural Science Foundation of Shanxi Province (No. 2009011014)

    REN Jun(junren2003@sxicc.ac.cn)

    CLD number: O647 Document code: A

    1674-8042(2013)01-0097-06

    10.3969/j.issn.1674-8042.2013.01.021

    最近2019中文字幕mv第一页| 精品亚洲成a人片在线观看| 少妇精品久久久久久久| 国产男女超爽视频在线观看| 最新中文字幕久久久久| 欧美国产精品一级二级三级| 一本久久精品| 久久精品国产a三级三级三级| 人人妻人人爽人人添夜夜欢视频| 男女啪啪激烈高潮av片| 少妇的逼好多水| 国产在视频线精品| av黄色大香蕉| 免费高清在线观看日韩| 极品人妻少妇av视频| 青青草视频在线视频观看| 国产亚洲精品久久久com| 18禁观看日本| 中国美白少妇内射xxxbb| 纵有疾风起免费观看全集完整版| 又粗又硬又长又爽又黄的视频| 国产高清有码在线观看视频| 中文字幕制服av| 久久久久久久久久成人| 国产精品一国产av| 国产黄片视频在线免费观看| 丰满饥渴人妻一区二区三| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 久久久国产一区二区| 国语对白做爰xxxⅹ性视频网站| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看| 制服诱惑二区| 在线观看国产h片| av不卡在线播放| 人妻少妇偷人精品九色| 五月天丁香电影| av卡一久久| 一区二区三区四区激情视频| 午夜激情久久久久久久| 黑人高潮一二区| 各种免费的搞黄视频| 国产一区二区在线观看日韩| 成人黄色视频免费在线看| 男人操女人黄网站| av在线观看视频网站免费| 大香蕉久久成人网| 一区二区三区精品91| 如日韩欧美国产精品一区二区三区 | 亚洲不卡免费看| 精品亚洲乱码少妇综合久久| 人体艺术视频欧美日本| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦视频在线资源免费观看| 日本黄色片子视频| 中国美白少妇内射xxxbb| 18在线观看网站| 欧美少妇被猛烈插入视频| 亚洲精品日本国产第一区| 久久久国产欧美日韩av| 欧美精品一区二区大全| 久久午夜综合久久蜜桃| 亚洲成人一二三区av| 中国美白少妇内射xxxbb| 免费高清在线观看视频在线观看| 日本av手机在线免费观看| 青春草国产在线视频| 日韩一区二区视频免费看| 日本-黄色视频高清免费观看| 99久久中文字幕三级久久日本| 亚洲婷婷狠狠爱综合网| 日本91视频免费播放| 人体艺术视频欧美日本| 亚洲一级一片aⅴ在线观看| 亚洲欧美清纯卡通| 午夜福利视频在线观看免费| 成人亚洲欧美一区二区av| 极品人妻少妇av视频| 丰满少妇做爰视频| 美女中出高潮动态图| 国产免费福利视频在线观看| 欧美另类一区| 久久99热6这里只有精品| tube8黄色片| 高清午夜精品一区二区三区| 一级片'在线观看视频| 在线 av 中文字幕| 精品久久久噜噜| 熟女电影av网| 最近最新中文字幕免费大全7| 日韩欧美精品免费久久| 久久国产精品男人的天堂亚洲 | 一区二区三区精品91| 美女xxoo啪啪120秒动态图| 国产成人aa在线观看| 成人午夜精彩视频在线观看| 国产午夜精品久久久久久一区二区三区| 91久久精品国产一区二区三区| 五月天丁香电影| 日本欧美视频一区| 91久久精品电影网| 最近中文字幕高清免费大全6| 欧美亚洲日本最大视频资源| 