胡彩東, 韓之波, 楊舟鑫, 李麗娜, 羅偉峰, 及月茹, 王有為, 李揚(yáng)秋, 韓忠朝,△
(1暨南大學(xué)第一臨床醫(yī)學(xué)院血液病研究所, 廣東 廣州 510632; 2中國(guó)醫(yī)學(xué)科學(xué)院血液學(xué)研究所泰達(dá)生命科學(xué)技術(shù)研究中心, 天津 300457; 3中國(guó)醫(yī)學(xué)科學(xué)院,北京協(xié)和醫(yī)學(xué)院血液學(xué)研究所,實(shí)驗(yàn)血液學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 天津 300020)
TNF-α增強(qiáng)人臍帶間充質(zhì)干細(xì)胞條件培養(yǎng)基的體外造血支持功能*
胡彩東1, 韓之波2,3, 楊舟鑫3, 李麗娜1, 羅偉峰1, 及月茹3, 王有為3, 李揚(yáng)秋1, 韓忠朝1,2,3△
(1暨南大學(xué)第一臨床醫(yī)學(xué)院血液病研究所, 廣東 廣州 510632;2中國(guó)醫(yī)學(xué)科學(xué)院血液學(xué)研究所泰達(dá)生命科學(xué)技術(shù)研究中心, 天津 300457;3中國(guó)醫(yī)學(xué)科學(xué)院,北京協(xié)和醫(yī)學(xué)院血液學(xué)研究所,實(shí)驗(yàn)血液學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 天津 300020)
目的研究腫瘤壞死因子α(tumor necrosis factor α, TNF-α)刺激后所得的臍帶間充質(zhì)干細(xì)胞條件培養(yǎng)基對(duì)臍血CD34+細(xì)胞在半固體培養(yǎng)基中集落形成個(gè)數(shù)及種類的影響。方法將3~6代人臍帶來(lái)源間充質(zhì)干細(xì)胞(human umbilical cord mesenchymal stem cells, hUC-MSCs)以2×106接種到75cm2培養(yǎng)瓶中,其中刺激組加入TNF-α(10 g/L),48 h后收集上清作為條件培養(yǎng)基。Real-time PCR檢測(cè)hUC-MSCs中各類造血因子mRNA的表達(dá)量。密度梯度離心法分離臍血單個(gè)核細(xì)胞,磁珠分選CD34+細(xì)胞,流式細(xì)胞術(shù)檢測(cè)細(xì)胞純度后分5組接種到6孔板內(nèi):TNF-α刺激hUC-MSC上清+不完全甲基纖維素培養(yǎng)基;hUC-MSC上清+不完全甲基纖維素培養(yǎng)基;TNF-α+DMEM/F12完全培養(yǎng)基+不完全甲基纖維素培養(yǎng)基;完全甲基纖維素培養(yǎng)基;DMEM/F12完全培養(yǎng)基+不完全甲基纖維素培養(yǎng)基。10 d后顯微鏡下計(jì)數(shù)各類集落形成單位(colony-forming unit, CFU)的數(shù)目,收集集落形成細(xì)胞,流式細(xì)胞術(shù)檢測(cè)其表型特征。結(jié)果(1)TNF-α刺激后hUC-MSCs中粒細(xì)胞集落刺激因子(granulocyte colony-stimulating factor, G-CSF)和白細(xì)胞介素6(interleukin-6, IL-6)mRNA表達(dá)上調(diào)。(2)兩種條件培養(yǎng)組均可見(jiàn)粒系CFU(granulocyte CFU, CFU-G)、巨噬系CFU(macrophage CFU, CFU-M)和粒巨噬系CFU(granulocyte-macrophage CFU, CFU-GM),但TNF-α刺激組CFU-G和CFU-M的數(shù)目約為未刺激組的1.5倍,CFU-GM約為未刺激組的2倍;陽(yáng)性對(duì)照組中除粒系、巨噬系集落外還可見(jiàn)紅系集落;而DMEM/F12完全培養(yǎng)基加或不加TNF-α組10 d后均未見(jiàn)集落形成。(3)流式細(xì)胞術(shù)檢測(cè)TNF-α刺激組與未刺激組集落細(xì)胞表型CD14、CD45和CD11b,未見(jiàn)明顯差異。結(jié)論hUC-MSC上清作為條件培養(yǎng)基可在體外促進(jìn)CD34+細(xì)胞分化增殖為髓系細(xì)胞,具有造血支持作用,TNF-α刺激后此作用增強(qiáng)。
