• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of shape-controlled ZnSn(OH)6 and gas sensing properties

    2013-10-24 05:43:44HANLixianDUMengjuanLIYushengYEBinYUXibin

    HAN Lixian,DU Mengjuan,LI Yusheng,YE Bin,YU Xibin*

    (1.College of life and Environment Sciences,Shanghai Normal University,Shanghai 200234,China;2.Department of Applied Mathematics,Shanghai University of Finance and Economics,Shanghai 200433,China)

    1 Introduction

    The fabrication of nano-or micro-size particles with controlling morphologies,orientations,and dimensionalities has attracted much attention,because the physical and chemical properties of materials can be strongly influenced by their sizes and shapes[1-11].The study of composite metal oxides(CMOs)is always interesting to researchers because their performances are superior over single metal oxides in many cases[12-13],such as gas-sensor materials.For instance,polyhedral zinc hydroxystannate(ZHS),CdIn2O4[14]and EuFeO3nanoparticles have been used as gas-sensor materials[15].

    Zinc hydroxystannate(ZHS),an important member of CMOs,is a kind of perovskite structure tending to form face-centered-cubic(FCC)crystal structure.Up to now,zinc hydroxystannate has been widely used as fire retardant and smoke inhibitor,photocatalyst,inorganic filler,and flame-retardant[15-18].Furthermore,ZHS thermal decomposition products including ZnSnO3[19-20],crystalline SnO2and Zn2SnO4can be used in lithium ion battery anodes,gas sensors and photocatalysts[19-20].

    Nano-microparticles of ZHSwith different shapes such as nanocage,14-faceted polyhedra,and wire-like have been synthesized by various synthesis routes,including thermal decomposition[21]hydrothermal synthesis[22-23]low temperature ion exchange[24]and different surfactants have assisted wet-chemical methods at low temperature[25].However,the synthesis strategies mentioned above usually need complex operating procedures,expensive raw materials and further heat treatment.Considering their excellent features,such as high sensitivity,short recovery time and good reproducibility,a novel route is highly required for the fabrication of the hierarchical architectures assembled with nanostructured building blocks of ZHS.So far,the preparations of ZHS through low-cost,convenient routes are still a challenge.In addition,to our knowledge,the shapecontrolled synthesis and the gas sensing investigation of ZHS MCs with different shapes and a facile method have not been reported,especially ZHSMCs self-assembled by nanoparticles.

    Herein,we demonstrate that different shapes of ZHS(microcube,microsphere)with uniform size could be on a large scale through precipitation process.It is worthy to note that neither complicated steps nor advanced experimental conditions or equipments were used,making this process easy.Then,the formation mechanisms of the ZHScrystallites were studied via a series of time-dependent experiments.In the following section,UV-vis absorption spectra have been used to discuss the influences of gas sensor based on ZHSMCs including oxygen vacancy defects,the gas adsorption,band gap energy,and active surface area.However,the band gap energy of spherical ZHScrystallites was less than that of nanocubic crystallites.It is clearly that the sensors based on spherical ZHSMCs exhibited faster response,higher sensitivity,and shorter recovery times toward HCHO gas than those based on ZHS nancubic ZHS because of more oxygen vacancy defects,less band gap energy,and larger active surface area.The as-prepared MCs should be significant for exploiting new gas-sensing materials in the future.

    2 Experimental Section

    2.1 Materials

    All reagents were analytic grade from Aladdin reagent(China)Co.,LtdS.a(chǎn)nd used as received without further purification.Deionized Water(PURELAB Plus,PALL)with a resistivity of 18 M?cm was used throughout.

    2.2 Preparation of ZHS Cubic Crystallites

    In a typical experiment,2.8754 g(10 mmol)of zinc sulfate heptahydrate(ZnSO4.7H2O)was added into 100 mL of deionized water(DW),and the solution was stirred at room temperature until ZnSO4.7H2O was dissolved completely.Then appropriate sodium stannate trihydrate(Na2SnO3.3H2O)solution was dropped into ZnSO4.7H2O solution,making the molar ration of[Zn]/[Sn]=1∶1.After the completion of the above steps,the mixed solution was stirred for 5 h.After the reaction,the precipitates were collected by centrifugation,washed with DWfor several times to remove residual ions in the products.The final products were then dried in air at 100℃ for 8 h before characterization.

    2.3 Preparation of ZHS Spherical Crystallites

    Before adding Na2SnO3.3H2O solution,the adequate ammonia was dropped into the ZnSO4solution.The other synthesizing process was the same as the preparation of ZHSnanocubic crystallites.

    2.4 General Characterization

    X-ray powder diffraction(XRD)pattern was recorded using a Japan Regaku D/max cA X-ray diffractometer equipped with graphite monochromatized Cu Kα radiation(λ =1.5418?)irradiated with a scanning rate of 4 deg/min.The Field-emission scanning electron microscopic(FESEM)images were obtained using a JEOL JSM-7500F microscope operated at an acceleration voltage of 15 kV.A JEOL JEM-200CX microscope operating at 160 kV in the bright-field mode was used for Transmission Electron Microscopy(TEM).Selected area electron diffraction(SAED)pattern was performed on a JEOL JEM-2010 electron microscope operating at 200 kV.

