• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Outdoor position estimation based on a combination system of GPS-INS by using UPF

    2013-11-01 01:26:22YunkiKimJaehyunParkJangmyungLee

    Yunki Kim, Jaehyun Park, Jangmyung Lee

    (Dept. of Electrical Engineering, Pusan National University, Pusan 609-735, Korea)

    Outdoor position estimation based on a combination system of GPS-INS by using UPF

    Yunki Kim, Jaehyun Park, Jangmyung Lee

    (Dept. of Electrical Engineering, Pusan National University, Pusan 609-735, Korea)

    This paper proposes a technique that global positioning system (GPS) combines inertial navigation system (INS) by using unscented particle filter (UPF) to estimate the exact outdoor position. This system can make up for the weak point on position estimation by the merits of GPS and INS. In general, extended Kalman filter (EKF) has been widely used in order to combine GPS with INS. However, UPF can get the position more accurately and correctly than EKF when it is applied to real-system included non-linear, irregular distribution errors. In this paper, the accuracy of UPF is proved through the simulation experiment, using the virtual-data needed for the test.

    global positioning system (GPS); unscented particle filter (UPF); navigation; inertial navigation system (INS); strapdown inertial navigation system (SDINS)

    The position estimation of the moving objects is of great interest to be studied, especially for global positioning system(GPS) and inertial navigation system (INS), a lot of researches are in progress[1].

    INS is navigation system that assumes position, posture and the direction by calculating according to the initial location and direction of the acceleration of the fuselage with inertial measurement unit(IMU)[2]. IMU consists of inertial sensors gyroscope, accelerometer, etc, and it can provide small and accurate information with the development of micro electro mechanical systems (MEMS). Especially, it has been used in aviation and marine fields. IMU can provide precise location information during short time. However, if it is used for a long time, due to errors and disturbances, the final estimated value is very different from the original value. To compensate for this kind of absolute value, the sensor fusion is used[3,4]. GPS is used mainly outdoors. which can provide accurate and absolute position based on satellite radio navigation system.

    Extended Kalman filter (EKF) is mainly used to amalgamate both INS and GPS data. EKF transfers nonlinear system to linear system by using Taylor series expansion. Therefore, there is disadvantage that according to change of time, tolerance can be greater. To solve these limitations, unscented Kalman filter (UKF) or Hybrid type filter, toting both particle filter (PF) and other filters[5], are used.

    This paper introduces unscented particle filter (UPF), which consists of particle filter and UKF for combination of INS and GPS, into outdoor location estimation system.

    The paper is organized as follows: Section 1 introduces INS; Section 2 describes the characteristics of various probability-based filters; Section 3 gives the simulation experiments to verify the validity of UPF; and finally, a conclusion is drawn.

    1 INS

    1.1 Strapdown INS (SDINS)

    SDINS is the system in which inertial sensors are directly attached to an antibody. Here, sensor’s output angular velocity and acceleration value are expressed as variations on body frame.

    So, the process changing measurement value to navigation frame is needed[6]. First, measured angular velocity is cumulative to estimate position. transformation matrix is calculated to change from body frame to navigation frame, which transfers the measured value from body frame’s acceleration to navigation frame. Then, gravity included in acceleration is removed and a value is got. By accumulating acceleration to the initial values of velocity, current speed and position can be obtained.

    Fig.1 shows strapdown inertial navigation algorithm. What primarily used in strapdown system for coordinate transformation are direction cosine, Euler angle and a way of quaternions. Comparison of features, advantages and disadvantages of each method is shown in Table 1[7].

    Fig.1 Strapdown inertial navigation algorithm

    Table 1 Pros and cons of the various coordinate transformation method

    This paper is oriented for fast and accurate system. Thus, 3-D position of the antibody is determined using the quaternion method.

    1.2 Aided inertial navigation

    Aided INS amalgamated sensor with the absolute value in order to overcome the shortcomings that cumulate errors of the inertial sensor to get the value of the position by INS[8]. Fig.2 shows a block diagram of aided SDINS which corrects position and location using information obtained from the inertial sensors and GPS[2,9].