九九在线视频观看精品| 国产亚洲午夜精品一区二区久久| 欧美丝袜亚洲另类| 人人妻人人澡人人爽人人夜夜| 国产伦精品一区二区三区视频9| 精品少妇内射三级| 黄色欧美视频在线观看| 久久免费观看电影| www.av在线官网国产| 少妇被粗大猛烈的视频| 一本大道久久a久久精品| 国产色婷婷99| 久久99精品国语久久久| 在线观看免费高清a一片| av黄色大香蕉| 这个男人来自地球电影免费观看 | 亚洲国产日韩一区二区| 成人国语在线视频| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜添av毛片| 久久99蜜桃精品久久| 在线观看美女被高潮喷水网站| 亚洲精品中文字幕在线视频| 九九在线视频观看精品| 免费av中文字幕在线| 韩国高清视频一区二区三区| 亚洲精华国产精华液的使用体验| 成人国产麻豆网| 一本久久精品| 久热这里只有精品99| 免费人妻精品一区二区三区视频| 91在线精品国自产拍蜜月| 晚上一个人看的免费电影| 五月开心婷婷网| 极品人妻少妇av视频| av不卡在线播放| 国产av一区二区精品久久| 一区二区三区精品91| 亚洲精品av麻豆狂野| videos熟女内射| 寂寞人妻少妇视频99o| 色哟哟·www| 人妻系列 视频| 一个人看视频在线观看www免费| 欧美人与性动交α欧美精品济南到 | 精品人妻一区二区三区麻豆| 两个人的视频大全免费| 青春草亚洲视频在线观看| 国产精品蜜桃在线观看| 国产永久视频网站| 狂野欧美激情性xxxx在线观看| 啦啦啦啦在线视频资源| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久av| 欧美日韩亚洲高清精品| 亚洲欧美一区二区三区黑人 | 91精品一卡2卡3卡4卡| 欧美人与善性xxx| .国产精品久久| 国产黄频视频在线观看| av福利片在线| 国产男人的电影天堂91| 亚洲婷婷狠狠爱综合网| 秋霞在线观看毛片| 一个人免费看片子| 日韩,欧美,国产一区二区三区| 久久99一区二区三区| 日本色播在线视频| 亚洲国产欧美在线一区| 高清不卡的av网站| 最近2019中文字幕mv第一页| 精品人妻一区二区三区麻豆| 岛国毛片在线播放| 日产精品乱码卡一卡2卡三| 欧美另类一区| 亚洲av不卡在线观看| 全区人妻精品视频| 在线观看美女被高潮喷水网站| 久久久久久久久久久丰满| 成人毛片60女人毛片免费| 男女高潮啪啪啪动态图| 国产乱人偷精品视频| 交换朋友夫妻互换小说| 久久午夜福利片| 两个人免费观看高清视频| 最黄视频免费看| 婷婷色综合www| 国产精品不卡视频一区二区| 国产欧美日韩综合在线一区二区| 欧美xxxx性猛交bbbb| 国产成人精品福利久久| 亚洲av福利一区| 青春草国产在线视频| 国产男女超爽视频在线观看| 人人澡人人妻人| 内地一区二区视频在线| 久久久午夜欧美精品| 91久久精品国产一区二区成人| 国产免费又黄又爽又色| 日韩中字成人| 久久精品夜色国产| 国产熟女欧美一区二区| 色视频在线一区二区三区| 91成人精品电影| 亚洲精品日韩在线中文字幕| videossex国产| 秋霞伦理黄片| 亚洲美女视频黄频| 三级国产精品片| 99视频精品全部免费 在线| 在线观看国产h片| 九九爱精品视频在线观看| 伊人亚洲综合成人网| 久久99热这里只频精品6学生| 亚洲av在线观看美女高潮| 满18在线观看网站| 久久 成人 亚洲| 久久国产精品男人的天堂亚洲 | 黄片播放在线免费| 一区二区日韩欧美中文字幕 | 97超视频在线观看视频| 嘟嘟电影网在线观看| 99精国产麻豆久久婷婷| 国精品久久久久久国模美| 亚洲国产毛片av蜜桃av| 