• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Studies on NLO Properties of (C9H8N6O2)n (n=1,2,3,4)

    2013-10-28 02:18:33GUFenglongTIANSiPENGLiang
    關(guān)鍵詞:氫鍵數(shù)目責(zé)編

    GU Fenglong, TIAN Si, PENG Liang

    (Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China)

    TheoreticalStudiesonNLOPropertiesof(C9H8N6O2)n(n=1,2,3,4)

    GU Fenglong*, TIAN Si, PENG Liang

    (Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China)

    The nonlinear optical (NLO) properties of (C9H8N6O2)n(n=1,2,3,4) have been investigated. The static (hyper)polarizabilities of the systems are evaluated by methods of the Hartree-Fock (HF), Density Functional Theory (DFT), and M?ller-Plesset perturbation theory at the second order (MP2) with 6-31G**basis set. The structures are optimized at B3LYP/6-31G**level. There are three types of hydrogen bonds, N—H…O—C—C, N…H—N, and N—H…O—C—N, and their lengths are in average 0.196 3, 0.191 8 and 0.190 9 nm, respectively. At the HF/6-31G**level, the first hyperpolarizability (β0) is increased due to more and more hydrogen bond interactions involved asnis increased, i.e.β0is 246, 596, 1 067, or 1 555 (a.u.) forn=1, 2, 3, or 4, respectively. The static second hyperpolarizability (γ0) is 1.4, 4.3, 7.8, or 11.5 (in 104a.u.), respectively, forn=1, 2, 3, or 4. The results show that Δγforn=2, 3 or 4 is 14 768, 35 627 or 58 670 a.u., which keeps increasing due to the interaction of more hydrogen bonds asngrows. Since Δγhas an obvious increase, it is attributed to the cooperativity of hydrogen bonds. The investigation shows that hydrogen bond is an effective factor to design new NLO materials.

    Keywords: NLO; hydrogen bond; cooperativity; (C9H8N6O2)n(n=1,2,3,4)

    There is an increasing interest in nonlinear optical (NLO) materials due to their potential application in technologies such as telecommunications, information processing, surgery, metallurgy and holography.π-conjugated organic polymers are excellent options because they are easily synthesized and chemically modified, have extremely fast switching times, and resist to high intensity radiation[1]. Besides, supramolecular self-assembly has been a hot area of research for several years, it greatly promotes the development of information, energy, life, environmental and material science disciplines[2]. Multiple-hydrogen-bonded interaction is an important way to form supramolecular polymers[3]. Non-covalent bonds with intermolecular interaction and transport processes are the remarkable features of the weakly bonded systems. In association with organized polymolecular assemblies, functional supermolecules capable of displaying processes of highest efficiency and selectivity may lead to the development of molecular and nanoscale optic-electronic devices, such as high-tech sensor, devices for drug delivery and data storage[4].

    Perez and Dupuis[5]studied the urea system and found that the additivity relationship holds well for polarizability (α) and the second order hyperpolarizability (γ) even though some individual components are enhanced significantly in the clusters, while other components show the effect of destructive interference from the neighboring units. The results suggest that the effects of the hydrogen bonds on the (hyper)polarizabilities of the urea crystal may not be as significant as previously thought. Their study raises the question of whether hydrogen bonds of other systems have an significant influence on the (hyper)polarizabilities.

    Because hydrogen bonding is a weak interaction, it might need multiple and strong hydrogen bonds to better investigate the hydrogen-bonded system. In Nair and Breedveld’s work[6-7], self-assembly recognition pairs were studied in the six-point hydrogen bonded complex between the Hamilton wedge acceptor and cyanuric acid and the three-point hydrogen bonded complex between 2,4-diaminotriazine and cyanuric acid. Inspired by those work, we designed a new molecular system (Figure 1), 6,8-diamino- 4,9-dihydro-2,4,7,9-tetraaza-fluorene-1,3-dione (C9H8N6O2), to study the hydrogen bond cooperativity and NLO properties. C9H8N6O2is aπ-conjugated system and it can form dimer, trimer, and so on, with multiple hydrogen bonds.

    In this paper, we sought to know whether the hydrogen-bond network favors or destroys the optical response of the systems, whether there is hydrogen bond cooperativity and to what extent it affects the NLO properties of the systems.

    Figure 1 Structures of the systems, 6,8-diamino- 4,9-dihydro-2,4,7,9-tetraaza-fluorene-1,3-dione (C9H8N6O2): monomer (pa-1), synclastic dimer (pa-2-syn), aligned dimer (pa-2), trimer (pa-3) and tetramer (pa- 4)

    1 Methodology

    The complex (C9H8N6O2)nis denoted as pa-1, pa-2, pa-3 or pa- 4 forn=1, 2, 3 or 4, respectively. The center of mass of the compound was chosen as the origin of the Cartesian coordinate system, aligned along thex-axis. All the geometries of the systems were optimized by using B3LYP/6-31G**. NLO components of pa-2 were calculated and at B3LYP, HF and MP2 levels with a series of basis sets to investigate the basis set effect and the choice of a proper method. The polarizability and first hyperpolarizability were evaluated by analytical means, while the second hyperpolarizability was evaluated by the Finite Field (FF) approach.

