• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of shape-controlled ZnSn(OH)6 and gas sensing properties

    2013-10-24 05:43:44HANLixianDUMengjuanLIYushengYEBinYUXibin

    HAN Lixian,DU Mengjuan,LI Yusheng,YE Bin,YU Xibin*

    (1.College of life and Environment Sciences,Shanghai Normal University,Shanghai 200234,China;2.Department of Applied Mathematics,Shanghai University of Finance and Economics,Shanghai 200433,China)

    1 Introduction

    The fabrication of nano-or micro-size particles with controlling morphologies,orientations,and dimensionalities has attracted much attention,because the physical and chemical properties of materials can be strongly influenced by their sizes and shapes[1-11].The study of composite metal oxides(CMOs)is always interesting to researchers because their performances are superior over single metal oxides in many cases[12-13],such as gas-sensor materials.For instance,polyhedral zinc hydroxystannate(ZHS),CdIn2O4[14]and EuFeO3nanoparticles have been used as gas-sensor materials[15].

    Zinc hydroxystannate(ZHS),an important member of CMOs,is a kind of perovskite structure tending to form face-centered-cubic(FCC)crystal structure.Up to now,zinc hydroxystannate has been widely used as fire retardant and smoke inhibitor,photocatalyst,inorganic filler,and flame-retardant[15-18].Furthermore,ZHS thermal decomposition products including ZnSnO3[19-20],crystalline SnO2and Zn2SnO4can be used in lithium ion battery anodes,gas sensors and photocatalysts[19-20].

    Nano-microparticles of ZHSwith different shapes such as nanocage,14-faceted polyhedra,and wire-like have been synthesized by various synthesis routes,including thermal decomposition[21]hydrothermal synthesis[22-23]low temperature ion exchange[24]and different surfactants have assisted wet-chemical methods at low temperature[25].However,the synthesis strategies mentioned above usually need complex operating procedures,expensive raw materials and further heat treatment.Considering their excellent features,such as high sensitivity,short recovery time and good reproducibility,a novel route is highly required for the fabrication of the hierarchical architectures assembled with nanostructured building blocks of ZHS.So far,the preparations of ZHS through low-cost,convenient routes are still a challenge.In addition,to our knowledge,the shapecontrolled synthesis and the gas sensing investigation of ZHS MCs with different shapes and a facile method have not been reported,especially ZHSMCs self-assembled by nanoparticles.

    Herein,we demonstrate that different shapes of ZHS(microcube,microsphere)with uniform size could be on a large scale through precipitation process.It is worthy to note that neither complicated steps nor advanced experimental conditions or equipments were used,making this process easy.Then,the formation mechanisms of the ZHScrystallites were studied via a series of time-dependent experiments.In the following section,UV-vis absorption spectra have been used to discuss the influences of gas sensor based on ZHSMCs including oxygen vacancy defects,the gas adsorption,band gap energy,and active surface area.However,the band gap energy of spherical ZHScrystallites was less than that of nanocubic crystallites.It is clearly that the sensors based on spherical ZHSMCs exhibited faster response,higher sensitivity,and shorter recovery times toward HCHO gas than those based on ZHS nancubic ZHS because of more oxygen vacancy defects,less band gap energy,and larger active surface area.The as-prepared MCs should be significant for exploiting new gas-sensing materials in the future.

    2 Experimental Section

    2.1 Materials

    All reagents were analytic grade from Aladdin reagent(China)Co.,LtdS.a(chǎn)nd used as received without further purification.Deionized Water(PURELAB Plus,PALL)with a resistivity of 18 M?cm was used throughout.

    2.2 Preparation of ZHS Cubic Crystallites

    In a typical experiment,2.8754 g(10 mmol)of zinc sulfate heptahydrate(ZnSO4.7H2O)was added into 100 mL of deionized water(DW),and the solution was stirred at room temperature until ZnSO4.7H2O was dissolved completely.Then appropriate sodium stannate trihydrate(Na2SnO3.3H2O)solution was dropped into ZnSO4.7H2O solution,making the molar ration of[Zn]/[Sn]=1∶1.After the completion of the above steps,the mixed solution was stirred for 5 h.After the reaction,the precipitates were collected by centrifugation,washed with DWfor several times to remove residual ions in the products.The final products were then dried in air at 100℃ for 8 h before characterization.

    2.3 Preparation of ZHS Spherical Crystallites

    Before adding Na2SnO3.3H2O solution,the adequate ammonia was dropped into the ZnSO4solution.The other synthesizing process was the same as the preparation of ZHSnanocubic crystallites.

    2.4 General Characterization

    X-ray powder diffraction(XRD)pattern was recorded using a Japan Regaku D/max cA X-ray diffractometer equipped with graphite monochromatized Cu Kα radiation(λ =1.5418?)irradiated with a scanning rate of 4 deg/min.The Field-emission scanning electron microscopic(FESEM)images were obtained using a JEOL JSM-7500F microscope operated at an acceleration voltage of 15 kV.A JEOL JEM-200CX microscope operating at 160 kV in the bright-field mode was used for Transmission Electron Microscopy(TEM).Selected area electron diffraction(SAED)pattern was performed on a JEOL JEM-2010 electron microscope operating at 200 kV.

