• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Acetonitrile (CH3CN) and methyl isocyanide(CH3NC) adsorption on Pt(111) surface: a DFT study

    2013-11-01 01:30:15HANXinyan韓新艷RENJunCAODuanlin曹端林ZHUJiaping朱佳平

    HAN Xin-yan (韓新艷), REN Jun (任 君), CAO Duan-lin (曹端林), ZHU Jia-ping (朱佳平)

    (College of Chemical Engineering and environment, North Universtiy of China, Taiyuan 030051, China)

    Acetonitrile (CH3CN) and methyl isocyanide(CH3NC) adsorption on Pt(111) surface: a DFT study

    HAN Xin-yan (韓新艷), REN Jun (任 君), CAO Duan-lin (曹端林), ZHU Jia-ping (朱佳平)

    (College of Chemical Engineering and environment, North Universtiy of China, Taiyuan 030051, China)

    The adsorption of CH3CN and CH3NC on the Pt(111) surface at the 1/4 monolayer (ML) coverage has been carried out at the level of density functional theory for understanding hydrogenation processes of nitriles. The most favored adsorption structure for CH3CN is the C—N bond almost parallel to the surface with the C—N bond interaction with adjacent surface Pt atoms. For CH3NC, the most stable configuration is the CH3NC locates at the face center cubic (fcc) site with the C-atom bonded to three Pt atoms. In addition, the HCN and HNC adsorption has been computed, and the adsorption pattern is nearly similar to the CH3CN and CH3NC, respectively. The adsorbed molecules rehybridize on the surface, becoming non-linear with a bent C—C—N or C—N—C angle. Furthermore, the binding mechanism of these molecules on the Pt(111) surface is also analyzed.

    acetonitrile; methyl isocyanide; adsorption; Pt(111) surface; density functional theory(DFT)

    Acetonitrile (CH3CN) and its isomer, methyl isocyanide (CH3NC), have been relatively often used for determining geometrical structure and bonding configuration on single crystal metal surfaces[9-17]. Their application is based on the fact that these compounds are isoelectronic with CO (the most frequently applied probe molecule). While CO generally bonds on Group VIII metals via a synergistic bonding scheme with both donation from the metal into empty 2π*orbitals on CO and donation from the filled 6σ orbital of CO to the metal, methyl isocyanide is a significantly weaker π-acid since its 2π*level lies much higher in energy than that of CO. Therefore, it is interesting, from a fundamental point of view, to compare the surface chemistry of these molecules. In addition, heterogeneous catalytic transformation of acetonitrile has rarely been investigated. Experimental studies on the ultra violet (UV) irradiation of CH3CN adsorbed on TiO2in the presence of oxygen indicated[10]the formation of H2O, CO2, surface CO3and surface isocyanate (NCO). The formation of surface CH3CONH2, η2(N,O)—CH3CONH, CH3COO(a), HCOO(a), NCO(a) and CN-containing species was observed, when the UV irradiation of CH3CN adsorbed on TiO2was performed in the absence of oxygen[11].

    Isocyanide adsorption has been studied previously on various metal surfaces. On Pt(111) surface[12,14], CH3CN was found to adsorb weakly to the surface in a parallel structure (through both the terminal carbon and the nitrogen), and CH3NC was found to bond strongly in an upright structure with the terminal carbon bonded to two metal atoms. Acetonitrile (methyl cyanide) was investigated further on Pt(111)[13]and again found to adsorb parallel to the surface with a possible interaction between the β-hydrogens and the surface. The conclusion that CN axis is parallel to the bridge and the adsorption energy is the largest are also calculated by Alexis Markovits and Christian Minot[14].On supported Pt/SiO2, similar results were found for both compounds. On powdered Au, isocyanides were bound weakly to the metal in a linear structure with the terminal carbon bonded to one metal atom. Isocyanides were found to adsorb strongly on Ni(111) and Ni(100) in a parallel structure[15-17]. On Rh(111) surface[16], the isocyanide bonds strongly also in a parallel structure at low coverage. On supported Rh/Al2O3[17], the isocyanide was found to stand up again. Finally, on Ag(311)[18], isocyanides bond wealy in a parallel or close to parallel orientation. So, the adsorption of cyanide on the metal surface has not been investigated systematically.

    Quantum chemical methods have become new tools for investigating the structure of active surfaces and determining reaction mechanisms. With recent development, density functional theory (DFT) is capable of providing qualitative and, in many cases, quantitative insights into surface science and catalysis. In this paper, we report a systematic DFT study on CH3CN and CH3NC adsorption on Pt(111) in order to get insight into their surfaces and structures. Furthermore, the aim of the present work is to determine the surface species formed on Pt(111) and to detect the gas products during the interaction of acetonitrile with noble metal catalysts. This study would be helpful to find an effective catalyst in breaking of C—N bond of cyanide compounds.