    The total energy of a molecular system in the presence of a homogeneous electric field can be expressed as follows:

    (1)

    whereE0is the total energy without the electric field, andFiis the electric field component along theidirection.μi,αij,βijk,γijklare the dipole, polarizability, the first hyperpolarizability and second hyperpolarizability, respectively.

    The dipole moment (μ0) and polarizability (α0) are defined as follows:

    (2)

    (3)

    The static first hyperpolarizability is denoted as:

    (4)

    (5)

    As to our system, the repeated unit is the same moleculeA(Astands for C9H8N6O2), so the interaction energy of the system (An) is defined as:

    ΔEAn=EAn-nEA.

    (6)

    All the results were corrected for the basis set superposition error (BSSE) using the counterpoise correction by Boys and Bernardi. In the paper, the increase of NLO component is defined:

    ΔPAn=PAn-nPA,

    (7)

    whereP=μ,α,β,γ[8-9].

    The increase of NLO component and the ratio of the increase (ΔPAn/PAn) are examined.

    All calculations were carried out using the Gaussian 03W package.

    2 Results and discussion

    2.1 Structure optimization and analysis

    All the geometries of the systems were optimized at B3LYP/6-31G**level and the optimized structures are with all real frequencies. The structures are shown in Figure 1. As for the dimer, two structures were designed, one is that the two N atoms in two different five-atom rings are on the same side, that is the two N atoms being synclastic, denoted as pa-2-syn; the other one is that the two N atoms are on the opposite sides, denoted as pa-2.

    The energy of pa-1 is -826.818 0 a.u. and that of pa-2 is -1 653.657 8 a.u. For pa-2-syn, it is -1 653.657 3a.u.. The energy of hydrogen bond is -74.73 kJ/mol or -75.80 kJ/mol for pa-2 or pa-2-syn, respectively. The statistics show that pa-2 is a little bit more stable than pa-2-syn and the hydrogen bonds in the system are strong. Besides, in the optimized structures of the two dimer structures, pa-2 is more kept in alignment than pa-2-syn due to the hydrogen bonds. Therefore, pa-2 model is chosen for further investigations. So we can better estimate the cooperativity of hydrogen bond interaction along the direction and its influence on the NLO properties along this direction. That is to say, the model that the two N atoms in two different five-atom rings were put on the opposite sides was chosen for further investigation, keeping the systems more in alignment, asngrows. While pa-2-syn is used only for the purpose of comparison. However, as to pa-2-syn model, asngrows, the system may form a ring, like (CH3—C≡N)n[10]or helix structure like DNA bases. This might need future investigation.

    There are three hydrogen bonds between two adjacent subunits in the system. Hydrogen bond lengths and angles are listed in Table 1. The hydrogen bond lengths of N—H…O—C—C, N…H—N, and N—H…O—C—N in systems are in average 0.196 3, 0.191 8 and 0.190 9 nm, respectively. While in pa-2-syn, they are about 0.190 8, 0.195 6 and 0.194 0 nm, respectively. The angles are very close to a flat angle, which makes the system almost alignment. The results show that there are strong hydrogen bonds in these systems.

    NBO analysis was done at B3LYP/6-31G**level. In pa-2, the charge of the first unit is 0.006 06, of the second unit is -0.006 06. For pa-2-syn, the charge of the first unit is 0.012 87 and of the second is -0.012 87. As to pa-3, the charges of the first, second and the third unit are 0.008 63, -0.000 10 and -0.008 52, respectively. For pa- 4, they are 0.009 02, 0.001 51, -0.001 37 and -0.009 15, respectively.

    Table 1 Hydrogen bond lengths and hydrogen bond angles of the systems (at B3LYP/6-31G** level)

    2.2 Basis set effect on NLO

    The NLO properties of the systems were calculated at HF/6-31G**level. And the results with and without BSSE corrections using the counterpoise correction by BOYS and BERNARDI[8]were compared. It is demonstrated in Table 2 that the values ofμ0,α0,β0differ slightly from those with BSSE correction, the largest difference is 2.38%. So the BSSE correction can be neglected and the following results presented are without BSSE correction.

    Table 2 Non-corrected and BSSE counterpoise-corrected (in parentheses) NLO components (a.u.) of the system at HF/6-31G**level

    pa?2pa?2?synpa?3pa?4μ03.89(3.86)4.07(4.03)6.03(5.95)8.16(8.04)α0273.60(270.96)273.32(270.68)419.42(414.13)566.11(558.17)β0596.36(584.42)636.21(627.13)1067.24(1043.39)1555.49(1519.38)

    pa-2 was calculated at HF level with a series of basis sets to investigate their effects on NLO properties. The results are shown in Table 3 in the order of number of basis function (N) increased. As N increases, the total dipole momentμ0and the total mean polarizabilityα0change slightly with different basis sets. The mean first hyperpolarizabilityβ0, however, decreases when diffuse function or polarized function is employed. Besides,β0has a value of 585 using DGDZVP basis set with 508 functions, while it has a value of 506 a.u. by the largest basis set cc-pVQZ with 2 350 functions being tested in this work. 6-31G**was chosen for further NLO studies duo to its reliability and time efficiency.

    All values reported in a.u.