    2.5 Measurements of gas-sensing

    The gas-sensing properties were measured using a static test system of WS-60A made by Hanwei Electronics Co.Ltd.,Henan Province,China.The sensors were fabricated by a modifying method described in the reference[20].Before the sensitivity measurement,the samples were connected to the 5 V dc source and the heat voltage was maintained at 5 V till the stabilization of the base line voltage.

    In our gas-sensing measurements,a given amount of test gas was injected into a closed chamber,and the sensor was put into the chamber for the measurement of the sensitive performance.After each measurement,the sensor was exposed to the atmospheric air by opening the chamber.Sensitivity was defined as S=Ra/Rg,where Rawas the average resistance in air and Rgwas the average resistance in the test gas.The response and recovery time were defined as the time taken by the sensor to achieve 90%of the total resistance change in the case of adsorption and desorption,respectively.

    3 Results and Discussion

    3.1 Structural Characterization

    The composition and phase purity of the as-obtained products are first examined by X-ray powder diffraction(XRD)patterns.Fig.1 shows the XRD patterns of typical ZHSwith microcube(a)and microsphere(b),respectively.The XRD patterns of the ZHSpowders are quite similar.All of the diffraction peaks can be indexed to the standard ZHS with the perovskite structure(JCPDS No.20-1455),confirming that the assynthesized samples have a typical FCC crystal structure.According to data of XRD,the lattice parameters calculated via the XRD data for ZHSmicrocube and microsphere are corresponding to 7.7656 ? and 7.7456 ?,respectively.Peaks at around 22.8,40.2,and 52.6 correspond to the(200),(220),and(420)planes of the as-obtained products.By comparison,the diffraction peak intensity of sphereical product is stronger than that of microcube.No impurity phases are detected from the XRD pattern,indicating that two types ZHS crystallites with high purity could be obtained under current synthetic conditions.

    3.2 Morphology Characterization

    Many researchers have reported ZHS structures with different morphologies could be obtained hydrothermally under appropriate reaction conditions[22-23].In this work,the microcube ZHScrystallites were obtained simply by the reaction between ZnSO4.7H2O and Na2SnO3·3H2O,while the spherical ZHS MCs were obtained by introducing NH4OH into the reaction system.

    The morphology and structure details of the as-obtained ZHSproducts are investigated by SEM,F(xiàn)ESEM,and TEM techniques.It can be clearly seen from Fig.2A that the ZHSproducts are entirely composed of a large-scale of uniform and monodisperse MCs.High-magnification FESEM image(Fig.2B)shows that the products consist of homogeneous nanocubes with side lengths of about 500-600 nm.A representative TEM micrograph of cubic ZHScrystallites is shown in Fig.2C,clearly showing that the single nanoparticle has perfect cubic profile with very clear edges and corners.The corresponding selected area electron diffraction(SAED)pattern of cubic crystallites(as shown in Fig.2D)confirms that the nanocubes have good crystallinity and there is no secondary phase.The corresponding selected area electron diffraction(SAED)pattern of cubic crystallites(as shown in Fig.2D)confirms that the nanocubes have well-crystallized structure.The diffraction spots of the typical FCC crystal structure could be indexed to{020},{220}and{200}panels of the ZnSn(OH)6(ZHS)microcrystallites.

    Figure 1 XRD patterns of the as-prepared ZHSproducts:nanocube(a),nanosphere(b)and Standard XRD pattern of ZHS(JCPDSNo.20-1455)

    Figure 2 SEM,TEM and SAED images of the ZHSnanocubic crystallites:(A)low magnification SEM image;(B)high magnification FESEM image;(C)high magnification TEM image;(D)SAED pattern

    In the further process,spherical ZHSMCs were obtained with adding appropriate amount of ammonia in the reaction solution.Fig.3A shows the panoramic morphologies of the typical sample.The results indicate that the product consists of monodisperse spherical crystallites with glossy surface in the size range of 500~600 nm.HoweverF,high magnification FESEM images(Fig.3B and 3C)display that the as-obtained spherical ZHS crystallite is not as smooth as the former shown(Fig.3A).A clear grain boundary can be observed on the surface of ZHSmicrospheres(Fig.3B and C),indicating that the as-obtained spherical ZHS crystallites are constituted by the oriented aggregation of small ZHSnanoparticles.More structure information of spherical ZHScrystallites is researched by TEM.As shown in high magnification TEM images(Fig.3C),the surface of the as-obtained ZHS spherical crystallites is rough.Many nanoparticles attach on the surface of ZHSmicrospheres.It also demonstrates the as-obtained spherical ZHScrystallites are composed of small ZHSnanoparticles with diameter of 5~10 nm diameter,which validates the observation results of FESEM tests(Fig.3B).The selected area electron diffraction(SAED)pattern(Inset Fig.3C)taken from the edge of the sphere marked by a circle exhibits the clear diffraction lattices,revealing the single-crystalline nature of the sample with a preferential grown direction.The diffraction spots could also be indexed to{020},{220},and{200}panels of the ZnSn(OH)6(ZHS)microcrystallites.