    2.5 Measurements of gas-sensing

    The gas-sensing properties were measured using a static test system of WS-60A made by Hanwei Electronics Co.Ltd.,Henan Province,China.The sensors were fabricated by a modifying method described in the reference[20].Before the sensitivity measurement,the samples were connected to the 5 V dc source and the heat voltage was maintained at 5 V till the stabilization of the base line voltage.

    In our gas-sensing measurements,a given amount of test gas was injected into a closed chamber,and the sensor was put into the chamber for the measurement of the sensitive performance.After each measurement,the sensor was exposed to the atmospheric air by opening the chamber.Sensitivity was defined as S=Ra/Rg,where Rawas the average resistance in air and Rgwas the average resistance in the test gas.The response and recovery time were defined as the time taken by the sensor to achieve 90%of the total resistance change in the case of adsorption and desorption,respectively.

    3 Results and Discussion

    3.1 Structural Characterization

    The composition and phase purity of the as-obtained products are first examined by X-ray powder diffraction(XRD)patterns.Fig.1 shows the XRD patterns of typical ZHSwith microcube(a)and microsphere(b),respectively.The XRD patterns of the ZHSpowders are quite similar.All of the diffraction peaks can be indexed to the standard ZHS with the perovskite structure(JCPDS No.20-1455),confirming that the assynthesized samples have a typical FCC crystal structure.According to data of XRD,the lattice parameters calculated via the XRD data for ZHSmicrocube and microsphere are corresponding to 7.7656 ? and 7.7456 ?,respectively.Peaks at around 22.8,40.2,and 52.6 correspond to the(200),(220),and(420)planes of the as-obtained products.By comparison,the diffraction peak intensity of sphereical product is stronger than that of microcube.No impurity phases are detected from the XRD pattern,indicating that two types ZHS crystallites with high purity could be obtained under current synthetic conditions.

    3.2 Morphology Characterization

    Many researchers have reported ZHS structures with different morphologies could be obtained hydrothermally under appropriate reaction conditions[22-23].In this work,the microcube ZHScrystallites were obtained simply by the reaction between ZnSO4.7H2O and Na2SnO3·3H2O,while the spherical ZHS MCs were obtained by introducing NH4OH into the reaction system.

    The morphology and structure details of the as-obtained ZHSproducts are investigated by SEM,F(xiàn)ESEM,and TEM techniques.It can be clearly seen from Fig.2A that the ZHSproducts are entirely composed of a large-scale of uniform and monodisperse MCs.High-magnification FESEM image(Fig.2B)shows that the products consist of homogeneous nanocubes with side lengths of about 500-600 nm.A representative TEM micrograph of cubic ZHScrystallites is shown in Fig.2C,clearly showing that the single nanoparticle has perfect cubic profile with very clear edges and corners.The corresponding selected area electron diffraction(SAED)pattern of cubic crystallites(as shown in Fig.2D)confirms that the nanocubes have good crystallinity and there is no secondary phase.The corresponding selected area electron diffraction(SAED)pattern of cubic crystallites(as shown in Fig.2D)confirms that the nanocubes have well-crystallized structure.The diffraction spots of the typical FCC crystal structure could be indexed to{020},{220}and{200}panels of the ZnSn(OH)6(ZHS)microcrystallites.

    Figure 1 XRD patterns of the as-prepared ZHSproducts:nanocube(a),nanosphere(b)and Standard XRD pattern of ZHS(JCPDSNo.20-1455)

    Figure 2 SEM,TEM and SAED images of the ZHSnanocubic crystallites:(A)low magnification SEM image;(B)high magnification FESEM image;(C)high magnification TEM image;(D)SAED pattern

    In the further process,spherical ZHSMCs were obtained with adding appropriate amount of ammonia in the reaction solution.Fig.3A shows the panoramic morphologies of the typical sample.The results indicate that the product consists of monodisperse spherical crystallites with glossy surface in the size range of 500~600 nm.HoweverF,high magnification FESEM images(Fig.3B and 3C)display that the as-obtained spherical ZHS crystallite is not as smooth as the former shown(Fig.3A).A clear grain boundary can be observed on the surface of ZHSmicrospheres(Fig.3B and C),indicating that the as-obtained spherical ZHS crystallites are constituted by the oriented aggregation of small ZHSnanoparticles.More structure information of spherical ZHScrystallites is researched by TEM.As shown in high magnification TEM images(Fig.3C),the surface of the as-obtained ZHS spherical crystallites is rough.Many nanoparticles attach on the surface of ZHSmicrospheres.It also demonstrates the as-obtained spherical ZHScrystallites are composed of small ZHSnanoparticles with diameter of 5~10 nm diameter,which validates the observation results of FESEM tests(Fig.3B).The selected area electron diffraction(SAED)pattern(Inset Fig.3C)taken from the edge of the sphere marked by a circle exhibits the clear diffraction lattices,revealing the single-crystalline nature of the sample with a preferential grown direction.The diffraction spots could also be indexed to{020},{220},and{200}panels of the ZnSn(OH)6(ZHS)microcrystallites.