    Besides,β0of pa-2 was calculated at B3LYP, HF and MP2 levels with a series of Pople basis sets. The results are shown in Figure 2.β0has a maximum value for 6-31G and starts to converge from 6-31G**at all three levels. Andβ0at B3LYP and MP2 levels are close to each other because both methods take electron correlation into account, whereas HF level is about 45% lower than either of them since the electron correlation effects are not considered at the HF level. However, as n or the number of atoms in the system grows, it will require much more computational costs, especially for MP2. Besides that, DFT method confronts difficulties in the treatment of NLO properties for longer chain systems. It has been noticed that conventional DFT significantly overestimates polarizability (α) and hyperpolarizability (γ) and gives catastrophically divergent values for long chain lengths[11-12]. Thus, HF method has been used for further NLO calculations.

    Table 3 (Hyper)polarizabilities of pa-2: Basis set dependence

    Figure 2 β0 (a.u.) of pa-2 at B3LYP, MP2 levels and β0 of (C9H8N6O2)n(n=1, 2, 3 and 4) at HF level with different basis sets

    Based on these results, HF level with 6-31G**is chosen for following NLO calculations.

    2.3 NLO properties of (C9H8N6O2)n(n=1,2,3,4) at HF level

    (C9H8N6O2)n(n=1, 2, 3 or 4) were calculated at HF level with different Pople basis sets, theβ0results are also shown in Figure 2.β0has an obvious increase asngets bigger. The increase ratio of adding one subunit is about 60%, 43% and 31%, forn=2, 3, and 4, respectively, whatever the considered basis set is. The Finite-Field approach was employed to calculate the second order hyperpolarizabilityγ0, the results are listed in Table 4.

    From Table 4, one can see that theβXXXandγXXXXcomponents have the largest value, they are the most important contributions toβ0andγ0. And the major charge transfer is also along thexdirection.μ0,α0,β0andγ0all have an obvious increase asngrows.β0is 246, 596, 1 067 or 1 555 (a.u.), andγ0is 14 169, 43 106, 78 134 or 115 346 (a.u.), for the monomer, dimer, trimer, or tetramer, respectively. In Perez and Dupuis’s work[5],γ0is 404×10-39esu (802 a.u.), 805×10-39esu (1 598 a.u.) or 1 202×10-39esu (2 386 a.u.) for urea monomer, linear dimer or linear trimer, respectively. It is shown that our system is a potentially good NLO material compared to urea systems.

    Besides, pa-2-syn has biggerβ0value but lowerγ0value than pa-2. This may be because pa-2-vsyn has different structure and charge transfer liability.

    The change of the NLO properties (ΔP) and their change ratios (ΔP/P) are listed in Table 5. The change ratios of Δβ0are 17.50%, 30.85% and 36.74% whenn=2, 3 and 4, respectively. And they are 34.26%, 45.60% and 50.86%, respectively for Δγ. It is demonstrated in Table 5 that all the ratios accelerate as the system grows, which means more hydrogen bonds. So it is shown that the cooperativity of hydrogen bond interactions among adjacent subunits in the system have a significant influence on the NLO properties. And this system may be considered for new NLO material design.

    Table 4 Electric properties of the title system at HF/6-31G** level

    Table 5 Differences of electric properties and percent deviation from additivity of (C9H8N6O2)n (n= 1, 2, 3 or 4)

    All values in a.u.

    Sadlej pVTZ is known as one of the best basis sets for electric property calculations. But due to our computer capacity, we only performed calculations with Sadlej pVTZ basis set for pa-1 and compared with those of HF/6-31G**, the results are listed in Table 6.μ0is about 1.93 a.u. which is almost the same as that of HF/6-31G**, whileα0,αxx,αyyandαzzwith Sadlej pVTZ are all larger than those with 6-31G**. However,βx,βyandβzare smaller:β0with Sadlej pVTZ is 184 a.u. while with 6-31G**it is 246 a.u.

    Table 6 Electric properties of (C9H8N6O2)n (n= 1, 2, 3 or 4) at HF/Sadlej pVTZ and MP2/6-31G** level

    aValue in parentheses is the ratio of MP2 to HF

    Besides, MP2 calculations of the system were compared with HF ones, and the results are listed in Table 6. The ratio of MP2 to HF is about 0.9, 1.1 and 1.9, respectively, whenn=1, 2 and 3. This can be used to estimate the electron correlation effects on the NLO components of the system if a comparison to the experimental results is made.

    3 Conclusions

    The NLO properties of hydrogen-bonded(C9H8N6O2)n(n=1, 2, 3 or 4) were investigated and the relationship of the values and the structure of the system was compared. All the geometries of the systems were optimized using B3LYP/6-31G**. The structures are mainly determined by the hydrogen bond interactions. Three kinds of hydrogen bond distances are in average 0.196 3, 0.191 8 and 0.190 9 nm. The hydrogen bonds are strong. The total charge transfers are 0.006 1, 0.008 6, and 0.010 5 (a.u.) for pa-2, pa-3 and pa- 4, respectively.

    NLO calculations show that the increasing ratios of Δβ0are 17.50%, 30.85% and 36.74% whenn=2, 3 and 4, respectively. And they are 34.26%, 45.60% and 50.86%, respectively, for Δγ. In our system, the cooperativity of hydrogen bond has a significant influence on the NLO properties. So the hydrogen bond system is a potential structure for designing future NLO materials.