    Figure 3 SEM and TEM images of the spherical ZHSMCs:(A)low magnification FESEM image;(B)high magnification FESEM image;(C)high magnification TEM image,inset in(C)SAED pattern

    3.3 Optical Absorption and BET

    The optical absorption properties of ZHS MCs semiconductor were measured by The UV-vis absorption spectra.As shown in Fig.4,the Egof two samples are 5.02eV(microcube)and 4.90eV(microsphere)which are calculated on the basis of the corresponding absorption edges.This indicates that the spherical ZHS MCs have less band gap energy,which may help the O2adsorption on the ZHS surface to trap electrons from the conduction band of ZHS and enhance the sensing performance.The surface area of these morphologies are shown in the Table 1.The surface area of spherical ZHS MCs is larger than that of the microcubic shape(as shown in Table 1).It is reported that″surface accessibility″becomes one of crucial factors to maintain the high sensitivity of the gas sensor[26]. Hence,the sensor based on spherical ZHS MCs should exhibit higher sensitivity.

    Figure 4 The UV-visible absorption spectrum of(a)nanocube and(b)nanosphere samples

    Table 1 Active surface srea of ZHSMCs

    3.4 Gas sensor performance

    According to the sensing mechanism of Wolkenstein’s model for semiconductors[27],when the sensors are exposed to air,the surface of ZHSsensors could adsorb oxygen species to ionize into O-(ads)or O2-(ads).This is because oxygen atom owns the strong electronegativity from the conduction band of ZHS.Hence,the concentration of electrons in the conduction band would decrease and the resistance of the material would increase.And then a chemical reaction would take place between HCHO and O2-(ads),which leads to a relatively strong activation on the surface of the ZHS:

    HCHO(gas)+O2-(ads)→H2O(g)+CO2(g)+2e-.

    As to say,the oxygen vacancy,the band gap energy,and the active surface area may have affects on the gas sensor.spherical ZHS MCs may present better gas sensor performance compared with cubic ZHS MCs,because spherical ZHSMCs have more oxygen vacancy,less band gap energy,and larger BET surface area.

    Gas sensor performance based on ZHS MCs to HCHO with the similar size of microcube(line a)and microsphere(line b)are Shown in the Fig.5.The typical response curves of ZHS-based gas sensors with different shapes to increasing concentration of HCHOare shown in the Fig.5A.It is obvious that the sensitivity of gas sensors increases rapidly with the increase of HCHO concentrations,revealing that the sensitivities of the ZHS-based gas sensors are excellent to HCHO.But the sensitivity of the spherical ZHS MCs increases faster than that of the cubic MCs with the same response time and the same HCHO concentration.

    As shown in Fig.5B,it is clear that ZHSbased sensors have a wide detection range for HCHO(from10 to 100 ppm).The sensitivity of the spherical ZHSMCs especially increases faster with the same concentration of HCHO.At the same time,the recovery time of sensor based on spherical ZHS sphere MCs is shorter.Hence,the sensors based on spherical ZHS MCs are much more sensitive than those based on ZHS cubic MCs.The detection limit of the as-prepared ZHS sensors can reach as low as several parts per million for HCHO.Meanwhile,the recovery time of sensor based on spherical ZHSsphere MCs is the shortest.

    Figure 5 (A)Sensitivities of the sensors based on ZHSMCs with different shapes to increased concentrations of HCHO.(B)Typical response curves of ZHSNCs sensors of different shapes to HCHO with increasing concentrations.In parts A and B,(a)and(b)correspond to the ZHSNCs of nanocube and nanosphere,respectively

    4 Conclusion

    In conclusion,the successful synthesis of uniform ZHSMCs with different shapes via a facile process was proposed.It was found that the micro-cube morphology evolved to microsphere with adding different concentrations of NH4OH.The gas sensors based on both of the two morphologies exhibited good sensor performance toward HCHO gas.The sensor based on spherical ZHS MCs demonstrated faster response,higher sensitivity and shorter recovery time owing to more oxygen vacancy defects,less band gap energy,and larger active surface area.The as-synthesized ZHSMCs make them ideal candidates for HCHO gas-sensing devices.

    [1]PENG X G,MANNA L,YANG W D,et al.Shape control of CdSe nanocrystals[J].Nature,2000,404:59-61.

    [2]BUDAI J D,WHITE C W,WITHROW S P,et al.Controlling the size,structure and orientation of semiconductor nanocrystals using metastable phase recrystallization [J].Nature,1997,390:384-386.

    [3]COZZOLI P D,MANNA L,CURRI M L,et al.Shape and phase control of colloidal ZnSe nanocrystals[J].Chemistry of Materials,2005,17(6):1296-1306.

    [4]GONG Q,QIAN X,CAO H,et al.Novel shape evolution of BaMoO4microcrystals[J].The Journal of Physical Chemistry B,2006,110(39):19295-19299.