亚洲精品日韩av片在线观看| 亚洲欧美日韩另类电影网站| 欧美xxⅹ黑人| 嫩草影院入口| 高清视频免费观看一区二区| 一级片'在线观看视频| 女的被弄到高潮叫床怎么办| 超色免费av| 春色校园在线视频观看| 国产欧美亚洲国产| 国产男女内射视频| 亚洲精品一区蜜桃| 哪个播放器可以免费观看大片| 日本欧美国产在线视频| 亚洲成人av在线免费| 99九九线精品视频在线观看视频| 久久婷婷青草| 十分钟在线观看高清视频www| a级毛色黄片| 日本-黄色视频高清免费观看| xxxhd国产人妻xxx| kizo精华| 国产乱人偷精品视频| 18在线观看网站| 一本大道久久a久久精品| 不卡视频在线观看欧美| 伦理电影免费视频| av专区在线播放| 色婷婷av一区二区三区视频| 超碰97精品在线观看| 午夜福利网站1000一区二区三区| 一区二区三区四区激情视频| 人妻一区二区av| 国产精品人妻久久久影院| 美女视频免费永久观看网站| 两个人的视频大全免费| 美女cb高潮喷水在线观看| 亚洲久久久国产精品| 欧美精品国产亚洲| 一个人免费看片子| 美女国产视频在线观看| 99热这里只有是精品在线观看| 色网站视频免费| 黄色怎么调成土黄色| 日韩视频在线欧美| 草草在线视频免费看| 成人综合一区亚洲| 只有这里有精品99| 黄色视频在线播放观看不卡| 最近中文字幕2019免费版| 视频中文字幕在线观看| kizo精华| 久久久国产一区二区| 亚洲精品一区蜜桃| 免费播放大片免费观看视频在线观看| 亚洲国产欧美日韩在线播放| 亚洲av中文av极速乱| 最后的刺客免费高清国语| 国产精品99久久久久久久久| 激情五月婷婷亚洲| 久久精品熟女亚洲av麻豆精品| 亚洲欧美成人综合另类久久久| 丰满饥渴人妻一区二区三| 男女免费视频国产| 亚洲欧美清纯卡通| 国产熟女欧美一区二区| 一级毛片我不卡| 在线精品无人区一区二区三| 丰满迷人的少妇在线观看| 男人添女人高潮全过程视频| 久久久久久久久大av| 欧美亚洲日本最大视频资源| 日本av免费视频播放| 国产成人aa在线观看| 亚洲欧美一区二区三区黑人 | 观看美女的网站| 亚洲丝袜综合中文字幕| 十分钟在线观看高清视频www| 午夜精品国产一区二区电影| 午夜av观看不卡| 午夜激情av网站| 一级毛片黄色毛片免费观看视频| 一区二区三区乱码不卡18| 亚洲国产日韩一区二区| av国产精品久久久久影院| 国产成人精品一,二区| 街头女战士在线观看网站| 毛片一级片免费看久久久久| 极品少妇高潮喷水抽搐| 高清午夜精品一区二区三区| xxx大片免费视频| 97精品久久久久久久久久精品| 高清视频免费观看一区二区| 亚洲国产av影院在线观看| 日韩亚洲欧美综合| 久久这里有精品视频免费| 在线观看免费日韩欧美大片 | 国产精品99久久久久久久久| 日韩制服骚丝袜av| 亚洲国产色片| 色5月婷婷丁香| 少妇人妻 视频| 最近2019中文字幕mv第一页| 国产欧美亚洲国产| 又粗又硬又长又爽又黄的视频| 建设人人有责人人尽责人人享有的| 人妻制服诱惑在线中文字幕| 亚洲精品,欧美精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久成人av| 亚洲人成网站在线观看播放| 精品久久久久久电影网| 韩国av在线不卡| 看十八女毛片水多多多| 国产视频首页在线观看| 日日啪夜夜爽| av在线观看视频网站免费| 大片免费播放器 马上看| 日韩视频在线欧美| 日韩精品有码人妻一区| 午夜激情av网站| 亚洲人成网站在线观看播放| 少妇丰满av| 午夜福利视频精品| 国产午夜精品一二区理论片| 亚洲国产精品专区欧美| a 毛片基地| 国产精品.