    [1] TORRENT-SUCARRAT M, SOLA M, DURAN M, et al. Basis set and electron correlation effects on ab initio electronic and vibrational nonlinear optical properties of conjugated organic molecules[J]. J Chem Phys, 2003, 118: 711-718.

    [2] GAO Z H, MA T F, DU Z Q, et al. Superamolecular self-assembly and its application in the field of polymer synthesis[J]. Appl Chem Industry, 2012, 41: 1060-1063.

    [3] WANG Y J, TANG L M. Supramolecular polymers formed through hydrogen-bonded noncovalent interactions[J]. Process Chem, 2006, 18(0203): 308-315.

    [4] POMOGAEVA A, GU F L, IMAMURA A,et al. Electronic structures and nonlinear optical properties of supramolecular associations of benzo-2,1,3-chalcogendiazoles by the elongation method[J]. Theor Chem Acc, 2010, 125: 453-460.

    [5] PEREZ J, DUPUIS M. Hydrogen Bonds and (hyper)polarizabilities in Molecular Crystals: An ab initio SCF study of Urea[J]. J Phys Chem, 1991, 95(17): 6525-6529.

    [6] NAIR K P, BREEDVELD V, WECK M. Complementary hydrogen-bonded thermoreversible polymer networks with tunable properties[J]. Macromolecules, 2008, 41(10): 3429-3438.

    [7] NAIR K P, BREEDVELD V, WECK M. Modulating mechanical properties of self-assembled polymer networks by multi-functional complementary hydrogen bonding[J]. Soft Matter, 2011, 7: 553-559.

    [8] BOYS S F, BERNARDI F. The calculation of small molecular interactions by the differences of separate total energies: Some procedures with reduced errors[J]. Mol Phys, 1970, 19(14): 553-566.

    [9] BARANOWSKA A, FERNANDEZ B, SADLEJ A J. Importance of electron correlation effects and basis set superposition error in calculations of interaction energies and interaction-induced electric properties in hydrogen-bonded complexes: A model study[J]. Theor Chem Acc, 2011, 128: 555-561.

    [10] KHARAT B, DESHMUKH V, CHAUDHARI A. Computational study of (CH3—C≡N)n(n=1-5) oligomers using Density Functional Theory method[J]. J Mol Liq, 2013, 177: 172-181.

    [11] SEKINO H, MAEDA Y, KAMIYA M, et al. Polarizability and second hyperpolarizability evaluation of long molecules by the density functional theory with long-range correction[J]. J Chem Phys, 2007, 126: 014107.

    [12] SONG J W, WATSON M A, SEKINO H, et al. Nonlinear optical property calculations of polyynes with long-range corrected hybrid exchange-correlation functional[J]. J Chem Phys, 2008, 129: 024117.

    2013-02-30

    國家自然科學(xué)基金項目(21073067)

    1000-5463(2013)06-0105-08

    O6-04

    A

    10.6054/j.jscnun.2013.09.013

    (C9H8N6O2)n(n=1,2,3,4)分子體系非線性光學(xué)的理論研究

    顧鳳龍*, 田 思, 彭 亮

    (環(huán)境理論化學(xué)省部共建教育部重點實驗室,華南師范大學(xué)化學(xué)與環(huán)境學(xué)院, 廣東廣州 510006)

    該文研究了(C9H8N6O2)n(n=1,2,3,4)分子體系的非線性光學(xué)性質(zhì), 采用Hartree-Fock方法、密度泛函方法以及M?ller-Plesset微擾理論方法在6-31G**基組下分別計算了該體系的靜電場超極化率. 其幾何結(jié)構(gòu)在B3LYP/6-31G**條件下進(jìn)行了優(yōu)化,發(fā)現(xiàn)它們有3種不同的氫鍵形式,其鍵長分別為0.196 3,0.191 8,0.190 9 nm. 在HF/6-31G**水平下,發(fā)現(xiàn)一級超極化率(β0)的增長是由于隨著n的增大,體系的氫鍵數(shù)目增加造成的,當(dāng)n=1,2,3,4時,它們β0的值分別為246,596,1 067,1 555 (原子單位),當(dāng)n=1,2,3,4時,它們的二級超極化率(γ0)的值分別為1.4,4.3,7.8,11.5 (104原子單位). 結(jié)果顯示隨著n的增大,體系氫鍵數(shù)目的增加、相互作用的增強(qiáng),Δγ也隨著增大,在n=2,3,4時分別為14 768,35 627,58 670 (原子單位). 該研究顯示氫鍵是設(shè)計非線性光學(xué)材料的關(guān)鍵因素.

    非線性光學(xué); 氫鍵; 協(xié)同作用; (C9H8N6O2)n(n=1,2,3,4)

    *通訊作者:顧鳳龍,教授,珠江學(xué)者,Email: gu@scnu.edu.cn.