    1 Methods and models

    All calculation are done with the Cambridge sequential total energy package[19]. DFT calculation within the generalized gradient approximation (GGA) using the Perdew, Burke and Ernzerhof (PBE) functional[20]was carried out to study nitromethane adsorption on the surfaces of Pt(111). Ionic cores were described by the ultrasoft pseudopotential[21], and the Kohn-Sham one-electron states were expanded in a plane wave basis set up to 340 eV. The difference of the adsorption energy at the level of cutoff between 340 and 360 eV was about 0.02 eV. A Fermi smearing of 0.1 eV was utilized. Brillouin zone integration was approximated by a sum over special k-points chosen using the Monkhorst-Pack scheme[22]. A spin-restricted approach was used for clean surface models since polarization effects were found to be negligible. The convergence criteria for structure optimization and energy calculation were set to (a) self-consisten field (SCF) tolerance of 2.0 ×10-6eV/atom, (b) energy tolerance of 2.0 ×10-5eV/atom, (c) maximum force tolerance of 0.05 eV/-, and (d) maximum displacement tolerance of 2.0 ×10-3-. A4× 4 × 1 k-grid sampling within the Brillouin zones was used in the p(2×2) unit cell and a vacuum region of 15 -. We also tested the k-point sampling by using the 5×5×1 Monkhorst-Pack meshes for the unit cell, and the change in energy is less than 0.03 eV. Although the PBE functional can give reliable optimized geometry, it tends to overbind adsorbate on metal surface[23,24]. We further carried out the RPBE single point energy calculations on the PBE optimized geometries and use the RPBE energy for discussion.

    In order to describe the interaction between adsorbates and Pt-slab, we defined the adsorption energy as

    where E(slab), E(adsorbates) and E(adsorbates / slab) are the total energy of the optimized slab of the surface, gas-phase adsorbate and adsorbate-slab complex, respectively.

    2 Results and discussion

    2.1 CH3CN adsorption on Pt(111) surface

    Initially, we checked that the properties of the isolated CH3CN were accurately reproduced. The calculated gas phase C—N and C—C bond lengths is 1.169 and 1.435 -, respectively. The C—C—N angle is 179.5 - in good agreement with experiment value (C—N:1.158 -, C—C: 1.460 -, and C—C—N: 180.0 -). The Pt(111) surface exhibits four high-symmetry adsorption sites as shown in Fig.1. The adsorbed species could be located on top, bridge, face cerder cubic kinds of (fcc) hollow or hexagonal close-packed (hcp) hollow sites, hereafter labeled t, b, f and h, respectively. We designated all possible adsorption structures for CH3CN on the surface, top, bridge, fcc hollow or hcp hollow, based upon the position of the N atom, only three relatively stable configuration were obtained in Fig.1. The calculated adsorption energies and structural parameters for CH3CN are listed in Table 1. In I (2-fold bridge site), CH3CN interacts with two adjacent Pt atoms via the C—N bond and forms one Pt—N and one Pt—C bond and the C—N axis almost parallel to the surface. The C—N bond is elongated compared to free CH3CN (1.252 vs 1.15 -) (Fig.1). The C—C bond is stretched to 1.474- corresponding to gas phase calculated value 1.435 -, and the C—C—N bond angle is reduced to 129.1 -. The length of Pt—N and Pt—C bonds is 2.032 and 2.053 -, respectively. These results are close to those reported for the acetonitrile adsorption on Ni(111)[25], which showed that a rehybridization of the acetonitrile molecule into a sp2 configuration. In II (top1 site), the acetonitrile molecule linearly adsorbed on the surface by one C atom atop on one Pt and it bonded to the surface only by the nitrogen atom with the C—N axis almost perpendicular to the surface. The C—N bond length is about 1.166 - and the C—C—N bond angle is 178.7 -. For the bridge adsorption, each of the possible bridge adsorption sites on the surface was considered, but the acetonitrile molecule adsorption configuration changed from bridge to top site during optimization (III, top2 site). The C—C bond length is about 1.667-. As given in Table 1, I is the most stable adsorbed form with the largest adsorption energy (-0.48 eV), while II and III have lower adsorption energies (-0.33 and -0.30 eV).

    Fig.1 Adsorption of CH3CN, CH3NC, HCN and HNC on Pt(111) surface at 1/4 ML

    Table 1 Calculated adsorption energies (Eads, eV) and structural parameters (d, - and θ, deg) for CH3CN, CH3NC, HCN and HNC adsorption on the Pt(111)-2×2 surfaces