久久久| 国产成人精品婷婷| 久久精品国产亚洲av天美| 满18在线观看网站| 大片免费播放器 马上看| 九草在线视频观看| 中文字幕av电影在线播放| 九草在线视频观看| 国产免费视频播放在线视频| 成人亚洲欧美一区二区av| videossex国产| 黑丝袜美女国产一区| av国产久精品久网站免费入址| 国产精品一区二区三区四区免费观看| 精品少妇内射三级| 在线天堂最新版资源| 婷婷色综合www| 精品熟女少妇av免费看| 免费日韩欧美在线观看| 两个人的视频大全免费| 亚洲精品第二区| 久久久午夜欧美精品| 一边摸一边做爽爽视频免费| 亚洲av中文av极速乱| 国产日韩欧美视频二区| 人成视频在线观看免费观看| 韩国av在线不卡| 欧美亚洲 丝袜 人妻 在线| 建设人人有责人人尽责人人享有的| 国产黄频视频在线观看| 中文字幕制服av| 国产国语露脸激情在线看| 亚洲精品国产av蜜桃| 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 国产一区二区在线观看日韩| 日日啪夜夜爽| 午夜激情久久久久久久| 少妇被粗大的猛进出69影院 | 91精品国产国语对白视频| videosex国产| 久久国内精品自在自线图片| 成人毛片a级毛片在线播放| 狂野欧美激情性bbbbbb| 欧美日韩在线观看h| 飞空精品影院首页| 国产成人91sexporn| av黄色大香蕉| 少妇的逼好多水| 赤兔流量卡办理| 亚洲av电影在线观看一区二区三区| 色5月婷婷丁香| 91在线精品国自产拍蜜月| 女人久久www免费人成看片| 毛片一级片免费看久久久久| 精品熟女少妇av免费看| 最近的中文字幕免费完整| 人成视频在线观看免费观看| 国产日韩欧美视频二区| av福利片在线| 午夜福利视频在线观看免费| 亚洲欧洲日产国产| 亚洲精品一二三| 中国国产av一级| 国产在线视频一区二区| videossex国产| 亚洲欧美精品自产自拍| a 毛片基地| 久久久久久久久久成人| 热re99久久国产66热| 黑丝袜美女国产一区| 2021少妇久久久久久久久久久| 纵有疾风起免费观看全集完整版| a级毛色黄片| av福利片在线| tube8黄色片| 日本猛色少妇xxxxx猛交久久| av专区在线播放| 丰满迷人的少妇在线观看| 成年人免费黄色播放视频| 久久国产亚洲av麻豆专区| 精品国产一区二区三区久久久樱花| 一本一本综合久久| 超色免费av| 亚洲av不卡在线观看| 美女国产视频在线观看| 日韩一区二区视频免费看| 久久综合国产亚洲精品| 免费av不卡在线播放| 国产精品熟女久久久久浪| 国产精品 国内视频| 一边摸一边做爽爽视频免费| 国产欧美日韩综合在线一区二区| 少妇精品久久久久久久| 狂野欧美激情性xxxx在线观看| 十八禁网站网址无遮挡| 亚洲综合精品二区| 国产精品 国内视频| 超碰97精品在线观看| 亚洲怡红院男人天堂| 在线观看一区二区三区激情| 一级毛片电影观看| 大香蕉久久网| 色婷婷久久久亚洲欧美| 久久99蜜桃精品久久| 国产精品熟女久久久久浪| 亚洲精品乱码久久久久久按摩| 亚洲欧美一区二区三区国产| 亚洲色图 男人天堂 中文字幕 | 久热这里只有精品99| 91久久精品国产一区二区三区| 欧美日本中文国产一区发布| 春色校园在线视频观看| 亚洲精品日韩在线中文字幕| 成年av动漫网址| 日韩大片免费观看网站| av视频免费观看在线观看| 久久久久久久精品精品| 日本免费在线观看一区| 51国产日韩欧美| 亚洲美女黄色视频免费看| 亚洲精品乱码久久久v下载方式| 一本—道久久a久久精品蜜桃钙片| 久久婷婷青草| 一区二区三区四区激情视频| 制服丝袜香蕉在线| 麻豆精品久久久久久蜜桃| 国产国语露脸激情在线看| 亚洲不卡免费看| 亚洲欧洲国产日韩| 久久久久久人妻| 欧美日韩视频精品一区| 啦啦啦啦在线视频资源| 如日韩欧美国产精品一区二区三区 | 美女国产高潮福利片在线看| 久久热精品热| 久久99热这里只频精品6学生| 国产精品.