    Fig.2 Block diagram of aided inertial navigation

    The attitude expressed with quaternion can obtain transformation matrix by converting antibodies in the coordinate system to coordinate navigation

    δxk=fk(δxk-1)+ωk,

    where fkis state wave function (system equation), hkis measurement equation (measurement Eq.), ωkis the system error, vkis the measurement error and δykis the measured value.

    -p≡[x y z]T,

    -v≡[vxvyvz]T,

    where -εNand εEare tilt errors; -εDis heading error.

    2 Probability based filters

    Various fields have tried actively to solve the problem about the estimation of the state variables for dynamic systems. Of them, methods based on stochastic constitute probability space consisting of state variables. Using system’s dynamic characteristics and measurement, when the initial probability density (p(x0)), the state transition density (p(xk|xk-1)), and likelihood in the measurement model (p(yk|xk)) are given, the optimal current state value which is based on input and measures, and essentially posterior probabilities (p(xk|y0∶k) or p(x0∶k|y0∶k)) are estimated. This method is generally based on Bayesian estimation. In the field of localization, EKF, which is the extended one of Kalman filter, UKF and the particle filter are notably being studied[3]. Filters are applied differently depending on how to define the system model and the characteristics of the noise distribution. Table 2 summarizes the characteristics of typical filters.

    In the case of KF, it can be only used for linear systems, and it leads the result that many fields can not apply to using it. For this reason, EKF was developed right after KF had been developed. EKF is the probability-based filter which is largely used in various fields. For every estimation, the nonlinear system is estimated as the value of the state, and develops Taylor series for linearization[11]. This method has an advantage that it is fast and simply. On the other hand, it is a disadvantage that the error may become bigger when nonlinear is severe or the noise strays from the normal distribution a lot. Thus, the proposed method is UKF. The filter, like EKF, can be used in nonlinear and models having normal distribution noise. However, unlike EKF which linearizes, UKF generates expected value of sample points (sigma points) by calculating dispersion. It is the method that obtains more correct state of the expected value and dispersion[12,13].

    Table 2 Mean of the error of attitude and position

    Fig.3(a) is got by actual mean and variance through passing all sampling points to f, nonlinear system. Fig.3(b) is got by unscented transform (UT) of UKF, and Fig.3(c) predicts the following conditions and variance through EKF’s linearization method.

    As you can see in Fig.3, UPF than EKF in nonlinear systems can predict the next state more accurately.

    Therefore, UKF is more suitable than EKF in nonlinear systems[14]. However, the UKF also assumes that the errors follow a normal distribution, and thus there are some differences from the actual system model. PF repeatedly performs the Monte Carlo integration, unlike the other filters to minimize non-linear system assumption, irregular distribution of the error model takes advantage of high accuracy can be estimation. For outdoor mobile robot, because of environmental factors, disturbance and tolerance, using PF increases the accuracy. PF algorithm, as shown in Fig.3, using the state transition function, can predict the following state and the weight, and using measurement value, particle weight update and normalize is the weighted effective bias reduction in the number of particles to prevent the re-sampling of particles will be sequenced[15,16].

    Fig.3 Estimation comparison of UKF and EKF

    At this point in the EKF or UKF prediction step of the way, the more accurate the next state and the weight of the particle can be predicted[5,17]. In this paper, using UPF, combining PF and UKF, more precise positioning estimation can be got.

    3 Experiment

    This paper compares performance according to the kind of filter for system estimating outdoor location using UPF. To compare performance of filter, driving information of arbitrary circle path is generated. The generated driving information (posture, position) are compared. To prove excellence of UPF, comparison is made in case applying no filter, applying EKF and UPK, respectirely. Particle number of UPF is experimented by setting 250.

    Fig.4 Estimated position (particle number=250)

    Fig.4 is the estimated position of antibodies. The actual path starts at (0,0) →3 m straight to the right →2 m radius semicircle path rotation →6 m straight →→2 m radius semicircle path rotation →3 m straight(Initial position). Non filtering is in case if do not apply, and GPS is local information got from GPS.

    To quantitatively compare performance of each filter, appear average value of posture error and local error are got through 10 times experiment. Table 3 shows posture error and local error.