    Figure 3 SEM and TEM images of the spherical ZHSMCs:(A)low magnification FESEM image;(B)high magnification FESEM image;(C)high magnification TEM image,inset in(C)SAED pattern

    3.3 Optical Absorption and BET

    The optical absorption properties of ZHS MCs semiconductor were measured by The UV-vis absorption spectra.As shown in Fig.4,the Egof two samples are 5.02eV(microcube)and 4.90eV(microsphere)which are calculated on the basis of the corresponding absorption edges.This indicates that the spherical ZHS MCs have less band gap energy,which may help the O2adsorption on the ZHS surface to trap electrons from the conduction band of ZHS and enhance the sensing performance.The surface area of these morphologies are shown in the Table 1.The surface area of spherical ZHS MCs is larger than that of the microcubic shape(as shown in Table 1).It is reported that″surface accessibility″becomes one of crucial factors to maintain the high sensitivity of the gas sensor[26]. Hence,the sensor based on spherical ZHS MCs should exhibit higher sensitivity.

    Figure 4 The UV-visible absorption spectrum of(a)nanocube and(b)nanosphere samples

    Table 1 Active surface srea of ZHSMCs

    3.4 Gas sensor performance

    According to the sensing mechanism of Wolkenstein’s model for semiconductors[27],when the sensors are exposed to air,the surface of ZHSsensors could adsorb oxygen species to ionize into O-(ads)or O2-(ads).This is because oxygen atom owns the strong electronegativity from the conduction band of ZHS.Hence,the concentration of electrons in the conduction band would decrease and the resistance of the material would increase.And then a chemical reaction would take place between HCHO and O2-(ads),which leads to a relatively strong activation on the surface of the ZHS:

    HCHO(gas)+O2-(ads)→H2O(g)+CO2(g)+2e-.

    As to say,the oxygen vacancy,the band gap energy,and the active surface area may have affects on the gas sensor.spherical ZHS MCs may present better gas sensor performance compared with cubic ZHS MCs,because spherical ZHSMCs have more oxygen vacancy,less band gap energy,and larger BET surface area.

    Gas sensor performance based on ZHS MCs to HCHO with the similar size of microcube(line a)and microsphere(line b)are Shown in the Fig.5.The typical response curves of ZHS-based gas sensors with different shapes to increasing concentration of HCHOare shown in the Fig.5A.It is obvious that the sensitivity of gas sensors increases rapidly with the increase of HCHO concentrations,revealing that the sensitivities of the ZHS-based gas sensors are excellent to HCHO.But the sensitivity of the spherical ZHS MCs increases faster than that of the cubic MCs with the same response time and the same HCHO concentration.

    As shown in Fig.5B,it is clear that ZHSbased sensors have a wide detection range for HCHO(from10 to 100 ppm).The sensitivity of the spherical ZHSMCs especially increases faster with the same concentration of HCHO.At the same time,the recovery time of sensor based on spherical ZHS sphere MCs is shorter.Hence,the sensors based on spherical ZHS MCs are much more sensitive than those based on ZHS cubic MCs.The detection limit of the as-prepared ZHS sensors can reach as low as several parts per million for HCHO.Meanwhile,the recovery time of sensor based on spherical ZHSsphere MCs is the shortest.

    Figure 5 (A)Sensitivities of the sensors based on ZHSMCs with different shapes to increased concentrations of HCHO.(B)Typical response curves of ZHSNCs sensors of different shapes to HCHO with increasing concentrations.In parts A and B,(a)and(b)correspond to the ZHSNCs of nanocube and nanosphere,respectively

    4 Conclusion

    In conclusion,the successful synthesis of uniform ZHSMCs with different shapes via a facile process was proposed.It was found that the micro-cube morphology evolved to microsphere with adding different concentrations of NH4OH.The gas sensors based on both of the two morphologies exhibited good sensor performance toward HCHO gas.The sensor based on spherical ZHS MCs demonstrated faster response,higher sensitivity and shorter recovery time owing to more oxygen vacancy defects,less band gap energy,and larger active surface area.The as-synthesized ZHSMCs make them ideal candidates for HCHO gas-sensing devices.

    [1]PENG X G,MANNA L,YANG W D,et al.Shape control of CdSe nanocrystals[J].Nature,2000,404:59-61.

    [2]BUDAI J D,WHITE C W,WITHROW S P,et al.Controlling the size,structure and orientation of semiconductor nanocrystals using metastable phase recrystallization [J].Nature,1997,390:384-386.

    [3]COZZOLI P D,MANNA L,CURRI M L,et al.Shape and phase control of colloidal ZnSe nanocrystals[J].Chemistry of Materials,2005,17(6):1296-1306.

    [4]GONG Q,QIAN X,CAO H,et al.Novel shape evolution of BaMoO4microcrystals[J].The Journal of Physical Chemistry B,2006,110(39):19295-19299.

    [5]TIAN Y,LIU H,ZHAO G,et al.Shape-controlled electrodeposition of gold nanostructures[J].The Journal of Physical Chemistry B,2006,110(46):23478-23481.