    [5]TIAN Y,LIU H,ZHAO G,et al.Shape-controlled electrodeposition of gold nanostructures[J].The Journal of Physical Chemistry B,2006,110(46):23478-23481.

    [6]FANG X,BANDO Y,YE C,et al.Shape-and size-controlled growth of ZnS nanostructures[J].The Journal of Physical Chemistry C,2007,111(24):8469-8474.

    [7]NANDWANA V,ELKINSK E,POUDYAL N,et al.Size and shape control of monodisperse FePt nanoparticles[J].The Journal of Physical Chemistry C,2007,111(11):4185-4189.

    [8]TAN T T,SELVAN ST,ZHAO L,et al.Size control,shape evolution,and silica coating of near-infrared-emitting PbSe quantum dots[J].Chemistry of Materials,2007,19(13):3112-3117.

    [9]WANG F,TANGR,YUH,et al.Size-and shape-controlled synthesis of bismuth nanoparticles[J].Chemistry of Materials,2008,20(11):3656-3662.

    [10]ZHANG H,XU JJ,CHEN H Y.Shape-controlled gold nanoarchitectures:synthesis,superhydrophobicity,and electrocatalytic properties[J].The Journal of Physical Chemistry C,2008,112(36):13886-13892.

    [11]BAO N,SHEN L,AN W,et al.Formation mechanism and shape control of monodisperse magnetic CoFe2O4nanocrystals[J].Chemistry of Materials,2009,21(14):3458-3468.

    [12]WHITBY R L D,BRIGATTI K S,KINLOCH I A,et al.Novel Mg2SiO4structures[J].Chemical Communications,2004(21):2396-2397.

    [13]ZHANG T,JIN C G,QIAN T,et al.Hydrothermal synthesis of single-crystalline La0.5Ca0.5MnO3nanowires at low temperature[J].Journal of Materials Chemistry,2004,14:2787-2789.

    [14]MAHANUBHAV M D,PATIL L A.Studies on gas sensing performance of CuO-modified CdIn2O4thick film resistor[J].Sensors and Actuators B:Chemical,2007,128(1):186-192.

    [15]SIEMONSM,SIMON U.High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites[J].Sensors and Actuators B:Chemical,2007,126(1):181-186.

    [16]YANG L,HU Y,YOU F,et al.A novel method to prepare zinc hydroxystannate-coated inorganic fillers and its effect on the fire properties of PVC cable materials[J].Polymer Engineering & Science,2007,47(7):1163-1169.

    [17]ZHANG B,JIAO Y,XU J Z.A study on the flame-retardance of poly(vinyl chloride)incorporated with metal hydroxystannates[J].Journal of Applied Polymer Science,2009,112(1):82-88.

    [18]FU X,WANG X,DING Z,et al.Hydroxide ZnSn(OH)6:A promising new photocatalyst for benzene degradation[J].Applied Catalysis B:Environmental,2009,91(1-2):67-72.

    [19]RONG A,GAO X P,LI G R,et al.Hydrothermal synthesis of Zn2SnO4as anode materials for Li-ion battery[J].The Journal of Physical Chemistry B,2006,110(30):14754-14760.

    [20]ZHANG W H,ZHANG W D.Fabrication of SnO2– ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes[J].Sensors and Actuators B:Chemical,2008,13(2):403-408.

    [21]WROBEL G,PIECH M,DARDONA S,et al.Seedless synthesis and thermal decomposition of single crystalline zinc hydroxystannate cubes[J].Crystal Growth & Design,2009,9(10):4456-4460.

    [22]ZHANG Y,GUO M,ZHANG M,et al.Hydrothermal synthesis and characterization of single-crystalline zinc hydroxystannate microcubes[J].Journal of Crystal Growth,2007,308(1):99-104.

    [23]FAN H,AI S,JU P.Room temperature synthesis of zinc hydroxystannate hollow core-shell microspheres and their hydrothermal growth of hollow core-shell polyhedral microcrystals[J].Cryst Eng Comm,2011,13:113-117.

    [24]KOVACHEVA D,PETROV K.Preparation of crystalline ZnSnO3from Li2SnO3by low-temperature ion exchange[J].Solid State Ionics,1998,109(3-4):327-332.

    [25]WANG L,TANG K,LIU Z,et al.Single-crystalline ZnSn(OH)6hollow cubes via self-templated synthesis at room temperature and their photocatalytic properties[J].Journal of Materials Chemistry,2011,21:4352-4357.

    [26]GENG B,F(xiàn)ANG C,ZHAN F,et al.Synthesis of Polyhedral ZnSnO3Microcrystals with Controlled Exposed Facets and Their Selective Gas-Sensing Properties[J].Small,2008,4(9):1337-1343.

    [27]HAICK H,AMBRICO M,LIGONZO T,et al.Controlling semiconductor/metal junction barriers by incomplete,nonideal molecular monolayers[J].Journal of the American Chemical Society,2006,128(21):6854-6869.