    2.2 CH3NC adsorption on Pt(111) surface

    The interaction of isocyanides with transition metals has been extensively studied in the context of organometallic chemistry. Recently, scanning tunneling microscopy(STM)[26]and reflection absorption infrared spectroscopy and temperature-programmed desorption(TPD)[27]were used to investigate the adsorption of methyl isocyanide (CNCH3) on the Pt(111) surface and its reaction to form methylaminocarbyne(CNHCH3). It indicated that methyl isocyanide is found to adsorb at on-topsites at low coverage and at both on-top and 2-fold bridge sites at higher coverage. In this section, we have mainly focused on the structure of the adsorbed molecule and the adsorption site. For CH3NC adsorption, Fig.1 shows four adsorption forms (IV, V, VI and VII). In IV, the CH3NC locates at the fcc site with the C-atom bonded to three Pt atoms and the Pt—C bond lengths are 2.109, 2.116 and 2.135, respectively. The C—C—N bond angle is 178.9 - and the two C—N bond lengths are 1.210 and 1.389 -, respectively. In V, the CH3NC is situated at hcp site by the C-atom adsorption and the length of the Pt—C bond is changed from 2.101 to 2.125 -. The C—N bond is stretched about 0.044 and 0.22 -, respectively. In V, the CH3NC adsorbed at the hcp site with the C-atom interaction with three Pt atoms on the surface with three Pt—C distances of 2.101, 2.125 and 2.115 -. The two C—N bond lengths are extended to 1.213 and 1.387 -, respectively. The C—C—N bond angle is 162.1 -. In VI, the carbon of the CH3NC bridges on two Pt atoms with Pt—C bond lengths of 2.042 and 2.031 - and the C—N distances of 1.393 and 1.201 -. In IV, the carbon of the CH3NC atop on one Pt atom with the C—N distances of 1.397 and 1.177 -. In Table 1, IV is the most stable adsorption mode (-1.57 eV), followed by V(-1.55 eV), while VI and IV are much less stable (-1.50 and -1.48 eV). It is interesting to note that the CH3NC adsorption on hcp site is similar to the fcc site due to the very small of the energy difference (-0.02 eV). Considering a possible equilibrium between the two states, the chance of the CH3NC adsorption on fcc and hcp sites is same thermodynamically. On this basis, the CH3NC should dissociate dominantly and directly on the two sites, while the bridge and top sites play a minor role.

    Fig.2 PDOS of the CH3CN (a), CH3NC (b), HCN (c) and HNC (d) adsorption on Pt(111) surface

    2.3 HCN and HNC adsorption on Pt(111) surface

    3 Electronic structure and density of states

    4 Conclusion

    The adsorption of CH3CN, CH3NC, HCN and HNC on the Pt(111) surface has been computed at the level of density functional theory for understanding hydrogenation processes of nitriles. At the 1/4 ML low coverage, the most favored adsorption structure for CH3CN is the C—N bond almost parallel to the surface with the C—N bond interaction with adjacent surface Pt atoms. For CH3NC, the most stable configuration is the CH3NC locates at the fcc site with the C-atom bonded to three Pt atoms. For the HCN and HNC adsorption, the adsorption pattern is nearly similarly to the CH3CN and CH3NC, respectively.

    The binding mechanism of CO to the Pt(111) surface at the 1/4ML is also analyzed by the DOS analysis. Compared with 5σ and 2π*bands of the free CN fragment, HCN and HNC, the 5σ band of the adsorbed CH3CN, CH3NC, HCN and HNC shifts strongly downwards, and part of the 2π*bands of the adsorbed CH3CN, CH3NC, HCN and HNC lies quite below the Fermi level. This indicates a charge transfer from the Pt(111) surface to the CH3CN, CH3NC, HCN and HNC. As a consequence, C—N bonds are activated.

    [2] De Bellefon C, Fouilloux P. Homogeneous and heterogeneous hydrogenation of nitriles in a liquid phase: chemical, mechanistic, and catalytic aspects. Catalysis Reviews: Science and Engineering, 1994, 36(3): 459.

    [3] Barrault J, Pouilloux Y. Synthesis of fatty amines. Selectivity control in presence of multifunctional catalysts. Catalysis Today, 1997, 37(2): 137-153.

    [4] Huang Y Y , Sachtler W M H. On the mechanism of catalytic hydrogenation of nitriles to amines over supported metal catalysts. Applied Catalysis A:General, 1999, 182(2): 365-378.

    [5] Rode C V, Arai M, Shirai M, et al. Gas-phasehyd-rogenation of nitriles by nickel on various supports. Applied Catalysis A: General, 1997, 148(2): 405-413.

    [7] Verhaak M J F M, van Dillen A J, Geus J W. The selective hydrogenation of acetonitrile on supported nickel catalysts. Catalysis Letters, 1994, 26(1-2): 37-53.

    [8] Medina C F, Tichit D, Coq B, et al. Hydrogenation of acetonitrile on nickel-based catalysts prepared from hydrotalcite-like precursors. Journal of Catalysis, 1997, 167(1): 142-152.

    [9] Kishi K, Ikeda S. Adsorption of acetonitrile on evaporated nickel and palladium films studied by X-ray photoelectron spectroscopy. Surface Science, 1981, 107(2/3): 405-416.