    [6]FANG X,BANDO Y,YE C,et al.Shape-and size-controlled growth of ZnS nanostructures[J].The Journal of Physical Chemistry C,2007,111(24):8469-8474.

    [7]NANDWANA V,ELKINSK E,POUDYAL N,et al.Size and shape control of monodisperse FePt nanoparticles[J].The Journal of Physical Chemistry C,2007,111(11):4185-4189.

    [8]TAN T T,SELVAN ST,ZHAO L,et al.Size control,shape evolution,and silica coating of near-infrared-emitting PbSe quantum dots[J].Chemistry of Materials,2007,19(13):3112-3117.

    [9]WANG F,TANGR,YUH,et al.Size-and shape-controlled synthesis of bismuth nanoparticles[J].Chemistry of Materials,2008,20(11):3656-3662.

    [10]ZHANG H,XU JJ,CHEN H Y.Shape-controlled gold nanoarchitectures:synthesis,superhydrophobicity,and electrocatalytic properties[J].The Journal of Physical Chemistry C,2008,112(36):13886-13892.

    [11]BAO N,SHEN L,AN W,et al.Formation mechanism and shape control of monodisperse magnetic CoFe2O4nanocrystals[J].Chemistry of Materials,2009,21(14):3458-3468.

    [12]WHITBY R L D,BRIGATTI K S,KINLOCH I A,et al.Novel Mg2SiO4structures[J].Chemical Communications,2004(21):2396-2397.

    [13]ZHANG T,JIN C G,QIAN T,et al.Hydrothermal synthesis of single-crystalline La0.5Ca0.5MnO3nanowires at low temperature[J].Journal of Materials Chemistry,2004,14:2787-2789.

    [14]MAHANUBHAV M D,PATIL L A.Studies on gas sensing performance of CuO-modified CdIn2O4thick film resistor[J].Sensors and Actuators B:Chemical,2007,128(1):186-192.

    [15]SIEMONSM,SIMON U.High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites[J].Sensors and Actuators B:Chemical,2007,126(1):181-186.

    [16]YANG L,HU Y,YOU F,et al.A novel method to prepare zinc hydroxystannate-coated inorganic fillers and its effect on the fire properties of PVC cable materials[J].Polymer Engineering & Science,2007,47(7):1163-1169.

    [17]ZHANG B,JIAO Y,XU J Z.A study on the flame-retardance of poly(vinyl chloride)incorporated with metal hydroxystannates[J].Journal of Applied Polymer Science,2009,112(1):82-88.

    [18]FU X,WANG X,DING Z,et al.Hydroxide ZnSn(OH)6:A promising new photocatalyst for benzene degradation[J].Applied Catalysis B:Environmental,2009,91(1-2):67-72.

    [19]RONG A,GAO X P,LI G R,et al.Hydrothermal synthesis of Zn2SnO4as anode materials for Li-ion battery[J].The Journal of Physical Chemistry B,2006,110(30):14754-14760.

    [20]ZHANG W H,ZHANG W D.Fabrication of SnO2– ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes[J].Sensors and Actuators B:Chemical,2008,13(2):403-408.

    [21]WROBEL G,PIECH M,DARDONA S,et al.Seedless synthesis and thermal decomposition of single crystalline zinc hydroxystannate cubes[J].Crystal Growth & Design,2009,9(10):4456-4460.

    [22]ZHANG Y,GUO M,ZHANG M,et al.Hydrothermal synthesis and characterization of single-crystalline zinc hydroxystannate microcubes[J].Journal of Crystal Growth,2007,308(1):99-104.

    [23]FAN H,AI S,JU P.Room temperature synthesis of zinc hydroxystannate hollow core-shell microspheres and their hydrothermal growth of hollow core-shell polyhedral microcrystals[J].Cryst Eng Comm,2011,13:113-117.

    [24]KOVACHEVA D,PETROV K.Preparation of crystalline ZnSnO3from Li2SnO3by low-temperature ion exchange[J].Solid State Ionics,1998,109(3-4):327-332.

    [25]WANG L,TANG K,LIU Z,et al.Single-crystalline ZnSn(OH)6hollow cubes via self-templated synthesis at room temperature and their photocatalytic properties[J].Journal of Materials Chemistry,2011,21:4352-4357.

    [26]GENG B,F(xiàn)ANG C,ZHAN F,et al.Synthesis of Polyhedral ZnSnO3Microcrystals with Controlled Exposed Facets and Their Selective Gas-Sensing Properties[J].Small,2008,4(9):1337-1343.

    [27]HAICK H,AMBRICO M,LIGONZO T,et al.Controlling semiconductor/metal junction barriers by incomplete,nonideal molecular monolayers[J].Journal of the American Chemical Society,2006,128(21):6854-6869.