    亚洲熟女毛片儿| 国产一区二区 视频在线| 成人国产麻豆网| av在线观看视频网站免费| 欧美激情高清一区二区三区 | 亚洲熟女精品中文字幕| 国产一卡二卡三卡精品 | 亚洲五月色婷婷综合| 亚洲精品久久午夜乱码| 亚洲情色 制服丝袜| 国产激情久久老熟女| 国产男女内射视频| www.精华液| 婷婷色综合www| 熟妇人妻不卡中文字幕| 成人亚洲精品一区在线观看| 波多野结衣一区麻豆| 欧美xxⅹ黑人| 中国三级夫妇交换| 热99国产精品久久久久久7| 亚洲国产成人一精品久久久| 看免费成人av毛片| 又大又黄又爽视频免费| 久久久久久久精品精品| 啦啦啦啦在线视频资源| 十八禁网站网址无遮挡| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人猛操日本美女一级片| 免费日韩欧美在线观看| 欧美黑人精品巨大| 免费观看人在逋| 日韩精品有码人妻一区| 久久韩国三级中文字幕| 日韩制服丝袜自拍偷拍| 欧美激情极品国产一区二区三区| 一区在线观看完整版| 成人18禁高潮啪啪吃奶动态图| 成年人午夜在线观看视频| 精品亚洲成国产av| 亚洲av日韩精品久久久久久密 | 国产极品粉嫩免费观看在线| 国产成人免费无遮挡视频| 一区二区三区激情视频| 久久亚洲国产成人精品v| 久久久亚洲精品成人影院| 亚洲av福利一区| 最近手机中文字幕大全| 波多野结衣av一区二区av| videosex国产| 十分钟在线观看高清视频www| 99久久综合免费| 久久久久久人人人人人| 女性生殖器流出的白浆| 日韩一卡2卡3卡4卡2021年| 91精品国产国语对白视频| 如何舔出高潮| 90打野战视频偷拍视频| 成人国语在线视频| 丰满少妇做爰视频| 久久久国产欧美日韩av| 亚洲成人av在线免费| 亚洲欧美成人综合另类久久久| 亚洲,一卡二卡三卡| 欧美亚洲日本最大视频资源| 在线天堂中文资源库| 如日韩欧美国产精品一区二区三区| 久久午夜综合久久蜜桃| 韩国高清视频一区二区三区| 国产一区二区三区综合在线观看| 国产熟女午夜一区二区三区| 亚洲 欧美一区二区三区| 妹子高潮喷水视频| 国产免费现黄频在线看| 久久久久视频综合| 老司机影院成人| 久久婷婷青草| 亚洲美女黄色视频免费看| 黑人欧美特级aaaaaa片| 韩国精品一区二区三区| 免费高清在线观看日韩| 大码成人一级视频| 欧美精品亚洲一区二区| 另类亚洲欧美激情| 一区在线观看完整版| 亚洲,一卡二卡三卡| 成年av动漫网址| 午夜福利免费观看在线| 十分钟在线观看高清视频www| 国产精品久久久久成人av| av在线老鸭窝| 伊人亚洲综合成人网| 国产精品三级大全| 精品少妇一区二区三区视频日本电影 | 国产av码专区亚洲av| 少妇的丰满在线观看| 无限看片的www在线观看| 久久久国产欧美日韩av| 亚洲精品aⅴ在线观看| 国产精品免费大片| 少妇 在线观看| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 黄片播放在线免费| 欧美精品亚洲一区二区| 国产亚洲精品第一综合不卡| 亚洲国产精品一区二区三区在线| 久久这里只有精品19| 看免费av毛片| 丝袜喷水一区| 精品福利永久在线观看| 久久综合国产亚洲精品| 日韩制服丝袜自拍偷拍| av网站免费在线观看视频| 男女边吃奶边做爰视频| 欧美日韩亚洲高清精品| 欧美日韩亚洲综合一区二区三区_| 女人精品久久久久毛片| 精品少妇一区二区三区视频日本电影 | 亚洲精品日韩在线中文字幕| 欧美久久黑人一区二区| 亚洲国产欧美日韩在线播放| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产一区二区| 国产一区二区 视频在线| 日韩熟女老妇一区二区性免费视频| 国产成人午夜福利电影在线观看| 日韩精品免费视频一区二区三区| 日韩,欧美,国产一区二区三区| 国产在线视频一区二区| 丁香六月天网| 亚洲国产毛片av蜜桃av| 熟女av电影| 岛国毛片在线播放| 久久人妻熟女aⅴ| 一级毛片 在线播放| 啦啦啦在线观看免费高清www| 9色porny在线观看| 国产精品嫩草影院av在线观看| 嫩草影视91久久| 国产欧美亚洲国产| 精品免费久久久久久久清纯 | 三上悠亚av全集在线观看| 欧美亚洲 丝袜 人妻 在线| 90打野战视频偷拍视频| 大香蕉久久成人网| 亚洲一级一片aⅴ在线观看| 青青草视频在线视频观看| 色婷婷久久久亚洲欧美| 婷婷成人精品国产| 