    Table 3 Mean of the error of attitude and position

    4 Conclusion

    EKF is the quick and simple method to estimate indoor local error by combining GPS and INS, which has been used recently and will be used for a long time and be verified. But it is difficulty to use in non-linear system. To apply model in close actual system, another method is needed. The UPF is kind of PF, being non-linear and using the model similar to the actual system. And it is the filters that has more enhanced estimation accuracy by using method of UPF. The usefulness of UPF is proved through experiments. From now, leave fusion methods that be used in real time position estimation through combining various filters more quickly estimated as a next project.

    [2] Park J Y, Lee J H, Nam D K, et al. Investigations on GPS/INS integration for land vehicle navigation. In: Proceedings of KIIS fall conference, 2009, 19(2): 3-360.

    [3] Lee J K. The estimation methods for an integrated INS/GPS UXO geolocation system. The Ohio State University Report, No. 493, 2009.

    [4] Aggarwal P, Syed Z, Noureldin A, et al. MEMS-based integrated navigation. Artech House, 2010.

    [5] Aggarwal P, Syed Z, El-sheimy N. Hybrid extended particle filter(HEPF) for integrated inertial navigation and global positioning system. Measurement Science and Technology, 2009, 20(5): 1-9.

    [6] Woodman O J. An introduction to inertial navigation. University of Cambridge Technical Report, No.696, 2007.

    [7] Siouris G M. Aerospace avionics systems a modern synthesis. Academic Press Inc., 1993: 67.

    [8] Skog I, Handel P. Time synchronization errors in GPS-aided inertial navigation system. IEEE Transactions on Intelligent Transportation Systems, 2011.

    [9] Hwang S Y, Lee and J M. Estimation of attitude and position of moving objects using multi-filtered inertial navigation system. The Transactions of KIEE, 2011, 60(12): 2183-2396.

    [10] Farrell J A. Aided navigation. McGrawHill, 2008.

    [11] de Melo L F, Mangili J F Jr. Trajectory planning for nonholonomic mobile robot using extended Kalman filter. Mathematical Problems in Engineering, 2010: 1-22.

    [12] Wan E A, van der Merwe R. The unscented Kalman filter for nonlinear estimation. In: Proceedings of IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium. IEEE, 2000: 153-158.

    [13] Hartikainen J, Sarkka S. Optimal filtering with Kalman filters and smoothers-a manual for matlab toolbox EKF / UKF. Biomedical Engineering, 2008: 1-57.

    [14] Haykin S, Kalman filtering and neural networks, John Wiley & Sons, New York, 2001.

    [15] Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation, and tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 425-437.

    [16] YANG Ning, TIAN Wei-Feng, JIN Zhi-hua, et al. Particle filter for sensor fusion in a land vehicle navigation system. Measurement Science and Technology, 2005, 16: 677-681.

    [17] CHEN Zhe. Bayesian filtering: from Kalman filters to particld filters, and beyound. Citeseer, 2003: 1-69.

    date: 2012-09-26

    The MKE(the Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-2006)

    Jangmyung Lee (jmlee@pusan.ac.kr)