    一级黄片播放器| 性色avwww在线观看| 色综合站精品国产| 国产伦精品一区二区三区视频9| av在线观看视频网站免费| 男人舔奶头视频| 日韩av在线免费看完整版不卡| 国产有黄有色有爽视频| 插逼视频在线观看| 国产白丝娇喘喷水9色精品| 在线天堂最新版资源| 欧美三级亚洲精品| 国产真实伦视频高清在线观看| 日韩制服骚丝袜av| 国产视频首页在线观看| 欧美三级亚洲精品| 亚洲真实伦在线观看| 中文欧美无线码| 成人国产麻豆网| 久久久久久伊人网av| 一边亲一边摸免费视频| 日日摸夜夜添夜夜爱| 毛片一级片免费看久久久久| 亚洲欧美中文字幕日韩二区| 久久久久久久国产电影| 99久久精品一区二区三区| 欧美激情国产日韩精品一区| 人妻夜夜爽99麻豆av| 日韩av不卡免费在线播放| 中文天堂在线官网| 男女边摸边吃奶| 内射极品少妇av片p| 国产麻豆成人av免费视频| 国产午夜精品一二区理论片| 欧美 日韩 精品 国产| 亚洲欧美清纯卡通| 国产精品爽爽va在线观看网站| 三级国产精品欧美在线观看| 日韩欧美国产在线观看| 久久人人爽人人片av| 18禁在线无遮挡免费观看视频| 日韩制服骚丝袜av| 又黄又爽又刺激的免费视频.| 国产黄色视频一区二区在线观看| 国产免费视频播放在线视频 | 久久久国产一区二区| av免费观看日本| 男人爽女人下面视频在线观看| 婷婷色综合www| 国产男人的电影天堂91| 高清日韩中文字幕在线| 欧美日韩在线观看h| 久久精品人妻少妇| 精品久久久噜噜| 一级毛片我不卡| 夫妻午夜视频| 久久久久精品久久久久真实原创| 97超碰精品成人国产| 熟妇人妻不卡中文字幕| 国产老妇伦熟女老妇高清| 国产精品久久视频播放| 亚洲成人精品中文字幕电影| 日本黄大片高清| 久久久久久久亚洲中文字幕| 三级毛片av免费| xxx大片免费视频| 免费观看a级毛片全部| 久久精品人妻少妇| 久久精品熟女亚洲av麻豆精品 | 国产永久视频网站| 99热全是精品| 免费看日本二区| 亚洲图色成人| 中文字幕免费在线视频6| 三级国产精品片| 久久精品夜色国产| 久久久久网色| 亚洲va在线va天堂va国产| 精品一区在线观看国产| 99九九线精品视频在线观看视频| 听说在线观看完整版免费高清| 中文字幕av成人在线电影| 久久久久久久亚洲中文字幕| 欧美3d第一页| 成人漫画全彩无遮挡| 国产高清国产精品国产三级 | 99久国产av精品国产电影| 国产永久视频网站| 成人亚洲精品一区在线观看 | 少妇人妻一区二区三区视频| 联通29元200g的流量卡| 国产69精品久久久久777片| 黄片wwwwww| 亚洲精品aⅴ在线观看| 亚洲av中文字字幕乱码综合| 麻豆成人午夜福利视频| 亚洲aⅴ乱码一区二区在线播放| 高清日韩中文字幕在线| 国产精品一及| 黄色配什么色好看| 日韩国内少妇激情av| 日韩在线高清观看一区二区三区| 特级一级黄色大片| 精品人妻熟女av久视频| 色哟哟·www| 国产亚洲5aaaaa淫片| 日韩欧美 国产精品| 国产精品一区二区三区四区免费观看| 欧美日本视频| 国产色婷婷99| 日韩 亚洲 欧美在线| 成人午夜高清在线视频| 午夜福利高清视频| 国产伦理片在线播放av一区| 真实男女啪啪啪动态图| 精品久久久久久成人av| 午夜免费激情av| 一个人免费在线观看电影| 日韩av免费高清视频| 久久久久国产网址| 十八禁国产超污无遮挡网站| 久热久热在线精品观看| 国产麻豆成人av免费视频| 99热6这里只有精品| 亚洲18禁久久av| 亚洲熟女精品中文字幕| 国产午夜福利久久久久久| 久久精品国产亚洲av天美| 日本欧美国产在线视频| 色播亚洲综合网| 国产伦精品一区二区三区视频9| 国产欧美日韩精品一区二区| 国产成人a∨麻豆精品| 又粗又硬又长又爽又黄的视频| 丰满人妻一区二区三区视频av| 国产乱人视频| 欧美三级亚洲精品| 亚洲第一区二区三区不卡| 国产免费一级a男人的天堂| 永久免费av网站大全| 亚洲欧美一区二区三区黑人 | 亚洲精品亚洲一区二区| 国产有黄有色有爽视频| 午夜福利在线观看免费完整高清在| 成人毛片a级毛片在线播放| 黄片无遮挡物在线观看| 26uuu在线亚洲综合色| 噜噜噜噜噜久久久久久91| 免费观看的影片在线观看| 高清毛片免费看| 欧美+日韩+精品| 三级国产精品欧美在线观看| 国产男人的电影天堂91| 老司机影院成人| 国产亚洲av片在线观看秒播厂 | 男女啪啪激烈高潮av片| 欧美性猛交╳xxx乱大交人| 