    [10] Zhuang J, Rusu C N, Yates Jr J T. Adsorption and photooxidation of CH3CN on TiO2. The Journal of Physical Chemistry B, 1999, 103(33): 6957-6967.

    [11] Chuang C C, Wu W C, Lee M X, et al. Adsorption and photochemistry of CH3CN and CH3CONH2on powdered TiO2. Physical Chemistry Chemical Physics , 2000, 2(17): 3877-3882.

    [12] Avery N R, Matheson T W. Adsorption and decomposition of methyl iso-cyanide on Pt(111). Surface Science, 1984, 143(1): 110-124.

    [13] Friend C M, Gavin R M, Muetterties E L, et al. Coordination chemistry of metal surfaces-carbon monoxide chemisorption states on Pt(111). Journal of the American Chemical Society, 1980, 102(5): 1717-1719.

    [14] Alexis M, Christian M. Theoretical study of the acetonitrile flip-flop with the electric field orientation: adsorption on a Pt(111) electrode surface. Catalysis Letters, 2003, 91(3-4): 225-234.

    [15] Friend C M, Stein J, Muetterties E L. Coordination chemistry of metal surfaces. 2. Chemistry of acetonitrile and methyl isocyanide on nickel surfaces. Journal of the American Chemical Society, 1981, 103(4): 767-772.

    [16] Semancik S, Haller G L, Yates J T. The adsorption and dissociation of methyl isocyanide on Rh(111) . Journal of Chemical Physics, 1983, 78(11):6970.

    [17] Cavanagh R R, Yates J T. Surface binding of an electronic analog to CO: Infrared evidence for CH3NC chemisorption on Rh/Al2O3. Journal of Chemical Physics, 1981, 75(3): 1551-1559.

    [18] Ceyer S T, Yates J T. Orientation of methyl isocyanide adsorbed on silver(311). Journal of Physical Chemistry, 1985, 89(18): 3842-3845.

    [19] Payne M C, Allan D C, Arias T A, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992, 64(4): 1045-1097.

    [20] Milman V, Winkler B, White J A, et al. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. International Journal of Quantum Chemistry, 2000, 77(5): 895-910.

    [21] White J A, Bird D M. Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations. Physical Review B, 1994, 50(7): 4954-4957.

    [22] Perdew J P, Burke S, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865-3868.

    [23] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990, 41(11): 7892-7895.

    [24] Monkhorst H J, Pack J D. Special points for brillouin-zone integrations. Physical Review B, 1976, 13(12): 5188-5192.

    [25] Hammer B, Hansen L B, N?rskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 1999, 59(11): 7413-7421.

    [26] ZHANG Ying-kai, YANG Wei-tao. Comment on Generalized gradient approximation made simple. Physical Review Letters, 1998, 80(4): 890-890.

    [27] Gardin D E, Barbieri A, Batteas J D, et al. Tensor LEED analysis of the Ni(111)-p(2×2)-CH3CN structure. Surface Science, 1994, 304(3): 316-324.

    [28] Katano S, Herceg E, Trenary M, et al. Single molecule observations of the adsorption sites of methyl isocyanide on Pt(111) by low temperature scanning tunneling microscopy. The Journal of Physical Chemistry B, 2006, 110(41): 20344-20349.

    [29] Kang D H, Trenary M. Formation of methylaminocarbyne from methyl Isocyanide on the Pt(111) surface. The Journal of Physical Chemistry B, 2002, 106(22): 5710-5718.

    [30] Trenary M, Jentz D, Mills P, et al. The surface chemistry of CN and H on Pt(111) , Surface Science, 1996, 368(1): 354-360.

    date: 2012-09-21

    Natural Science Foundation of Shanxi Province (No. 2009011014)

    REN Jun(junren2003@sxicc.ac.cn)