    CLD number: TN967 Document code: A

    1674-8042(2013)01-0047-05

    10.3969/j.issn.1674-8042.2013.01.011

    草草在线视频免费看| 插逼视频在线观看| 精品国产乱码久久久久久小说| 精品久久久久久久久av| 日本欧美国产在线视频| 欧美精品高潮呻吟av久久| 人人妻人人澡人人爽人人夜夜| 国产午夜精品久久久久久一区二区三区| 免费久久久久久久精品成人欧美视频 | 亚洲国产av影院在线观看| 欧美日韩亚洲高清精品| 中文字幕亚洲精品专区| 久久久国产欧美日韩av| 高清在线视频一区二区三区| 国产色爽女视频免费观看| 亚洲三级黄色毛片| 午夜影院在线不卡| 涩涩av久久男人的天堂| 亚洲av在线观看美女高潮| 精品人妻一区二区三区麻豆| 黑人巨大精品欧美一区二区蜜桃 | 久久狼人影院| 国产成人精品无人区| 亚洲av.av天堂| 久久韩国三级中文字幕| 伊人久久国产一区二区| 夫妻性生交免费视频一级片| 18禁裸乳无遮挡动漫免费视频| av卡一久久| 嘟嘟电影网在线观看| 在线观看人妻少妇| 国产亚洲av片在线观看秒播厂| 精品少妇久久久久久888优播| 五月天丁香电影| 中文字幕亚洲精品专区| 人妻 亚洲 视频| av有码第一页| 18禁动态无遮挡网站| 在线观看www视频免费| 日本91视频免费播放| 午夜福利,免费看| 久久久久久久久久久久大奶| 国产免费一级a男人的天堂| 在线观看免费日韩欧美大片 | 精品卡一卡二卡四卡免费| 色婷婷久久久亚洲欧美| 一边摸一边做爽爽视频免费| 纯流量卡能插随身wifi吗| 国产日韩欧美在线精品| 欧美老熟妇乱子伦牲交| 国产欧美亚洲国产| 国产有黄有色有爽视频| 亚洲精品日韩在线中文字幕| 久久久国产成人免费| 婷婷丁香在线五月| 色视频在线一区二区三区| 岛国在线观看网站| 飞空精品影院首页| 亚洲精品粉嫩美女一区| av片东京热男人的天堂| 757午夜福利合集在线观看| 欧美av亚洲av综合av国产av| 国产精品 国内视频| 亚洲国产中文字幕在线视频| 老司机在亚洲福利影院| 久久av网站| 久久性视频一级片| 丝袜美足系列| 国产在线观看jvid| 亚洲一码二码三码区别大吗| 欧美大码av| 精品国产超薄肉色丝袜足j| 人人妻人人爽人人添夜夜欢视频| 精品国产乱码久久久久久小说| 91精品国产国语对白视频| 99久久人妻综合| 国产男女超爽视频在线观看| 精品久久蜜臀av无| 手机成人av网站| 久久精品国产亚洲av香蕉五月 | 欧美国产精品一级二级三级| 飞空精品影院首页| 中文字幕人妻丝袜制服| 久久久精品94久久精品| 12—13女人毛片做爰片一| 国产欧美亚洲国产| 亚洲第一欧美日韩一区二区三区 | 天天添夜夜摸| av网站在线播放免费| 激情在线观看视频在线高清 | 亚洲一区二区三区欧美精品| 国产精品电影一区二区三区 | 成人亚洲精品一区在线观看| 国产成人免费观看mmmm| 老熟妇乱子伦视频在线观看| 91精品三级在线观看| 免费在线观看黄色视频的| 一级毛片女人18水好多| 自线自在国产av| 国产精品九九99| a在线观看视频网站| 国产淫语在线视频| 亚洲av成人不卡在线观看播放网| 国产又爽黄色视频| 国产一区二区激情短视频| 狠狠婷婷综合久久久久久88av| 男女边摸边吃奶| aaaaa片日本免费| 欧美大码av| 成人永久免费在线观看视频 | 极品教师在线免费播放| 国产精品偷伦视频观看了| 可以免费在线观看a视频的电影网站| 我的亚洲天堂| 女性被躁到高潮视频| 伊人久久大香线蕉亚洲五| 日本欧美视频一区| 亚洲男人天堂网一区| 亚洲av第一区精品v没综合| 