成人av在线播放网站| 国产综合懂色| 三级男女做爰猛烈吃奶摸视频| 国产精品福利在线免费观看| 久久99热这里只频精品6学生| 久久人人爽人人片av| 天堂av国产一区二区熟女人妻| 国产成人精品久久久久久| 免费观看a级毛片全部| 国产高清国产精品国产三级 | 日韩精品有码人妻一区| 亚洲aⅴ乱码一区二区在线播放| 欧美3d第一页| 精品久久久久久久人妻蜜臀av| 国产成人精品久久久久久| 国产成人91sexporn| 国产综合精华液| 建设人人有责人人尽责人人享有的 | 免费在线观看成人毛片| av在线蜜桃| 极品少妇高潮喷水抽搐| 午夜免费男女啪啪视频观看| 中文字幕久久专区| 精品人妻一区二区三区麻豆| 日韩视频在线欧美| 免费av观看视频| 国产成人精品福利久久| 国产高清不卡午夜福利| 纵有疾风起免费观看全集完整版 | 啦啦啦啦在线视频资源| 麻豆精品久久久久久蜜桃| 成人二区视频| 国产久久久一区二区三区| 国产综合懂色| 亚洲丝袜综合中文字幕| 久久久久久久久中文| 十八禁网站网址无遮挡 | 亚洲人成网站在线播| 成人美女网站在线观看视频| 身体一侧抽搐| 国产精品国产三级国产av玫瑰| 丰满少妇做爰视频| av黄色大香蕉| 国产成人精品久久久久久| 亚洲精品乱久久久久久| 最近的中文字幕免费完整| a级一级毛片免费在线观看| .国产精品久久| www.色视频.com| 久久6这里有精品| 啦啦啦啦在线视频资源| 国内精品一区二区在线观看| 久久久久久久久大av| 午夜免费激情av| 免费黄频网站在线观看国产| 成人毛片60女人毛片免费| 国产精品女同一区二区软件| 丝袜喷水一区| 国产午夜精品久久久久久一区二区三区| 亚洲高清免费不卡视频| 国产淫语在线视频| 久久精品夜夜夜夜夜久久蜜豆| 高清欧美精品videossex| 久久久久久久久中文| 哪个播放器可以免费观看大片| 能在线免费看毛片的网站| 精品久久久久久久人妻蜜臀av| av国产免费在线观看| 最后的刺客免费高清国语| 观看免费一级毛片| 1000部很黄的大片| 国产精品三级大全| 国产亚洲一区二区精品| 亚洲欧美日韩东京热| 国产精品无大码| 免费看美女性在线毛片视频| 九九爱精品视频在线观看| 不卡视频在线观看欧美| 搡女人真爽免费视频火全软件| 最近中文字幕高清免费大全6| 亚洲一区高清亚洲精品| 精品国内亚洲2022精品成人| 国产女主播在线喷水免费视频网站 | 99久久精品热视频| 69av精品久久久久久| 特大巨黑吊av在线直播| av黄色大香蕉| 熟女电影av网| 国产黄a三级三级三级人| 亚洲最大成人手机在线| 午夜精品一区二区三区免费看| 寂寞人妻少妇视频99o| 国产成人福利小说| 麻豆精品久久久久久蜜桃| 免费观看精品视频网站| 成人毛片a级毛片在线播放| 男女国产视频网站| 中文字幕制服av| 在线播放无遮挡| 亚洲电影在线观看av| 亚洲欧美成人综合另类久久久| 美女内射精品一级片tv| 天堂网av新在线| 国产av码专区亚洲av| 在线免费观看的www视频| 成人av在线播放网站| 国产午夜精品一二区理论片| 久久99蜜桃精品久久| 一区二区三区四区激情视频| 乱码一卡2卡4卡精品| 国产高潮美女av| 亚洲国产欧美人成| 精品一区二区三区视频在线| 国产精品99久久久久久久久| 97人妻精品一区二区三区麻豆| 天天躁日日操中文字幕| 精品久久久噜噜| 亚洲激情五月婷婷啪啪| 男女视频在线观看网站免费| 啦啦啦韩国在线观看视频| 2022亚洲国产成人精品| 两个人视频免费观看高清| 综合色丁香网| 国产成人91sexporn| 中国国产av一级| 国产淫片久久久久久久久| 日本一本二区三区精品| 日产精品乱码卡一卡2卡三| av在线播放精品| 极品少妇高潮喷水抽搐| 国产精品.久久久| 七月丁香在线播放| 亚洲国产成人一精品久久久| 久久久久久久久中文| 免费av毛片视频| 国产69精品久久久久777片| 国产精品一区二区在线观看99 | 午夜爱爱视频在线播放| 在线天堂最新版资源| 日本av手机在线免费观看| 观看免费一级毛片| 国产精品av视频在线免费观看| 国产美女午夜福利| 99视频精品全部免费 在线| 深爱激情五月婷婷| av专区在线播放| 美女国产视频在线观看| 久久精品久久久久久久性| 肉色欧美久久久久久久蜜桃 | 午夜福利成人在线免费观看| 免费看a级黄色片| 老司机影院成人| 亚洲成色77777| 欧美性感艳星| 80岁老熟妇乱子伦牲交| 