    【中文責(zé)編:成文 英文責(zé)編:李海航】

    猜你喜歡
    氫鍵數(shù)目責(zé)編
    教材和高考中的氫鍵
    有機(jī)物“同分異構(gòu)體”數(shù)目的判斷方法
    Optimization and application of protein C-terminal labeling by carboxypeptidase Y
    《哲對寧諾爾》方劑數(shù)目統(tǒng)計研究
    牧場里的馬
    Graphene Based Electrochemical Sensor for the Detection of Volatile Organic Compounds
    一顰一笑
    巧匠
    二水合丙氨酸復(fù)合體內(nèi)的質(zhì)子遷移和氫鍵遷移
    銥(Ⅲ)卟啉β-羥乙與基醛的碳?xì)滏I活化
    晚上一个人看的免费电影| 一边摸一边抽搐一进一小说| 亚洲天堂国产精品一区在线| 国产人妻一区二区三区在| 午夜精品在线福利| 卡戴珊不雅视频在线播放| 欧美性猛交╳xxx乱大交人| 2021天堂中文幕一二区在线观| 波野结衣二区三区在线| 麻豆成人av视频| 欧美不卡视频在线免费观看| kizo精华| kizo精华| 国产精品电影一区二区三区| 亚洲精品乱码久久久v下载方式| 国产片特级美女逼逼视频| 热99re8久久精品国产| 日本黄色片子视频| 午夜激情欧美在线| 成年免费大片在线观看| 亚洲欧美精品综合久久99| 干丝袜人妻中文字幕| 国产成人影院久久av| 国产精品女同一区二区软件| 国产真实伦视频高清在线观看| 欧美区成人在线视频| 欧美日本视频| 国内精品久久久久精免费| 又爽又黄a免费视频| 91精品国产九色| 欧美极品一区二区三区四区| 日本免费a在线| 久久韩国三级中文字幕| 69av精品久久久久久| a级毛片a级免费在线| 国产精品国产三级国产av玫瑰| 欧美日韩精品成人综合77777| 蜜臀久久99精品久久宅男| av福利片在线观看| 麻豆成人av视频| 国产伦精品一区二区三区四那| 麻豆国产av国片精品| 日本爱情动作片www.在线观看| 国产伦精品一区二区三区四那| 听说在线观看完整版免费高清| 日本五十路高清| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品久久男人天堂| 欧美日韩在线观看h| 插逼视频在线观看| 亚洲第一区二区三区不卡| 国产不卡一卡二| 亚洲自偷自拍三级| 亚洲内射少妇av| 久久久久久伊人网av| 超碰av人人做人人爽久久| 精品一区二区三区视频在线| 99国产精品一区二区蜜桃av| 18禁裸乳无遮挡免费网站照片| 干丝袜人妻中文字幕| 亚洲av中文字字幕乱码综合| 亚洲不卡免费看| 伦精品一区二区三区| 99国产极品粉嫩在线观看| 欧美+日韩+精品| 成人毛片60女人毛片免费| 欧美日韩精品成人综合77777| 我要搜黄色片| 亚洲欧洲国产日韩| av在线天堂中文字幕| 国产亚洲精品久久久com| 女人被狂操c到高潮| 亚洲成av人片在线播放无| 黄色配什么色好看| 69av精品久久久久久| 乱系列少妇在线播放| 午夜久久久久精精品| 欧美激情久久久久久爽电影| 亚洲电影在线观看av| 最新中文字幕久久久久| 国产一区二区亚洲精品在线观看| 国产成人a∨麻豆精品| 久久人人爽人人爽人人片va| 我要看日韩黄色一级片| 91久久精品国产一区二区成人| 国产精品人妻久久久影院| 深爱激情五月婷婷| 国产精品女同一区二区软件| 少妇猛男粗大的猛烈进出视频 | 九九爱精品视频在线观看| 精品久久久久久久久久免费视频| 99久久九九国产精品国产免费| 国产精品无大码| 成人特级av手机在线观看| 毛片一级片免费看久久久久| 成人性生交大片免费视频hd| 欧美性猛交黑人性爽| 久久6这里有精品| 午夜爱爱视频在线播放| 禁无遮挡网站| 亚洲av.av天堂| 久久久成人免费电影| 久久99精品国语久久久| 99久久久亚洲精品蜜臀av| 黄色一级大片看看| 18+在线观看网站| 99久久成人亚洲精品观看| 九九热线精品视视频播放| 婷婷色综合大香蕉| 国语自产精品视频在线第100页| 黄色一级大片看看| 久久精品国产亚洲av涩爱 | 亚洲精品色激情综合| 日本免费a在线| 久久国内精品自在自线图片| 国产片特级美女逼逼视频| 嘟嘟电影网在线观看| a级毛色黄片| 18禁裸乳无遮挡免费网站照片| 99久国产av精品国产电影| 久久国内精品自在自线图片| 热99re8久久精品国产| 国产精品永久免费网站| 看片在线看免费视频| 成人一区二区视频在线观看| 