    CLD number: O647 Document code: A

    1674-8042(2013)01-0097-06

    10.3969/j.issn.1674-8042.2013.01.021

    亚洲av电影在线观看一区二区三区 | 91午夜精品亚洲一区二区三区| 亚洲人成网站高清观看| 久久人人爽人人片av| 国产精品一区www在线观看| 97热精品久久久久久| 久久综合国产亚洲精品| 国产亚洲91精品色在线| 亚洲18禁久久av| 美女国产视频在线观看| 自拍偷自拍亚洲精品老妇| 亚洲欧美精品专区久久| 一区二区三区高清视频在线| 亚洲中文字幕日韩| 看十八女毛片水多多多| 免费看光身美女| 中文资源天堂在线| 国产在线男女| a级一级毛片免费在线观看| 亚洲av中文字字幕乱码综合| 成人欧美大片| 亚洲欧美成人精品一区二区| 联通29元200g的流量卡| 免费人成在线观看视频色| 高清在线视频一区二区三区 | 免费观看人在逋| 99在线人妻在线中文字幕| 国产精品av视频在线免费观看| 国产精品av视频在线免费观看| 亚洲综合色惰| 黑人高潮一二区| 国产亚洲91精品色在线| 99热网站在线观看| 久久久久久久久大av| 97人妻精品一区二区三区麻豆| 中文精品一卡2卡3卡4更新| 国产午夜精品久久久久久一区二区三区| 免费看a级黄色片| 午夜福利高清视频| 国内精品美女久久久久久| av在线蜜桃| 永久免费av网站大全| av在线蜜桃| 欧美日韩一区二区视频在线观看视频在线 | 99热这里只有是精品在线观看| 能在线免费观看的黄片| 在线免费观看不下载黄p国产| 在线免费观看不下载黄p国产| 在线免费观看不下载黄p国产| 大香蕉97超碰在线| 岛国在线免费视频观看| 岛国在线免费视频观看| 亚洲国产最新在线播放| 最近手机中文字幕大全| 国模一区二区三区四区视频| 一级毛片我不卡| 最近手机中文字幕大全| 国产黄色视频一区二区在线观看 | 国产极品精品免费视频能看的| 国产成人精品久久久久久| 色网站视频免费| 全区人妻精品视频| 午夜福利网站1000一区二区三区| 在线观看av片永久免费下载| 婷婷色麻豆天堂久久 | 国产精品国产三级国产专区5o | 亚洲真实伦在线观看| 久久精品久久久久久噜噜老黄 | 乱码一卡2卡4卡精品| 成人欧美大片| 高清视频免费观看一区二区 | 成人高潮视频无遮挡免费网站| 国语自产精品视频在线第100页| 亚洲色图av天堂| 国产极品精品免费视频能看的| 日韩av在线免费看完整版不卡| 亚洲自拍偷在线| 成人国产麻豆网| 国产精品一区二区三区四区久久| 有码 亚洲区| 校园人妻丝袜中文字幕| av卡一久久| 国产精品熟女久久久久浪| 免费在线观看成人毛片| 人妻系列 视频| 中文字幕亚洲精品专区| 国产 一区 欧美 日韩| 国产成人精品一,二区| 亚洲人成网站在线观看播放| 麻豆成人av视频| 国产高清不卡午夜福利| 精品一区二区三区人妻视频| 2022亚洲国产成人精品| eeuss影院久久| 黑人高潮一二区| 我要搜黄色片| 春色校园在线视频观看| 人妻少妇偷人精品九色| 美女高潮的动态| 亚洲国产精品国产精品| 国产色婷婷99| av在线亚洲专区| 白带黄色成豆腐渣| 国产午夜福利久久久久久| 国产午夜精品久久久久久一区二区三区| 97超视频在线观看视频| 亚洲av男天堂| 欧美精品国产亚洲| 两个人视频免费观看高清| 一本久久精品| 国产中年淑女户外野战色| 精品久久久久久成人av| 观看免费一级毛片| 在线播放无遮挡| 99视频精品全部免费 在线| 亚洲精品亚洲一区二区| 婷婷六月久久综合丁香| 国产一区二区亚洲精品在线观看| 69人妻影院| 男插女下体视频免费在线播放| 中文字幕精品亚洲无线码一区| av线在线观看网站| 久久久久久久亚洲中文字幕| 国产亚洲精品av在线| 成年版毛片免费区| 日韩一本色道免费dvd| 少妇丰满av| 亚洲国产欧美在线一区| 18禁在线播放成人免费| 亚洲综合精品二区| 欧美3d第一页| 国产色爽女视频免费观看| 欧美日本视频| 国产av码专区亚洲av| 国内少妇人妻偷人精品xxx网站| 久久99蜜桃精品久久| 国产伦精品一区二区三区视频9| 免费观看的影片在线观看| 国产黄色视频一区二区在线观看 | 日本-黄色视频高清免费观看| 欧美一区二区精品小视频在线| 国产三级在线视频| 日韩大片免费观看网站 | 午夜精品在线福利| 麻豆乱淫一区二区| 蜜桃久久精品国产亚洲av| 亚洲av成人精品一区久久| 国内精品一区二区在线观看| 