久久久国产成人免费| 久久久久国产一级毛片高清牌| 女性被躁到高潮视频| 一进一出好大好爽视频| 女警被强在线播放| 色老头精品视频在线观看| 热99久久久久精品小说推荐| bbb黄色大片| 在线观看舔阴道视频| 国产精品久久久av美女十八| 国产精品偷伦视频观看了| 啦啦啦视频在线资源免费观看| 亚洲精品在线观看二区| 国产精品 国内视频| 天堂8中文在线网| 男人舔女人的私密视频| 亚洲七黄色美女视频| 精品午夜福利视频在线观看一区 | 欧美日韩亚洲综合一区二区三区_| 成年女人毛片免费观看观看9 | 久久久久久久国产电影| 男女下面插进去视频免费观看| 亚洲欧洲精品一区二区精品久久久| 久久久久久免费高清国产稀缺| 亚洲中文av在线| 久久精品国产99精品国产亚洲性色 | 国产亚洲精品第一综合不卡| 天天操日日干夜夜撸| av天堂久久9| 纯流量卡能插随身wifi吗| 国内毛片毛片毛片毛片毛片| 久久久精品94久久精品| 97在线人人人人妻| 人成视频在线观看免费观看| 青青草视频在线视频观看| 99久久人妻综合| 欧美在线一区亚洲| 久久国产亚洲av麻豆专区| 国产在线观看jvid| 久久婷婷成人综合色麻豆| 精品少妇黑人巨大在线播放| 99久久精品国产亚洲精品| 欧美性长视频在线观看| 午夜福利,免费看| 亚洲人成伊人成综合网2020| 美女国产高潮福利片在线看| 久久久久精品人妻al黑| 欧美中文综合在线视频| 亚洲精品在线观看二区| 亚洲五月婷婷丁香| 老司机深夜福利视频在线观看| 国产欧美日韩一区二区三| 99精品久久久久人妻精品| 我要看黄色一级片免费的| 1024香蕉在线观看| 中文字幕色久视频| 欧美日韩黄片免| 视频区欧美日本亚洲| 成年女人毛片免费观看观看9 | 日本五十路高清| 色精品久久人妻99蜜桃| 精品久久久精品久久久| 男女床上黄色一级片免费看| 免费久久久久久久精品成人欧美视频| 99久久人妻综合| 电影成人av| 啦啦啦在线免费观看视频4| 亚洲少妇的诱惑av| 香蕉国产在线看| 无限看片的www在线观看| 蜜桃在线观看..| 日韩有码中文字幕| 五月天丁香电影| 一本一本久久a久久精品综合妖精| 女人精品久久久久毛片| 飞空精品影院首页| 一边摸一边抽搐一进一小说 | 精品亚洲成国产av| 亚洲熟女精品中文字幕| 久热爱精品视频在线9| 亚洲中文av在线| 午夜久久久在线观看| 老司机靠b影院| 免费女性裸体啪啪无遮挡网站| 久久影院123| 人人妻,人人澡人人爽秒播| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区久久| 久久久久精品人妻al黑| 久久ye,这里只有精品| 韩国精品一区二区三区| 一边摸一边抽搐一进一小说 | 国产亚洲精品第一综合不卡| 久久香蕉激情| 麻豆乱淫一区二区| 欧美日韩亚洲综合一区二区三区_| 成人18禁高潮啪啪吃奶动态图| 在线亚洲精品国产二区图片欧美| 免费高清在线观看日韩| 欧美日韩一级在线毛片| 久久久久精品国产欧美久久久| 激情视频va一区二区三区| 日韩三级视频一区二区三区| 视频区欧美日本亚洲| 久久久国产成人免费| 国产精品一区二区在线不卡| 777久久人妻少妇嫩草av网站| 国产又爽黄色视频| 久久中文字幕一级| 精品久久久久久电影网| 窝窝影院91人妻| 国产高清视频在线播放一区| 十八禁网站免费在线| 亚洲色图 男人天堂 中文字幕| 最近最新中文字幕大全电影3 | 日本一区二区免费在线视频| 黄色毛片三级朝国网站| 久久天堂一区二区三区四区| 熟女少妇亚洲综合色aaa.