亚洲欧美日韩东京热| 亚洲第一电影网av| 岛国在线免费视频观看| 亚洲va在线va天堂va国产| 久久久国产成人免费| 少妇熟女欧美另类| 最好的美女福利视频网| 国产精品无大码| 欧美区成人在线视频| 黄色配什么色好看| 在线播放无遮挡| 赤兔流量卡办理| 免费看光身美女| 欧美+日韩+精品| 97超碰精品成人国产| 日韩欧美在线乱码| 成人高潮视频无遮挡免费网站| 亚洲在久久综合| 免费观看精品视频网站| 日韩视频在线欧美| 99久久精品国产国产毛片| 美女内射精品一级片tv| 26uuu在线亚洲综合色| 亚洲av中文字字幕乱码综合| 国产麻豆成人av免费视频| 中国美女看黄片| 国产精品女同一区二区软件| 一个人免费在线观看电影| 床上黄色一级片| а√天堂www在线а√下载| 国产精品美女特级片免费视频播放器| 中文字幕免费在线视频6| 99久久精品一区二区三区| 国产毛片a区久久久久| 国产精品一区二区性色av| 我的老师免费观看完整版| 国产精品福利在线免费观看| 亚洲成人精品中文字幕电影| 一级黄色大片毛片| 精品熟女少妇av免费看| 亚洲经典国产精华液单| av在线蜜桃| 成人三级黄色视频| 丰满的人妻完整版| 亚洲成人久久性| 成人三级黄色视频| 成人国产麻豆网| 久久人人精品亚洲av| 精品国产三级普通话版| 久久久久久久久大av| 久久精品影院6| 久久精品综合一区二区三区| 丰满人妻一区二区三区视频av| 国内少妇人妻偷人精品xxx网站| 国产精品.久久久| 国产精品伦人一区二区| 欧美xxxx黑人xx丫x性爽| 午夜老司机福利剧场| 高清毛片免费观看视频网站| 好男人在线观看高清免费视频| 熟女人妻精品中文字幕| 亚洲精品乱码久久久v下载方式| 亚洲欧美成人精品一区二区| 国产极品精品免费视频能看的| 国产精品av视频在线免费观看| 一夜夜www| 狂野欧美白嫩少妇大欣赏| 国产淫片久久久久久久久| 婷婷色av中文字幕| 国产在视频线在精品| a级一级毛片免费在线观看| 人人妻人人澡人人爽人人夜夜 | 黑人高潮一二区| 国产成人91sexporn| 深爱激情五月婷婷| 精品欧美国产一区二区三| 国产老妇伦熟女老妇高清| 欧美高清性xxxxhd video| 亚洲天堂国产精品一区在线| 天天一区二区日本电影三级| 国产熟女欧美一区二区| 美女高潮的动态| 男女视频在线观看网站免费| 久久久久久久久中文| 一本久久精品| 日韩 亚洲 欧美在线| 男人狂女人下面高潮的视频| 级片在线观看| 99久久精品一区二区三区| 国产精品国产高清国产av| 国产成人精品一,二区 | 亚洲精品自拍成人| 人人妻人人澡人人爽人人夜夜 | 日韩高清综合在线| 少妇人妻精品综合一区二区 | 国产人妻一区二区三区在| 18禁裸乳无遮挡免费网站照片| 日韩高清综合在线| 桃色一区二区三区在线观看| 国产日本99.免费观看| 国产69精品久久久久777片| 久久人人爽人人片av| 欧美丝袜亚洲另类| 三级毛片av免费| 麻豆av噜噜一区二区三区| 亚洲av电影不卡..在线观看| 老师上课跳d突然被开到最大视频| 中文字幕久久专区| 欧美变态另类bdsm刘玥| 亚洲国产精品国产精品| 婷婷色综合大香蕉| 99热只有精品国产| 国产一区二区在线av高清观看| 久久6这里有精品| 国内精品宾馆在线| 在线播放国产精品三级| 亚洲人成网站在线观看播放| 成人特级黄色片久久久久久久| 成人毛片60女人毛片免费| 在线免费观看的www视频| 亚洲精品国产成人久久av| 少妇裸体淫交视频免费看高清| 亚洲av免费高清在线观看| 美女高潮的动态| 精品国内亚洲2022精品成人| 午夜视频国产福利| 免费av观看视频| 欧美日韩综合久久久久久| 最近最新中文字幕大全电影3| 一区二区三区高清视频在线| 国产午夜精品论理片| 伊人久久精品亚洲午夜| 亚洲经典国产精华液单| 99热6这里只有精品| 欧美激情国产日韩精品一区| 久久精品夜夜夜夜夜久久蜜豆| 免费不卡的大黄色大毛片视频在线观看 | 给我免费播放毛片高清在线观看| 欧美日韩国产亚洲二区| 又粗又硬又长又爽又黄的视频 | 国语自产精品视频在线第100页| 国产一区二区激情短视频| 99久国产av精品| 亚洲第一区二区三区不卡| 少妇裸体淫交视频免费看高清| 久久精品国产鲁丝片午夜精品| eeuss影院久久| 亚洲电影在线观看av| 床上黄色一级片| 人妻系列 视频| 亚洲丝袜综合中文字幕| 大型黄色视频在线免费观看| 中文字幕熟女人妻在线| 啦啦啦观看免费观看视频高清| 精华霜和精华液先用哪个| 精品人妻熟女av久视频| 全区人妻精品视频| 亚洲国产精品成人综合色| 看黄色毛片网站| 国产一区二区三区av在线 | 国产午夜精品一二区理论片| 久久这里只有精品中国| 99久国产av精品国产电影| 亚洲,欧美,日韩| 哪里可以看免费的av片| 中出人妻视频一区二区| 欧美又色又爽又黄视频| 亚洲欧美日韩高清专用| 欧美区成人在线视频| 综合色丁香网| 免费av观看视频| 久久99热这里只有精品18| 日本欧美国产在线视频| 白带黄色成豆腐渣| 免费观看人在逋| a级一级毛片免费在线观看| 日韩精品有码人妻一区| 一级av片app| 精品人妻偷拍中文字幕| 美女cb高潮喷水在线观看| 久久久久国产网址| 国产黄色小视频在线观看| 欧美高清性xxxxhd video| 日本与韩国留学比较| 成人性生交大片免费视频hd| av.