成年动漫av网址| 香蕉丝袜av| 国产一区二区在线观看av| 精品一区在线观看国产| 无限看片的www在线观看| 在线亚洲精品国产二区图片欧美| 成年人免费黄色播放视频| 制服诱惑二区| 制服人妻中文乱码| 99久国产av精品国产电影| 亚洲国产精品国产精品| 91精品三级在线观看| 狠狠婷婷综合久久久久久88av| 最近最新中文字幕大全免费视频 | 在线观看国产h片| av电影中文网址| 亚洲精品国产区一区二| 高清视频免费观看一区二区| 婷婷色综合大香蕉| 国产麻豆69| 我要看黄色一级片免费的| 久久久久久久大尺度免费视频| 亚洲精品美女久久久久99蜜臀 | 久久天躁狠狠躁夜夜2o2o | 欧美另类一区| 午夜福利影视在线免费观看| 精品亚洲乱码少妇综合久久| 精品人妻熟女毛片av久久网站| 国产精品 国内视频| xxx大片免费视频| 欧美人与性动交α欧美软件| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久久大奶| 国产成人91sexporn| 日韩伦理黄色片| 一边亲一边摸免费视频| 丝袜美足系列| 中文字幕制服av| 亚洲精品一二三| 成人毛片60女人毛片免费| 亚洲欧美成人综合另类久久久| 久久青草综合色| 777久久人妻少妇嫩草av网站| 巨乳人妻的诱惑在线观看| 岛国毛片在线播放| 一区二区三区精品91| 2018国产大陆天天弄谢| 一级毛片我不卡| 伊人久久大香线蕉亚洲五| 国产精品一区二区在线观看99| 99香蕉大伊视频| 国产精品欧美亚洲77777| 日韩免费高清中文字幕av| 日本欧美国产在线视频| 久久久久国产精品人妻一区二区| 欧美黑人精品巨大| www.av在线官网国产| 中文天堂在线官网| 亚洲精品,欧美精品| 十分钟在线观看高清视频www| 啦啦啦在线免费观看视频4| 久久人人爽人人片av| 亚洲国产毛片av蜜桃av| 精品国产露脸久久av麻豆| 日本wwww免费看| 亚洲精品久久午夜乱码| 一区二区三区激情视频| 欧美变态另类bdsm刘玥| 欧美xxⅹ黑人| 国产男人的电影天堂91| 欧美日韩国产mv在线观看视频| 18禁观看日本| 91精品三级在线观看| 久久久久精品久久久久真实原创| 9191精品国产免费久久| 国产一级毛片在线| 90打野战视频偷拍视频| 久久综合国产亚洲精品| 久久国产精品男人的天堂亚洲| 成人手机av| 女人爽到高潮嗷嗷叫在线视频| 新久久久久国产一级毛片| 欧美97在线视频| 国产成人啪精品午夜网站| 久久综合国产亚洲精品| 精品国产超薄肉色丝袜足j| av在线app专区| 国产毛片在线视频| 波野结衣二区三区在线| 视频在线观看一区二区三区| 日本wwww免费看| 搡老乐熟女国产| 嫩草影院入口| 久久精品亚洲熟妇少妇任你| 涩涩av久久男人的天堂| 国产探花极品一区二区| 叶爱在线成人免费视频播放| 亚洲国产av新网站| 成人国语在线视频| 日日撸夜夜添| 国产成人免费无遮挡视频| 男人爽女人下面视频在线观看| 日韩 亚洲 欧美在线| 伊人久久大香线蕉亚洲五| 日韩一区二区视频免费看| 九草在线视频观看| 免费女性裸体啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频 | 一本色道久久久久久精品综合| 国产精品秋霞免费鲁丝片| 成人三级做爰电影| 免费观看性生交大片5| 国产成人欧美| 男女无遮挡免费网站观看| 久久精品国产亚洲av涩爱| 国产黄色免费在线视频| 激情五月婷婷亚洲| 一边摸一边做爽爽视频免费| 极品少妇高潮喷水抽搐| 亚洲男人天堂网一区| 色精品久久人妻99蜜桃| 熟女少妇亚洲综合色aaa.| 欧美日韩av久久| 在线观看免费视频网站a站| 天天躁夜夜躁狠狠久久av| av天堂久久9| 国产乱来视频区| 91精品三级在线观看| 免费在线观看黄色视频的| 一本久久精品| 亚洲成人免费av在线播放| 永久免费av网站大全| 亚洲欧洲日产国产| 99热全是精品| 在线天堂中文资源库| 国产麻豆69| 97人妻天天添夜夜摸| 91精品三级在线观看| 国产欧美日韩综合在线一区二区| 啦啦啦在线免费观看视频4| 性色av一级| 久久精品国产a三级三级三级| h视频一区二区三区| 黄频高清免费视频| 国产一区二区在线观看av| 不卡av一区二区三区| 一区福利在线观看| 亚洲人成电影观看| 欧美日韩视频高清一区二区三区二| 纯流量卡能插随身wifi吗| 久久久国产精品麻豆| 一级毛片 在线播放| 在线 av 