| 在线亚洲精品国产二区图片欧美| 国产精品 国内视频| 9191精品国产免费久久| 成年人免费黄色播放视频| 欧美日韩亚洲国产一区二区在线观看 | 不卡av一区二区三区| 99在线人妻在线中文字幕 | 一级a爱视频在线免费观看| 国产成人精品在线电影| 精品国内亚洲2022精品成人 | 久久久久精品人妻al黑| 国产高清国产精品国产三级| 日韩欧美一区视频在线观看| 久久精品国产99精品国产亚洲性色 | 十八禁网站免费在线| 亚洲精品国产一区二区精华液| 日韩欧美国产一区二区入口| 精品国产乱码久久久久久小说| 亚洲精品成人av观看孕妇| 叶爱在线成人免费视频播放| 免费一级毛片在线播放高清视频 | 窝窝影院91人妻| 91成人精品电影| 久久中文字幕一级| 亚洲欧洲日产国产| 亚洲中文字幕日韩| 女人久久www免费人成看片| 国产精品美女特级片免费视频播放器 | 精品国产一区二区三区久久久樱花| 免费不卡黄色视频| 丰满少妇做爰视频| 97在线人人人人妻| 天堂中文最新版在线下载| 老司机福利观看| 欧美精品亚洲一区二区| 宅男免费午夜| 美女主播在线视频| 建设人人有责人人尽责人人享有的| 51午夜福利影视在线观看| 国产免费视频播放在线视频| 99国产精品免费福利视频| 午夜成年电影在线免费观看| 亚洲成人免费av在线播放| 在线观看免费日韩欧美大片| 日韩一区二区三区影片| 久久久久国内视频| 不卡av一区二区三区| 精品久久久久久久毛片微露脸| 国产一区二区 视频在线| 美女午夜性视频免费| 日韩一卡2卡3卡4卡2021年| 另类精品久久| 久久精品亚洲av国产电影网| 在线观看免费视频日本深夜| 男女边摸边吃奶| 亚洲av成人不卡在线观看播放网| 一进一出抽搐动态| 飞空精品影院首页| 69精品国产乱码久久久| 每晚都被弄得嗷嗷叫到高潮| 一区在线观看完整版| 亚洲精品成人av观看孕妇| cao死你这个sao货| 成年人午夜在线观看视频| 极品教师在线免费播放| 中文字幕高清在线视频| 国产三级黄色录像| 少妇猛男粗大的猛烈进出视频| 亚洲,欧美精品.| 国产男女内射视频| 国产不卡一卡二| 一本色道久久久久久精品综合| 亚洲专区中文字幕在线| 黄色片一级片一级黄色片| 精品国产亚洲在线| 男女免费视频国产| 老司机亚洲免费影院| 叶爱在线成人免费视频播放| 一区二区三区乱码不卡18| 亚洲av日韩精品久久久久久密| 国产在线精品亚洲第一网站| 欧美激情 高清一区二区三区| 法律面前人人平等表现在哪些方面| 国产精品麻豆人妻色哟哟久久| 极品人妻少妇av视频| 亚洲专区中文字幕在线| 国产国语露脸激情在线看| 国产一区二区三区视频了| 亚洲一区二区三区欧美精品| 女同久久另类99精品国产91| 黄片大片在线免费观看| 动漫黄色视频在线观看| 国产av又大| 在线观看www视频免费| 丝袜人妻中文字幕| 国产日韩欧美视频二区| 国产精品成人在线| 老汉色∧v一级毛片| 桃红色精品国产亚洲av| 午夜两性在线视频| 两性夫妻黄色片| 亚洲熟女毛片儿| 一级片免费观看大全| 美女国产高潮福利片在线看| 国产精品 国内视频| 手机成人av网站| 国产成人精品无人区| 亚洲专区字幕在线| 男女免费视频国产| 成年版毛片免费区| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜精品一区,二区,三区| 天堂中文最新版在线下载| 国产成+人综合+亚洲专区| 国产成人精品在线电影| 亚洲中文日韩欧美视频| 99国产综合亚洲精品| 亚洲成人手机| 黑丝袜美女国产一区| 中文字幕高清在线视频| 精品国产一区二区三区久久久樱花| 丝袜美足系列| 精品国产乱码久久久久久男人| 9191精品国产免费久久| 国产亚洲精品久久久久5区| 天天躁日日躁夜夜躁夜夜| 91成年电影在线观看| 91精品国产国语对白视频| 美女高潮到喷水免费观看| 