久久久亚洲精品成人影院| 免费av毛片视频| 18禁在线播放成人免费| 午夜精品在线福利| 亚洲久久久久久中文字幕| 中文字幕av在线有码专区| 欧美日韩综合久久久久久| 久久99蜜桃精品久久| 亚洲av福利一区| 99国产精品一区二区蜜桃av| 久久精品国产亚洲网站| 国产高清三级在线| 黄色配什么色好看| 天天躁夜夜躁狠狠久久av| 久久久久久久久大av| 国产高清有码在线观看视频| 能在线免费观看的黄片| 国产久久久一区二区三区| 欧美日韩国产亚洲二区| 纵有疾风起免费观看全集完整版 | 精品国产露脸久久av麻豆 | 日韩国内少妇激情av| 边亲边吃奶的免费视频| 亚洲精品成人久久久久久| 麻豆国产97在线/欧美| 男人的好看免费观看在线视频| 又爽又黄无遮挡网站| 成人欧美大片| 美女脱内裤让男人舔精品视频| 日本午夜av视频| 乱人视频在线观看| 水蜜桃什么品种好| 午夜精品一区二区三区免费看| 伦理电影大哥的女人| 日本五十路高清| 国产一区二区在线av高清观看| 性色avwww在线观看| 亚洲av电影不卡..在线观看| 亚洲,欧美,日韩| 天天躁夜夜躁狠狠久久av| 99久久中文字幕三级久久日本| 久久精品久久精品一区二区三区| 国产精品久久久久久精品电影小说 | 国产亚洲精品久久久com| 成人亚洲精品av一区二区| 日韩一区二区视频免费看| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| 97在线视频观看| 中文乱码字字幕精品一区二区三区 | 欧美性猛交╳xxx乱大交人| 日本一二三区视频观看| 国产91av在线免费观看| 少妇的逼水好多| 日本-黄色视频高清免费观看| 成人国产麻豆网| 午夜亚洲福利在线播放| 国产麻豆成人av免费视频| 国产探花在线观看一区二区| 在线a可以看的网站| 国产三级在线视频| 麻豆国产97在线/欧美| 久久国内精品自在自线图片| 男人狂女人下面高潮的视频| 看片在线看免费视频| 看十八女毛片水多多多| 国产成人精品久久久久久| 欧美精品一区二区大全| www.色视频.com| 18禁在线播放成人免费| 国产片特级美女逼逼视频| 别揉我奶头 嗯啊视频| 精品酒店卫生间| 日本午夜av视频| 综合色丁香网| 国产麻豆成人av免费视频| 免费人成在线观看视频色| 日本黄大片高清| 亚洲国产精品专区欧美| 激情 狠狠 欧美| 三级国产精品片| 97超碰精品成人国产| 一区二区三区高清视频在线| 国产精品一及| 一边摸一边抽搐一进一小说| 免费黄网站久久成人精品| 亚洲人成网站在线观看播放| 22中文网久久字幕| 亚洲av成人av| 男插女下体视频免费在线播放| 一级av片app| 欧美高清成人免费视频www| 国产爱豆传媒在线观看| 久久精品影院6| 久久国内精品自在自线图片| 国产亚洲av片在线观看秒播厂 | 内地一区二区视频在线| 99久久九九国产精品国产免费| 少妇被粗大猛烈的视频| 在线a可以看的网站| 日本午夜av视频| 色播亚洲综合网| 中文字幕亚洲精品专区| 亚洲欧美日韩东京热| 久久这里只有精品中国| 97热精品久久久久久| 亚洲国产精品久久男人天堂| 啦啦啦观看免费观看视频高清| 欧美日韩一区二区视频在线观看视频在线 | 国产欧美另类精品又又久久亚洲欧美| 少妇猛男粗大的猛烈进出视频 | 免费不卡的大黄色大毛片视频在线观看 | www.色视频.com| 国产免费视频播放在线视频 | 一级爰片在线观看| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 精品国产三级普通话版| 性插视频无遮挡在线免费观看| 极品教师在线视频| 麻豆成人av视频| 26uuu在线亚洲综合色| 毛片一级片免费看久久久久| 一卡2卡三卡四卡精品乱码亚洲| 一个人看的www免费观看视频| 日韩精品有码人妻一区| 最后的刺客免费高清国语| 高清在线视频一区二区三区 | 久久鲁丝午夜福利片| 国产精品福利在线免费观看| 国产精品精品国产色婷婷| 久久人人爽人人片av| 成人午夜精彩视频在线观看| 欧美又色又爽又黄视频| 男女国产视频网站| 亚洲国产色片| 日韩成人伦理影院| 国产精品无大码| 我要看日韩黄色一级片| 麻豆av噜噜一区二区三区| 久久久久久久久久成人| av免费观看日本| 欧美成人a在线观看| 高清在线视频一区二区三区 | 免费不卡的大黄色大毛片视频在线观看 | 成人三级黄色视频| av视频在线观看入口| 中文字幕人妻熟人妻熟丝袜美| 在线观看66精品国产| 亚州av有码| 乱系列少妇在线播放| 