在线天堂| 久久韩国三级中文字幕| 亚洲在久久综合| 国国产精品蜜臀av免费| 国产在线精品亚洲第一网站| 精品久久久久久久久亚洲| 久久人人爽人人片av| 日本黄大片高清| 欧美xxxx黑人xx丫x性爽| 国产成人freesex在线| 99久久中文字幕三级久久日本| 中文字幕制服av| 久久久久久九九精品二区国产| 成人午夜高清在线视频| 久久精品国产亚洲av涩爱 | 黄色配什么色好看| 观看美女的网站| 欧美最黄视频在线播放免费| 深夜精品福利| 真实男女啪啪啪动态图| 国产精品久久久久久精品电影| 国产精品久久久久久久久免| 亚洲成人精品中文字幕电影| 久久精品国产亚洲网站| 人妻夜夜爽99麻豆av| 高清毛片免费观看视频网站| av福利片在线观看| 亚洲精品影视一区二区三区av| 国产探花极品一区二区| 中国国产av一级| 欧美潮喷喷水| 九色成人免费人妻av| 十八禁国产超污无遮挡网站| 九九久久精品国产亚洲av麻豆| 久久精品夜色国产| 国产精品久久久久久亚洲av鲁大| 国产美女午夜福利| 午夜福利高清视频| 亚洲精品国产av成人精品| h日本视频在线播放| 两个人视频免费观看高清| 色5月婷婷丁香| 嫩草影院精品99| 天堂av国产一区二区熟女人妻| 免费电影在线观看免费观看| 国产亚洲av片在线观看秒播厂 | 精品不卡国产一区二区三区| 男女视频在线观看网站免费| 成人高潮视频无遮挡免费网站| 青春草亚洲视频在线观看| 国产av麻豆久久久久久久| 亚洲精品色激情综合| 天堂影院成人在线观看| 高清日韩中文字幕在线| 久久人妻av系列| 日韩欧美一区二区三区在线观看| 人妻久久中文字幕网| www日本黄色视频网| 久久久国产成人精品二区| 人人妻人人澡欧美一区二区| 夜夜夜夜夜久久久久| 久久欧美精品欧美久久欧美| 夜夜爽天天搞| 中文资源天堂在线| 黄色视频,在线免费观看| 少妇的逼水好多| 又粗又硬又长又爽又黄的视频 | 久久久久久伊人网av| 99久久人妻综合| 国产不卡一卡二| 老司机福利观看| 亚洲国产精品sss在线观看| 色视频www国产| 最好的美女福利视频网| 又爽又黄无遮挡网站| 国产精品无大码| 婷婷色av中文字幕| 国产一区二区在线观看日韩| 国产91av在线免费观看| 久久精品久久久久久噜噜老黄 | 亚洲经典国产精华液单| 日韩欧美精品免费久久| 插逼视频在线观看| 最后的刺客免费高清国语| 在线观看免费视频日本深夜| 久久久色成人| 亚洲欧美精品自产自拍| 能在线免费观看的黄片| 日本免费一区二区三区高清不卡| 国产片特级美女逼逼视频| 欧美精品一区二区大全| 51国产日韩欧美| 欧美+亚洲+日韩+国产| 在线免费观看不下载黄p国产| 亚洲欧美精品自产自拍| 春色校园在线视频观看| 22中文网久久字幕| 国产成人aa在线观看| 国产乱人视频| 国产单亲对白刺激| 成人国产麻豆网| 亚洲第一电影网av| av又黄又爽大尺度在线免费看 | 国产探花极品一区二区| 美女内射精品一级片tv| 成年女人看的毛片在线观看| 乱系列少妇在线播放| 亚洲精品亚洲一区二区| 国产一级毛片在线| 男女做爰动态图高潮gif福利片| 亚洲美女搞黄在线观看| 久久久久久久久久黄片| 日韩一区二区视频免费看| 久久久久久大精品| 亚洲在久久综合| 99久久无色码亚洲精品果冻| 熟女电影av网| 最近2019中文字幕mv第一页| 亚洲自拍偷在线| 国产91av在线免费观看| 久久久久久久久久黄片| 少妇的逼水好多| 观看美女的网站| 国产黄片美女视频| 亚洲最大成人手机在线| 国产一级毛片七仙女欲春2| 成人性生交大片免费视频hd| 亚洲成人精品中文字幕电影| 久久久久久久久久久丰满| 97超视频在线观看视频| 亚洲av中文字字幕乱码综合| 听说在线观看完整版免费高清| 欧美日本视频| 免费人成视频x8x8入口观看| 亚洲第一区二区三区不卡| 国产精品美女特级片免费视频播放器| 亚洲欧美日韩无卡精品| 久久精品国产亚洲av天美| 在线免费观看的www视频| 99热精品在线国产| 