中文字幕| 成人午夜精彩视频在线观看| 青草久久国产| 91精品伊人久久大香线蕉| 日本欧美视频一区| 一区二区三区精品91| 热re99久久国产66热| 国产日韩欧美在线精品| 视频区图区小说| 亚洲欧美激情在线| 男女边摸边吃奶| 中文字幕精品免费在线观看视频| 大陆偷拍与自拍| 中文字幕av电影在线播放| 80岁老熟妇乱子伦牲交| 中文精品一卡2卡3卡4更新| 亚洲少妇的诱惑av| bbb黄色大片| 亚洲精品国产区一区二| 亚洲精品久久久久久婷婷小说| 久久久久网色| 午夜福利网站1000一区二区三区| 亚洲国产精品成人久久小说| 满18在线观看网站| 婷婷色综合www| 黑丝袜美女国产一区| 少妇猛男粗大的猛烈进出视频| 国产在线视频一区二区| 国产精品女同一区二区软件| 中文字幕人妻丝袜一区二区 | 高清视频免费观看一区二区| 天堂8中文在线网| 一区二区日韩欧美中文字幕| 午夜久久久在线观看| 免费少妇av软件| 国产成人91sexporn| 中文字幕亚洲精品专区| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 国产黄色免费在线视频| 日韩一区二区三区影片| 婷婷色麻豆天堂久久| 国产老妇伦熟女老妇高清| 99精国产麻豆久久婷婷| 久久精品国产综合久久久| 性高湖久久久久久久久免费观看| 在线观看免费高清a一片| 亚洲在久久综合| 91老司机精品| 男女床上黄色一级片免费看| 观看美女的网站| 免费在线观看完整版高清| av天堂久久9| 久久天堂一区二区三区四区| 亚洲欧洲精品一区二区精品久久久 | 老司机影院毛片| 91精品伊人久久大香线蕉| av有码第一页| netflix在线观看网站| 大香蕉久久网| 好男人视频免费观看在线| 久久精品人人爽人人爽视色| 一级毛片我不卡| 色网站视频免费| 王馨瑶露胸无遮挡在线观看| 黑丝袜美女国产一区| 国产av国产精品国产| 亚洲国产成人一精品久久久| 国产 精品1| 黄色 视频免费看| 黄色视频不卡| 国产一区二区在线观看av| 99久国产av精品国产电影| 欧美黄色片欧美黄色片| 日本一区二区免费在线视频| 晚上一个人看的免费电影| 日本午夜av视频| 国产精品久久久久久久久免| 亚洲欧洲国产日韩| 亚洲少妇的诱惑av| 国产精品亚洲av一区麻豆 | 欧美日韩视频精品一区| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 日韩制服丝袜自拍偷拍| e午夜精品久久久久久久| 男女午夜视频在线观看| 国产精品偷伦视频观看了| 亚洲精品国产av成人精品| 日韩成人av中文字幕在线观看| 成人影院久久| 日日摸夜夜添夜夜爱| 精品亚洲成国产av| 只有这里有精品99| 婷婷色综合www| 日本黄色日本黄色录像| 丰满乱子伦码专区| 无遮挡黄片免费观看| 街头女战士在线观看网站| 日本欧美国产在线视频| 国产在线免费精品| 丰满乱子伦码专区| 丁香六月天网| 在线观看免费午夜福利视频| 国产亚洲av高清不卡| 男女之事视频高清在线观看 | 大香蕉久久成人网| 伦理电影免费视频| 中文字幕亚洲精品专区| 亚洲第一区二区三区不卡| 亚洲 欧美一区二区三区| 国产成人精品福利久久| 99久久综合免费| 成人亚洲精品一区在线观看| 不卡av一区二区三区| 男女下面插进去视频免费观看| 国产精品免费视频内射| 国产精品一国产av| 熟妇人妻不卡中文字幕| 国产成人欧美在线观看 | 午夜福利网站1000一区二区三区| 亚洲欧美精品综合一区二区三区| 制服诱惑二区| 亚洲av在线观看美女高潮| 日日撸夜夜添| 久久狼人影院| 两个人看的免费小视频| www.av在线官网国产| 9191精品国产免费久久| 国产成人精品无人区| 水蜜桃什么品种好| 黄片无遮挡物在线观看| av线在线观看网站| 久久久久国产一级毛片高清牌| 两个人免费观看高清视频| 欧美久久黑人一区二区| 午夜福利免费观看在线| 我要看黄色一级片免费的| 欧美精品一区二区大全| 性色av一级| 免费在线观看黄色视频的| 精品人妻一区二区三区麻豆| 国产亚洲午夜精品一区二区久久| 精品少妇黑人巨大在线播放| 午夜日韩欧美国产| 亚洲av日韩在线播放| 在线免费观看不下载黄p国产| 亚洲精品,欧美精品| 三上悠亚av全集在线观看| 日本vs欧美在线观看视频| 国产xxxxx性猛交| 精品一区在线观看国产| 啦啦啦 在线观看视频| av卡一久久| 在线天堂最新版资源| 久久久久网色| 成人手机av| 嫩草影视91久久| 国产一区亚洲一区在线观看| 亚洲成人国产一区在线观看 | 老熟女久久久| 亚洲国产欧美在线一区| 蜜桃在线观看..