亚洲色图综合在线观看| 成人免费观看视频高清| 国产成人精品久久二区二区免费| 国产精品av久久久久免费| 色综合婷婷激情| 欧美日韩中文字幕国产精品一区二区三区 | 超碰97精品在线观看| 香蕉国产在线看| 国产精品久久久久久精品古装| 制服诱惑二区| 国产欧美日韩一区二区三区在线| 热99re8久久精品国产| 亚洲av成人不卡在线观看播放网| 夜夜夜夜夜久久久久| 涩涩av久久男人的天堂| 色综合欧美亚洲国产小说| 国产不卡一卡二| 亚洲国产中文字幕在线视频| 国产91精品成人一区二区三区 | 精品久久久久久久毛片微露脸| 色播在线永久视频| 免费高清在线观看日韩| 久久精品亚洲熟妇少妇任你| 一级片免费观看大全| 变态另类成人亚洲欧美熟女 | 久久精品国产a三级三级三级| 久久这里只有精品19| 免费看a级黄色片| av片东京热男人的天堂| 精品国产一区二区三区四区第35| 久久久久精品国产欧美久久久| 亚洲成人国产一区在线观看| 亚洲精品久久午夜乱码| 久久久国产精品麻豆| 色综合婷婷激情| 叶爱在线成人免费视频播放| 美女国产高潮福利片在线看| 高清毛片免费观看视频网站 | 亚洲 欧美一区二区三区| 亚洲精品国产精品久久久不卡| 成人精品一区二区免费| 狠狠婷婷综合久久久久久88av| 欧美性长视频在线观看| 麻豆av在线久日| 在线观看www视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产极品粉嫩在线观看| 操美女的视频在线观看| 免费少妇av软件| 黑人猛操日本美女一级片| a级片在线免费高清观看视频| 人人澡人人妻人| 国产在线免费精品| 丰满少妇做爰视频| 亚洲av欧美aⅴ国产| 亚洲欧美精品综合一区二区三区| 亚洲五月婷婷丁香| 亚洲 国产 在线| 国产区一区二久久| 天天影视国产精品| 正在播放国产对白刺激| www.999成人在线观看| 成人精品一区二区免费| 亚洲精品中文字幕一二三四区 | 日韩有码中文字幕| 丝袜喷水一区| av一本久久久久| 中文字幕人妻丝袜一区二区| 亚洲成人手机| 纵有疾风起免费观看全集完整版| 天堂俺去俺来也www色官网| 国产欧美日韩一区二区精品| 老熟女久久久| 美女扒开内裤让男人捅视频| 淫妇啪啪啪对白视频| 欧美av亚洲av综合av国产av| www.熟女人妻精品国产| 99在线人妻在线中文字幕 | videos熟女内射| 人妻久久中文字幕网| 久久精品国产亚洲av香蕉五月 | 少妇粗大呻吟视频| 首页视频小说图片口味搜索| 久久久欧美国产精品| 久久青草综合色| 国产av精品麻豆| 757午夜福利合集在线观看| 免费看十八禁软件| 亚洲专区中文字幕在线| 欧美一级毛片孕妇| 日韩欧美三级三区| 黑人操中国人逼视频| 久久99一区二区三区| 又紧又爽又黄一区二区| 国产熟女午夜一区二区三区| 国产野战对白在线观看| 国产男女内射视频| 一二三四社区在线视频社区8| 丁香六月欧美| 一夜夜www| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩视频精品一区| 亚洲美女黄片视频| 成人影院久久| 国产三级黄色录像| 亚洲一区中文字幕在线| 制服诱惑二区| 丝袜喷水一区| 丰满迷人的少妇在线观看| 视频区欧美日本亚洲| 757午夜福利合集在线观看| 欧美日韩成人在线一区二区| 成人国产一区最新在线观看| 亚洲国产欧美在线一区| 欧美黄色片欧美黄色片| 亚洲中文日韩欧美视频| 母亲3免费完整高清在线观看| 久久久精品区二区三区| 国产成人免费观看mmmm| 久久天堂一区二区三区四区| 亚洲成人手机| 男女边摸边吃奶| 三上悠亚av全集在线观看| 欧美黄色淫秽网站| 91麻豆精品激情在线观看国产 | 国产aⅴ精品一区二区三区波| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品1区2区在线观看. | 人妻久久中文字幕网| 亚洲av美国av| 一区二区三区乱码不卡18| 男女边摸边吃奶| 18禁观看日本| 欧美另类亚洲清纯唯美| 十八禁网站免费在线| 亚洲专区字幕在线| 国产精品成人在线| 丝袜喷水一区| 国产精品一区二区免费欧美| 欧美日韩亚洲综合一区二区三区_| 久久国产精品影院| 免费观看a级毛片全部| 国产成人系列免费观看| 丰满迷人的少妇在线观看| 久久国产精品大桥未久av| 国产精品免费视频内射| 精品国产一区二区久久| av在线播放免费不卡| 久久99热这里只频精品6学生| 黄频高清免费视频| 999久久久精品免费观看国产| 久久久久久亚洲精品国产蜜桃av| 精品乱码久久久久久99久播| 一本综合久久免费| 91国产中文字幕| 亚洲成人免费av在线播放| 91大片在线观看| 国产精品一区二区在线观看99| 黄色成人免费大全| 99香蕉大伊视频| 欧美在线黄色| 国产99久久九九免费精品| 免费女性裸体啪啪无遮挡网站| 动漫黄色视频在线观看| 日韩中文字幕视频在线看片| 十八禁网站网址无遮挡| 国产精品国产高清国产av | 男男h啪啪无遮挡| 亚洲国产欧美一区二区综合| 国产欧美日韩一区二区三区在线| 欧美中文综合在线视频| 色94色欧美一区二区| 国产精品98久久久久久宅男小说| 国产精品秋霞免费鲁丝片| 久久毛片免费看一区二区三区| 午夜福利视频精品| 亚洲精华国产精华精| 亚洲全国av大片| 色尼玛亚洲综合影院| 精品久久久久久久毛片微露脸| 亚洲五月色婷婷综合| av片东京热男人的天堂| 一本一本久久a久久精品综合妖精| 中文字幕精品免费在线观看视频| 成人黄色视频免费在线看| 欧美精品高潮呻吟av久久| 黄色怎么调成土黄色| 国产成人精品久久二区二区91| 亚洲国产成人一精品久久久| 午夜成年电影在线免费观看| 日韩视频一区二区在线观看| 丰满饥渴人妻一区二区三| 中文字幕色久视频| 国产午夜精品久久久久久| 欧美精品亚洲一区二区| 色婷婷av一区二区三区视频| 午夜福利,免费看| www日本在线高清视频| 午夜精品久久久久久毛片777| av在线播放免费不卡| 午夜福利视频精品| 日韩大码丰满熟妇| 精品亚洲成国产av| 一级毛片女人18水好多| 母亲3免费完整高清在线观看| 99久久人妻综合| 两个人看的免费小视频| 性色av乱码一区二区三区2| 亚洲国产欧美日韩在线播放| 欧美国产精品一级二级三级| 俄罗斯特黄特色一大片| 欧美亚洲日本最大视频资源| 国产成人啪精品午夜网站| 国产男女超爽视频在线观看| 热re99久久精品国产66热6| 欧美一级毛片孕妇| 女性生殖器流出的白浆| 国产亚洲av高清不卡| 最新在线观看一区二区三区| 日本黄色日本黄色录像| 手机成人av网站| 性少妇av在线| 99re6热这里在线精品视频| 成年版毛片免费区| 免费不卡黄色视频| 精品人妻熟女毛片av久久网站| a级毛片黄视频| 日韩一卡2卡3卡4卡2021年| 男女床上黄色一级片免费看| 9热在线视频观看99| 菩萨蛮人人尽说江南好唐韦庄| a级片在线免费高清观看视频| 成人精品一区二区免费| 亚洲一码二码三码区别大吗| 中文亚洲av片在线观看爽 | 国产精品欧美亚洲77777| 国产精品二区激情视频| 欧美日韩国产mv在线观看视频| 天天操日日干夜夜撸| 婷婷成人精品国产| 国产97色在线日韩免费| 热99久久久久精品小说推荐| 国产免费视频播放在线视频| 大型av网站在线播放| 一区二区三区激情视频| 日韩一卡2卡3卡4卡2021年| 精品人妻在线不人妻| 国产av国产精品国产|