欧美一区二区亚洲| 赤兔流量卡办理| 中文字幕熟女人妻在线| 白带黄色成豆腐渣| 欧美色视频一区免费| 亚洲精品亚洲一区二区| 午夜精品国产一区二区电影 | 国产一级毛片在线| 日日撸夜夜添| 免费一级毛片在线播放高清视频| 在线观看免费视频日本深夜| 久久午夜亚洲精品久久| 男人舔奶头视频| 国产一级毛片在线| 美女黄网站色视频| 精品久久久久久久人妻蜜臀av| 综合色丁香网| 插逼视频在线观看| 国产中年淑女户外野战色| 亚洲欧美日韩无卡精品| 一本精品99久久精品77| 国产精品日韩av在线免费观看| 中文资源天堂在线| 午夜福利在线观看吧| 我的老师免费观看完整版| 免费在线观看成人毛片| 久久婷婷人人爽人人干人人爱| 日本一本二区三区精品| 99九九线精品视频在线观看视频| 免费av不卡在线播放| 亚洲国产色片| 亚洲国产精品sss在线观看| av黄色大香蕉| 欧美一区二区国产精品久久精品| 亚洲在久久综合| 性色avwww在线观看| 久久久久久九九精品二区国产| 男人狂女人下面高潮的视频| 国产精品免费一区二区三区在线| 天堂av国产一区二区熟女人妻| 一夜夜www| 在线观看66精品国产| 麻豆成人午夜福利视频| 国产 一区精品| 美女高潮的动态| 色综合亚洲欧美另类图片| 大又大粗又爽又黄少妇毛片口| av在线天堂中文字幕| av天堂中文字幕网| 午夜激情欧美在线| 久久亚洲精品不卡| 国产激情偷乱视频一区二区| 亚洲七黄色美女视频| 欧美三级亚洲精品| 久久99热6这里只有精品| 久久亚洲精品不卡| a级一级毛片免费在线观看| av视频在线观看入口| 亚洲一区二区三区色噜噜| 国产69精品久久久久777片| 久久久久久伊人网av| 久久久久久久久中文| 国产成人a∨麻豆精品| 成人毛片a级毛片在线播放| 欧美丝袜亚洲另类| 黄片wwwwww| 啦啦啦观看免费观看视频高清| 综合色丁香网| 国产午夜福利久久久久久| 成年免费大片在线观看| 91麻豆精品激情在线观看国产| 看黄色毛片网站| 亚洲精品影视一区二区三区av| 精品人妻偷拍中文字幕| 高清毛片免费看| 国产一区二区激情短视频| 国产精品国产高清国产av| 男人和女人高潮做爰伦理| 国产真实伦视频高清在线观看| 久久99热6这里只有精品| 高清日韩中文字幕在线| 亚洲无线观看免费| 禁无遮挡网站| 欧美日韩在线观看h| 午夜久久久久精精品| 噜噜噜噜噜久久久久久91| 波野结衣二区三区在线| 午夜激情欧美在线| 色综合亚洲欧美另类图片| 免费av观看视频| 能在线免费看毛片的网站| 国产极品天堂在线| 日韩欧美国产在线观看| 欧美一区二区亚洲| 亚洲中文字幕一区二区三区有码在线看| 成年免费大片在线观看| 日韩三级伦理在线观看| 国产免费男女视频| 精品一区二区三区视频在线| 3wmmmm亚洲av在线观看| 国产精品野战在线观看| 国产精品久久久久久av不卡| 波多野结衣高清无吗| 级片在线观看| 99九九线精品视频在线观看视频| 全区人妻精品视频| 一级av片app| АⅤ资源中文在线天堂| 日韩,欧美,国产一区二区三区 | 波多野结衣巨乳人妻| 一区二区三区免费毛片| 神马国产精品三级电影在线观看| 中文在线观看免费www的网站| 欧美一区二区亚洲| av在线蜜桃| 免费黄网站久久成人精品| 亚洲国产欧美人成| av福利片在线观看| 国产69精品久久久久777片| 十八禁国产超污无遮挡网站| 午夜亚洲福利在线播放| 日本黄大片高清| 校园春色视频在线观看| 91久久精品国产一区二区三区| 成人亚洲欧美一区二区av| 麻豆av噜噜一区二区三区| 爱豆传媒免费全集在线观看| 不卡视频在线观看欧美| 乱系列少妇在线播放| 精品一区二区免费观看| 麻豆成人av视频| 老司机影院成人| 色噜噜av男人的天堂激情| 久久久久久久久中文| 男插女下体视频免费在线播放| 美女大奶头视频| 一级毛片aaaaaa免费看小| 天天躁日日操中文字幕| 欧美激情久久久久久爽电影| 国产麻豆成人av免费视频| 国产精品久久久久久精品电影| 亚洲性久久影院| 好男人在线观看高清免费视频| 色噜噜av男人的天堂激情| 国产成人午夜福利电影在线观看| 高清毛片免费观看视频网站| 免费观看a级毛片全部| 久久这里有精品视频免费| 一区二区三区免费毛片| 深夜a级毛片| 国产日韩欧美在线精品| 国产成人a∨麻豆精品| 2021天堂中文幕一二区在线观| 日韩大尺度精品在线看网址| 嫩草影院入口| 天天躁夜夜躁狠狠久久av| 老师上课跳d突然被开到最大视频| 免费观看人在逋| 天天躁夜夜躁狠狠久久av| 久久久a久久爽久久v久久| 欧美日韩乱码在线| 亚洲成人久久性| 亚洲第一电影网av| 嫩草影院新地址| 国产黄片美女视频|