99热精品在线国产| 亚洲精品自拍成人| 一级毛片久久久久久久久女| 久久精品国产99精品国产亚洲性色| 国产高清不卡午夜福利| 国产精品国产三级国产av玫瑰| 亚洲四区av| 国产成人精品一,二区| 日韩av在线免费看完整版不卡| 我要搜黄色片| 午夜福利成人在线免费观看| 在线a可以看的网站| 亚洲18禁久久av| 久久精品国产亚洲网站| 国产精品国产高清国产av| 久久久午夜欧美精品| 国产高清国产精品国产三级 | 亚洲人成网站在线播| 国产老妇女一区| 精品午夜福利在线看| 日韩一区二区三区影片| 高清视频免费观看一区二区 | 久久精品国产自在天天线| 卡戴珊不雅视频在线播放| 内地一区二区视频在线| 国内精品美女久久久久久| 一边亲一边摸免费视频| 欧美色视频一区免费| 免费av观看视频| 热99在线观看视频| 久久久久网色| 看黄色毛片网站| 波多野结衣高清无吗| 男女下面进入的视频免费午夜| 超碰av人人做人人爽久久| 国产精品永久免费网站| 天堂中文最新版在线下载 | 国产老妇伦熟女老妇高清| 亚洲人成网站在线观看播放| 日韩中字成人| 男人的好看免费观看在线视频| 午夜视频国产福利| 久久99精品国语久久久| 天天躁日日操中文字幕| 亚洲精品乱码久久久v下载方式| 一区二区三区高清视频在线| 中国国产av一级| 亚洲国产精品国产精品| 综合色丁香网| 亚洲图色成人| 日韩人妻高清精品专区| 久久99热这里只频精品6学生 | 寂寞人妻少妇视频99o| 18禁在线播放成人免费| 久久久久久久久久久丰满| 男的添女的下面高潮视频| 中文字幕熟女人妻在线| av黄色大香蕉| 久久久久久九九精品二区国产| 欧美激情在线99| 天堂网av新在线| 亚洲成人精品中文字幕电影| 一区二区三区乱码不卡18| 中文字幕久久专区| 黄片wwwwww| 1024手机看黄色片| 熟妇人妻久久中文字幕3abv| 亚洲av成人精品一二三区| 成人av在线播放网站| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| 国产视频内射| 波野结衣二区三区在线| 麻豆国产97在线/欧美| 老司机福利观看| 大话2 男鬼变身卡| 一级毛片久久久久久久久女| 国产精品永久免费网站| 国内少妇人妻偷人精品xxx网站| 免费搜索国产男女视频| 国产精品麻豆人妻色哟哟久久 | 欧美日韩精品成人综合77777| 午夜免费激情av| 欧美日本视频| 国内揄拍国产精品人妻在线| 久99久视频精品免费| 人妻制服诱惑在线中文字幕| 国产男人的电影天堂91| 国产v大片淫在线免费观看| 两个人的视频大全免费| 我要搜黄色片| 国产精品电影一区二区三区| 久久精品久久久久久噜噜老黄 | 大话2 男鬼变身卡| 亚洲av熟女| 麻豆一二三区av精品| 亚洲av成人精品一二三区| 99热6这里只有精品| 网址你懂的国产日韩在线| 国产亚洲最大av| 高清在线视频一区二区三区 | 嫩草影院新地址| 久久这里有精品视频免费| av国产免费在线观看| 简卡轻食公司| 国产精品一区二区在线观看99 | 久久精品国产自在天天线| 亚洲成人久久爱视频| 在线a可以看的网站| 一级二级三级毛片免费看| 欧美成人午夜免费资源| 国产高潮美女av| 狠狠狠狠99中文字幕| 波多野结衣巨乳人妻| 国产精品av视频在线免费观看| 麻豆精品久久久久久蜜桃| 免费观看在线日韩| 搡老妇女老女人老熟妇| av专区在线播放| 精品久久久久久电影网 | 精品人妻偷拍中文字幕| 99久久无色码亚洲精品果冻| 国产精品野战在线观看| 国产精品一及| 又爽又黄无遮挡网站| 纵有疾风起免费观看全集完整版 | 国产高清视频在线观看网站| 欧美另类亚洲清纯唯美| 国产三级中文精品| 国内精品宾馆在线| 日本熟妇午夜| 免费av毛片视频| 91精品国产九色| 国产女主播在线喷水免费视频网站 | 免费看a级黄色片| 久久久久九九精品影院| 看免费成人av毛片| 丰满乱子伦码专区| 一卡2卡三卡四卡精品乱码亚洲| 在线观看av片永久免费下载| 性插视频无遮挡在线免费观看| 亚洲成av人片在线播放无| 亚洲自偷自拍三级| 精品久久久久久成人av| 亚洲av中文av极速乱| 18禁在线播放成人免费| 可以在线观看毛片的网站| 国产精品,欧美在线| 中文字幕免费在线视频6| 黄片无遮挡物在线观看| 插阴视频在线观看视频| 精品久久久噜噜| 久久久久精品久久久久真实原创| 乱系列少妇在线播放| 国产精品.