久久久| 久久人人爽av亚洲精品天堂| 国产精品麻豆人妻色哟哟久久| 我的女老师完整版在线观看| videos熟女内射| 欧美精品一区二区大全| av卡一久久| 高清视频免费观看一区二区| 亚洲色图综合在线观看| 伦理电影大哥的女人| 91精品伊人久久大香线蕉| 欧美日韩综合久久久久久| 色婷婷久久久亚洲欧美| 日韩av不卡免费在线播放| 插阴视频在线观看视频| 国产av码专区亚洲av| 卡戴珊不雅视频在线播放| 色94色欧美一区二区| 丝袜美足系列| 18+在线观看网站| 一级a做视频免费观看| 精品视频人人做人人爽| 少妇的逼好多水| 久久这里有精品视频免费| 国产精品欧美亚洲77777| 日韩电影二区| 亚洲伊人久久精品综合| 婷婷色av中文字幕| 国产午夜精品久久久久久一区二区三区| 久久久精品区二区三区| 日产精品乱码卡一卡2卡三| 99热这里只有是精品在线观看| 在线观看免费日韩欧美大片 | 黄片无遮挡物在线观看| 国产精品久久久久久精品古装| 制服诱惑二区| 久久久久久久国产电影| 国产精品秋霞免费鲁丝片| 乱人伦中国视频| 亚洲一级一片aⅴ在线观看| 欧美97在线视频| 一级a做视频免费观看| 国产又色又爽无遮挡免| 在线观看美女被高潮喷水网站| 不卡视频在线观看欧美| 美女cb高潮喷水在线观看| 欧美精品一区二区免费开放| 国产成人精品一,二区| 久久青草综合色| 制服丝袜香蕉在线| 久久久久久久大尺度免费视频| 国产国拍精品亚洲av在线观看| www.av在线官网国产| 午夜激情av网站| 一区二区av电影网| 午夜免费男女啪啪视频观看| 人妻人人澡人人爽人人| 欧美日韩在线观看h| 久久国产精品男人的天堂亚洲 | 欧美成人午夜免费资源| 国产亚洲最大av| 国产男女超爽视频在线观看| 久久久精品区二区三区| 777米奇影视久久| 免费大片黄手机在线观看| 国产精品一区www在线观看| 26uuu在线亚洲综合色| 久久婷婷青草| 亚洲婷婷狠狠爱综合网| 国产精品偷伦视频观看了| 久久久久久久亚洲中文字幕| 国产av国产精品国产| 久久免费观看电影| 涩涩av久久男人的天堂| 天美传媒精品一区二区| 91久久精品电影网| 久久精品国产鲁丝片午夜精品| 亚洲国产精品一区三区| 国产免费福利视频在线观看| 三上悠亚av全集在线观看| 国产男女内射视频| 国产精品一区二区在线观看99| 国产精品国产三级国产专区5o| 亚州av有码| 国产成人精品福利久久| 秋霞在线观看毛片| 国产一区亚洲一区在线观看| 日韩,欧美,国产一区二区三区| 熟女人妻精品中文字幕| 亚洲美女视频黄频| 亚洲国产精品999| 2021少妇久久久久久久久久久| 3wmmmm亚洲av在线观看| 午夜免费男女啪啪视频观看| 我要看黄色一级片免费的| 国产一区二区三区av在线| 精品视频人人做人人爽| videossex国产| 欧美日韩视频精品一区| 日韩欧美一区视频在线观看| 91久久精品国产一区二区成人| 一级,二级,三级黄色视频| 亚洲图色成人| 综合色丁香网| 91久久精品电影网| 涩涩av久久男人的天堂| 视频中文字幕在线观看| 日韩人妻高清精品专区| 久久久国产欧美日韩av| 校园人妻丝袜中文字幕| 一级,二级,三级黄色视频| 日日啪夜夜爽| 天堂8中文在线网| 精品人妻偷拍中文字幕| av在线老鸭窝| 少妇猛男粗大的猛烈进出视频| 大香蕉久久成人网| 成年女人在线观看亚洲视频| 美女内射精品一级片tv| 亚洲精品视频女| 精品人妻一区二区三区麻豆| 黄色怎么调成土黄色|