在线免费观看的www视频| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 久久久久九九精品影院| 亚洲丝袜综合中文字幕| 2022亚洲国产成人精品| 日本一二三区视频观看| 色网站视频免费| 观看美女的网站| 美女被艹到高潮喷水动态| 国产精品久久久久久精品电影| 亚洲成人一二三区av| 日韩人妻高清精品专区| 好男人在线观看高清免费视频| 一个人看的www免费观看视频| 一级毛片久久久久久久久女| 国产成人午夜福利电影在线观看| 亚洲欧洲日产国产| 欧美97在线视频| 国产伦精品一区二区三区视频9| 欧美丝袜亚洲另类| 天堂中文最新版在线下载 | 国语对白做爰xxxⅹ性视频网站| 国产伦一二天堂av在线观看| 国产视频首页在线观看| 国产激情偷乱视频一区二区| 亚洲18禁久久av| 久久久久久久久久久丰满| 亚洲欧美精品专区久久| 在线免费观看不下载黄p国产| 国产熟女欧美一区二区| 性插视频无遮挡在线免费观看| 中文资源天堂在线| 嫩草影院精品99| 久久精品熟女亚洲av麻豆精品 | 国产91av在线免费观看| 美女主播在线视频| 如何舔出高潮| 亚洲成人中文字幕在线播放| 一级av片app| 人妻夜夜爽99麻豆av| 18禁在线无遮挡免费观看视频| 国产探花极品一区二区| 视频中文字幕在线观看| 高清视频免费观看一区二区 | 国产毛片a区久久久久| 欧美一区二区亚洲| 人妻一区二区av| 国国产精品蜜臀av免费| 国产伦精品一区二区三区四那| 国产精品国产三级国产av玫瑰| 亚洲不卡免费看| 亚洲欧美日韩无卡精品| 国产乱来视频区| 男女啪啪激烈高潮av片| 乱系列少妇在线播放| 肉色欧美久久久久久久蜜桃 | 伊人久久精品亚洲午夜| 亚洲av成人精品一二三区| 午夜爱爱视频在线播放| 国产伦在线观看视频一区| 深夜a级毛片| 69人妻影院| 激情 狠狠 欧美| 欧美 日韩 精品 国产| 大陆偷拍与自拍| 亚洲av成人av| 久久99热6这里只有精品| 网址你懂的国产日韩在线| av又黄又爽大尺度在线免费看| a级毛色黄片| 成年版毛片免费区| 亚洲av成人精品一二三区| 久久久色成人| 国产一级毛片在线| 狠狠精品人妻久久久久久综合| 岛国毛片在线播放| 亚洲欧洲国产日韩| 一区二区三区乱码不卡18| 欧美变态另类bdsm刘玥| 深夜a级毛片| 人妻少妇偷人精品九色| 熟妇人妻久久中文字幕3abv| 九九久久精品国产亚洲av麻豆| 插阴视频在线观看视频| 成人一区二区视频在线观看| 日韩一本色道免费dvd| 亚洲国产精品成人综合色| 免费少妇av软件| 国产三级在线视频| 欧美zozozo另类| 老女人水多毛片| 汤姆久久久久久久影院中文字幕 | 丰满少妇做爰视频| 欧美97在线视频| 干丝袜人妻中文字幕| 九草在线视频观看| 免费电影在线观看免费观看| 亚洲精品乱码久久久久久按摩| 成人特级av手机在线观看| 免费看日本二区| 欧美精品一区二区大全| 最后的刺客免费高清国语| av在线亚洲专区| 天堂影院成人在线观看| 一级毛片黄色毛片免费观看视频| 亚洲欧洲日产国产| 免费黄网站久久成人精品| 亚洲第一区二区三区不卡| 国产国拍精品亚洲av在线观看| 一级av片app| 纵有疾风起免费观看全集完整版 | 人妻少妇偷人精品九色| av黄色大香蕉| 久久精品久久久久久久性| 免费大片黄手机在线观看| 97超视频在线观看视频| 久久6这里有精品| 日日干狠狠操夜夜爽| 色尼玛亚洲综合影院| 亚洲精品日韩在线中文字幕| 最后的刺客免费高清国语| 欧美人与善性xxx| 国产精品人妻久久久影院| 91精品国产九色| 男女啪啪激烈高潮av片| 国语对白做爰xxxⅹ性视频网站| 少妇的逼水好多| 亚洲怡红院男人天堂| 亚洲欧美一区二区三区国产| 国产黄片美女视频| 美女xxoo啪啪120秒动态图| 一级爰片在线观看| 3wmmmm亚洲av在线观看| 国产中年淑女户外野战色| 免费观看av网站的网址| 国产黄片视频在线免费观看| 国产淫语在线视频| 亚洲怡红院男人天堂| 女人被狂操c到高潮| ponron亚洲| 午夜免费激情av| 不卡视频在线观看欧美| 亚洲人成网站高清观看| 日产精品乱码卡一卡2卡三| 能在线免费看毛片的网站| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区久久| 蜜桃亚洲精品一区二区三区| ponron亚洲| 亚洲综合精品二区| 亚洲无线观看免费| 99久久中文字幕三级久久日本| 