久久久| 亚洲av电影在线观看一区二区三区 | 成人毛片60女人毛片免费| 欧美成人一区二区免费高清观看| 国产伦在线观看视频一区| 成人特级av手机在线观看| 天堂网av新在线| 亚洲av.av天堂| 精品久久久久久成人av| 国产真实伦视频高清在线观看| 观看美女的网站| 建设人人有责人人尽责人人享有的 | 欧美97在线视频| 国产精品一及| 亚洲图色成人| 只有这里有精品99| 老司机影院成人| 欧美bdsm另类| 久久久国产成人精品二区| 午夜日本视频在线| 日韩欧美精品免费久久| 伊人久久精品亚洲午夜| 淫秽高清视频在线观看| 联通29元200g的流量卡| 国产成年人精品一区二区| 久久精品国产亚洲av天美| 村上凉子中文字幕在线| 国产美女午夜福利| 成人毛片60女人毛片免费| 男插女下体视频免费在线播放| .国产精品久久| 成人午夜高清在线视频| 亚洲,欧美,日韩| 18禁在线播放成人免费| 亚洲人成网站在线观看播放| 少妇的逼好多水| 午夜精品一区二区三区免费看| 亚洲自偷自拍三级| 国产免费又黄又爽又色| 国产男人的电影天堂91| 啦啦啦韩国在线观看视频| 欧美精品国产亚洲| 国产免费又黄又爽又色| 国产成年人精品一区二区| 国产一区有黄有色的免费视频 | 国产女主播在线喷水免费视频网站 | 精品不卡国产一区二区三区| 偷拍熟女少妇极品色| 成人一区二区视频在线观看| 亚洲熟妇中文字幕五十中出| 亚洲国产精品久久男人天堂| 人妻夜夜爽99麻豆av| 欧美zozozo另类| 亚洲最大成人中文| 国产成人免费观看mmmm| 国产精品国产三级国产专区5o | 亚洲国产色片| 永久免费av网站大全| 成人av在线播放网站| 亚洲精品aⅴ在线观看| 99久久精品国产国产毛片| 在线a可以看的网站| 亚洲精品影视一区二区三区av| 大香蕉久久网| 亚洲欧美日韩卡通动漫| 国内精品一区二区在线观看| 日韩成人av中文字幕在线观看| 高清视频免费观看一区二区 | 嫩草影院新地址| 国产伦一二天堂av在线观看| 18禁在线播放成人免费| 国产午夜精品论理片| 综合色丁香网| 亚洲,欧美,日韩| 观看美女的网站| 久久久久久久久久成人| 国产黄色小视频在线观看| 天堂网av新在线| 亚洲国产精品专区欧美| 尤物成人国产欧美一区二区三区| 国产精品久久久久久精品电影| 午夜福利成人在线免费观看| 精华霜和精华液先用哪个| 久久久久久久国产电影| 国内揄拍国产精品人妻在线| 国产精品久久电影中文字幕| 国产不卡一卡二| 亚洲美女搞黄在线观看| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久成人av| 成人国产麻豆网| 99久久人妻综合| 色综合亚洲欧美另类图片| 国产精品永久免费网站| 男女下面进入的视频免费午夜| 国产91av在线免费观看| 日韩精品有码人妻一区| 国产乱人偷精品视频| 免费电影在线观看免费观看| 亚洲国产精品国产精品| 久久久久久伊人网av| 一卡2卡三卡四卡精品乱码亚洲| 草草在线视频免费看| av线在线观看网站| 精品国产三级普通话版| 99久久成人亚洲精品观看| 色吧在线观看| 午夜精品一区二区三区免费看| 九色成人免费人妻av| 国产精品人妻久久久久久| 深爱激情五月婷婷| 国产成人一区二区在线| 一夜夜www| 伦理电影大哥的女人| 亚洲国产最新在线播放| 高清午夜精品一区二区三区| 大香蕉97超碰在线| 永久网站在线| 水蜜桃什么品种好| 自拍偷自拍亚洲精品老妇| 亚洲精品456在线播放app| 亚洲欧洲国产日韩| 国产大屁股一区二区在线视频| 在线免费观看的www视频| 日韩视频在线欧美| 成年女人永久免费观看视频| 波多野结衣巨乳人妻| 久久久精品欧美日韩精品| 日韩国内少妇激情av| 国产高清国产精品国产三级 | 亚洲精品aⅴ在线观看| 欧美xxxx性猛交bbbb| 国产精品福利在线免费观看| 特大巨黑吊av在线直播| 亚洲伊人久久精品综合 | 亚洲精品aⅴ在线观看| 秋霞在线观看毛片| 亚洲自拍偷在线| 如何舔出高潮| 99久久精品热视频| 成人综合一区亚洲| 中文字幕熟女人妻在线| 国产成人freesex在线| 卡戴珊不雅视频在线播放| 日本免费在线观看一区| 欧美色视频一区免费| 国产熟女欧美一区二区| 一本一本综合久久| 永久免费av网站大全| 国产中年淑女户外野战色| 中文欧美无线码| 亚洲图色成人| 国产精品一区二区三区四区久久| 免费人成在线观看视频色| 激情 狠狠 欧美| 黄色配什么色好看| 春色校园在线视频观看| 日本免费一区二区三区高清不卡| 国产亚洲一区二区精品| 久久亚洲精品不卡| 国产成人精品一,二区| 国产视频首页在线观看|