| 国产av国产精品国产| 国产精品av久久久久免费| 曰老女人黄片| 波多野结衣一区麻豆| 十八禁高潮呻吟视频| 久久久国产一区二区| 久久av网站| 中文字幕高清在线视频| 男女下面插进去视频免费观看| 亚洲五月色婷婷综合| 如日韩欧美国产精品一区二区三区| av线在线观看网站| 啦啦啦在线观看免费高清www| 熟女av电影| 午夜福利视频精品| 免费观看av网站的网址| 国产乱来视频区| 人人妻人人澡人人看| 精品亚洲乱码少妇综合久久| 欧美少妇被猛烈插入视频| 人人妻人人爽人人添夜夜欢视频| 丝袜美足系列| 电影成人av| 国产精品蜜桃在线观看| av又黄又爽大尺度在线免费看| 亚洲人成网站在线观看播放| 男男h啪啪无遮挡| 久久精品国产亚洲av高清一级| 建设人人有责人人尽责人人享有的| 亚洲美女视频黄频| 国产精品香港三级国产av潘金莲 | 丝袜在线中文字幕| 性少妇av在线| 国产午夜精品一二区理论片| 中文字幕高清在线视频| 一级片免费观看大全| 如何舔出高潮| 色综合欧美亚洲国产小说| 国产成人一区二区在线| 在线观看免费高清a一片| 亚洲av日韩在线播放| 久久久久久免费高清国产稀缺| 日日撸夜夜添| 亚洲精品一二三| 精品卡一卡二卡四卡免费| 一级片免费观看大全| 中文字幕亚洲精品专区| 大片电影免费在线观看免费| 国产一区二区三区综合在线观看| 老司机亚洲免费影院| 两性夫妻黄色片| 丁香六月天网| 国产一区二区 视频在线| 大陆偷拍与自拍| 侵犯人妻中文字幕一二三四区| 亚洲欧洲国产日韩| h视频一区二区三区| 啦啦啦在线免费观看视频4| 久久精品国产亚洲av高清一级| 超碰97精品在线观看| 国产精品亚洲av一区麻豆 | 好男人视频免费观看在线| 天天躁夜夜躁狠狠久久av| 18禁观看日本| 欧美国产精品一级二级三级| videosex国产| 侵犯人妻中文字幕一二三四区| 日韩制服骚丝袜av| 国产精品久久久人人做人人爽| 日日摸夜夜添夜夜爱| 交换朋友夫妻互换小说| 亚洲专区中文字幕在线 | 国产一区二区三区综合在线观看| 久久久久网色| 国产欧美日韩综合在线一区二区| 久久精品aⅴ一区二区三区四区| 久久97久久精品| 亚洲精品aⅴ在线观看| 中文字幕制服av| 国产精品免费大片| 国产一区二区激情短视频 | 人妻人人澡人人爽人人| 一区二区三区精品91| 一个人免费看片子| 天堂8中文在线网| 精品免费久久久久久久清纯 | 国产精品一区二区在线观看99| 少妇人妻精品综合一区二区| 亚洲av男天堂| 宅男免费午夜| 欧美人与性动交α欧美软件| 一区在线观看完整版| 青春草视频在线免费观看| 高清不卡的av网站| 美女大奶头黄色视频| 国产欧美日韩一区二区三区在线| 免费av中文字幕在线| 国产高清不卡午夜福利| 国产亚洲一区二区精品| 国产精品人妻久久久影院| 日本黄色日本黄色录像| 国产 精品1| 国产一区二区在线观看av| 亚洲成人国产一区在线观看 | 美女中出高潮动态图| 国产av国产精品国产| 美女大奶头黄色视频| www.自偷自拍.com| 亚洲精品国产色婷婷电影| 老司机影院毛片| 国产亚洲一区二区精品| 777米奇影视久久| 亚洲国产日韩一区二区| 日韩 亚洲 欧美在线| 日本vs欧美在线观看视频| 国产毛片在线视频| 99久国产av精品国产电影| 欧美日韩一级在线毛片| 日韩一区二区视频免费看| 精品国产国语对白av| 成人手机av| 美女中出高潮动态图| 精品少妇内射三级| 最新的欧美精品一区二区| 亚洲国产毛片av蜜桃av| 丁香六月欧美| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩精品网址| 这个男人来自地球电影免费观看 | 一级,二级,三级黄色视频| 777久久人妻少妇嫩草av网站| 欧美亚洲 丝袜 人妻 在线| 老汉色∧v一级毛片| 久久这里只有精品19| 国产成人系列免费观看| 2018国产大陆天天弄谢| 亚洲国产精品999| 少妇猛男粗大的猛烈进出视频| 男女之事视频高清在线观看 | 日日摸夜夜添夜夜爱| 国产av精品麻豆| 国产精品99久久99久久久不卡 | 黄网站色视频无遮挡免费观看| av福利片在线| 一个人免费看片子| 免费av中文字幕在线| 亚洲,欧美,日韩| 99久久综合免费| 亚洲精品aⅴ在线观看| 国产亚洲一区二区精品| 精品国产一区二区久久|