在线免费观看不下载黄p国产| 国产av码专区亚洲av| 嫩草影院精品99| 日本一本二区三区精品| 亚洲精品成人久久久久久| 午夜激情欧美在线| 国产免费福利视频在线观看| 午夜福利在线观看吧| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 亚洲三级黄色毛片| 高清日韩中文字幕在线| 成年av动漫网址| 黄片无遮挡物在线观看| 日韩 亚洲 欧美在线| 寂寞人妻少妇视频99o| 97热精品久久久久久| 99re6热这里在线精品视频| 少妇的逼好多水| 老师上课跳d突然被开到最大视频| 亚洲欧美日韩无卡精品| 亚洲精品影视一区二区三区av| 精品久久久精品久久久| kizo精华| 精品久久久久久久久av| 欧美极品一区二区三区四区| 国产永久视频网站| 国产亚洲av嫩草精品影院| 亚洲国产色片| 免费看av在线观看网站| 国产成人freesex在线| 国产黄a三级三级三级人| 成人鲁丝片一二三区免费| 国产午夜福利久久久久久| 少妇猛男粗大的猛烈进出视频 | 丰满乱子伦码专区| 成人av在线播放网站| 午夜福利网站1000一区二区三区| 日韩欧美精品免费久久| 女人久久www免费人成看片| 偷拍熟女少妇极品色| 久热久热在线精品观看| 夫妻性生交免费视频一级片| 国精品久久久久久国模美| av黄色大香蕉| 国内少妇人妻偷人精品xxx网站| 毛片一级片免费看久久久久| 天天一区二区日本电影三级| 噜噜噜噜噜久久久久久91| 小蜜桃在线观看免费完整版高清| 日韩欧美三级三区| 精品久久久久久久久久久久久| 五月伊人婷婷丁香| a级毛色黄片| 久久精品人妻少妇| 亚洲国产色片| 色综合色国产| 我要看日韩黄色一级片| 日韩视频在线欧美| 又大又黄又爽视频免费| 青春草国产在线视频| 中文字幕av成人在线电影| 久久久久网色| a级毛色黄片| 精品少妇黑人巨大在线播放| av又黄又爽大尺度在线免费看| 国产精品蜜桃在线观看| 天天躁夜夜躁狠狠久久av| 好男人在线观看高清免费视频| 美女脱内裤让男人舔精品视频| 在线观看美女被高潮喷水网站| 免费av观看视频| 777米奇影视久久| 真实男女啪啪啪动态图| 亚洲av.av天堂| 高清在线视频一区二区三区| 又大又黄又爽视频免费| 亚洲精品国产av蜜桃| 日本色播在线视频| 成人二区视频| 国产一区二区三区av在线| 国产乱来视频区| 国产精品国产三级专区第一集| 最近2019中文字幕mv第一页| 午夜福利网站1000一区二区三区| 午夜福利视频1000在线观看| 人体艺术视频欧美日本| 大片免费播放器 马上看| 久久久久久久久久久免费av| 天美传媒精品一区二区| 在线播放无遮挡| 亚洲最大成人av| 亚洲三级黄色毛片| 亚洲精品色激情综合| 丝袜喷水一区| 久久久久久久久久黄片| 又黄又爽又刺激的免费视频.| 免费观看a级毛片全部| 在线免费观看不下载黄p国产| 国产乱人视频| 非洲黑人性xxxx精品又粗又长| 午夜日本视频在线| 三级毛片av免费| 天堂中文最新版在线下载 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女边吃奶边做爰视频| 免费观看精品视频网站| 亚洲av福利一区| 国产免费又黄又爽又色| 久久人人爽人人爽人人片va| 精品一区二区三卡| 国产成人福利小说| 久久久精品免费免费高清| 成人特级av手机在线观看| 国产又色又爽无遮挡免| 成人漫画全彩无遮挡| 伦精品一区二区三区| 少妇裸体淫交视频免费看高清| 尾随美女入室| 天美传媒精品一区二区| 99久久九九国产精品国产免费| 在线观看免费高清a一片| 免费av不卡在线播放| 成人无遮挡网站| 欧美日韩综合久久久久久| 一本久久精品| 亚洲第一区二区三区不卡| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| 成人av在线播放网站| 久久99精品国语久久久| 超碰97精品在线观看| 在线观看一区二区三区| 精品久久久久久久久久久久久| 国产 亚洲一区二区三区 | 免费黄频网站在线观看国产| 777米奇影视久久| 80岁老熟妇乱子伦牲交| 激情 狠狠 欧美| 十八禁网站网址无遮挡 | 成人二区视频| 少妇丰满av| 国产乱人偷精品视频| 久久久久久久久久黄片| 亚洲在线观看片| 国产男人的电影天堂91| 亚洲av成人精品一区久久| 国产国拍精品亚洲av在线观看| 亚洲精品国产av蜜桃| 色综合亚洲欧美另类图片|