間充質(zhì)干細(xì)胞; 腫瘤壞死因子α; 造血支持
造血干/祖細(xì)胞的獲得及恢復(fù)一直被認(rèn)為是各類血液腫瘤治療的關(guān)鍵,體外擴(kuò)增造血干細(xì)胞后回輸?shù)介L(zhǎng)期化療患者體內(nèi)是主要治療手段,早期的實(shí)驗(yàn)通過(guò)在長(zhǎng)期培養(yǎng)體系中加入各種細(xì)胞因子如干細(xì)胞因子(stem cell factor, SCF)、白細(xì)胞介素(interleukin, IL)-3、IL-6、IL-1等來(lái)促進(jìn)CD34+細(xì)胞自我更新及分化,為獲得理想的造血祖細(xì)胞構(gòu)成,體系中各類因子的種類及劑量一直是研究的熱點(diǎn)。1989年Sutherland等[1]提取骨髓間充質(zhì)干細(xì)胞作為滋養(yǎng)層細(xì)胞在體外行長(zhǎng)期培養(yǎng)起始細(xì)胞(long-term culture-initiating cell, LTC-IC)實(shí)驗(yàn),成功培養(yǎng)出造血集落,骨髓來(lái)源間充質(zhì)干細(xì)胞(bone marrow-derived mesenchymal stem cells, BM-MSCs)顯示出其獨(dú)立的造血支持能力。隨后的研究證實(shí),間充質(zhì)干細(xì)胞存在于骨髓組織中,通過(guò)分泌造血相關(guān)因子及細(xì)胞黏附作用等參與造血干細(xì)胞的自我增殖與分化,在造血系統(tǒng)微環(huán)境中發(fā)揮重要作用。2000年,Gerson等[2]將高劑量化療后晚期乳腺癌患者自身MSCs及外周血祖細(xì)胞回輸體內(nèi),發(fā)現(xiàn)在第8天患者可明顯提高中性粒細(xì)胞及血小板數(shù),且未發(fā)生毒性反應(yīng)。2002年,Kadereit等[3]在MSCs作為滋養(yǎng)層細(xì)胞的LTC-IC實(shí)驗(yàn)中發(fā)現(xiàn)MSCs可促進(jìn)CD34+細(xì)胞的擴(kuò)增,同時(shí)通過(guò)調(diào)節(jié)BCL-2和P21降低造血干細(xì)胞的凋亡,而Noort等[4]提取胎肺MSCs與CD34+細(xì)胞同時(shí)移植入NOD/SCID小鼠體內(nèi),同樣證實(shí)了MSCs促進(jìn)CD34+細(xì)胞自我更新與分化的作用。臍帶間充質(zhì)干細(xì)胞由其易得性、易擴(kuò)增及低免疫原性,其可利用性高于其它組織來(lái)源的間充質(zhì)干細(xì)胞,而腫瘤壞死因子α(tumor necrosis factor-alpha,TNF-α)作為一類重要的炎癥因子,存在于各種病理生理反應(yīng)中[5],其對(duì)hUC-MSCs的作用不容忽視。本研究通過(guò)TNF-α預(yù)先刺激hUC-MSCs,檢測(cè)其因子分泌的變化對(duì)造血干細(xì)胞(hematopoietic stem cells,HSCs)增殖分化的影響,為完善hUC-MSCs造血支持作用的研究提供實(shí)驗(yàn)依據(jù)。
1主要試劑及儀器
DMEM/F12干粉培養(yǎng)基和胰酶購(gòu)自Gibco;胎牛血清(fetal bovine serum,FBS)購(gòu)自HyClone;人淋巴細(xì)胞分離液購(gòu)自天津?yàn)笊镏破房萍加邢薰荆籘NF-α、甲基纖維素半固體培養(yǎng)基MethoCultTMH4230、H4435和人臍血CD34陽(yáng)性分選試劑盒購(gòu)自Stemcell;CD34-FITC (fluorescein isothiocyanate)、CD11b-PE (phycoerythrin)、CD19-PE、CD29-PE、CD54-PE、CD45-PE、CD73-PE、CD80-PE、CD86-PE、CD90-PE、CD105-PE、CD31-PE、CD117-PE、HLA-DR-PE和HLA-G-PE購(gòu)自BD Biosciences;倒置相差顯微鏡 (Olympus);流式細(xì)胞儀(Becton Dickinson)。
2主要方法
2.1hUC-MSCs分離、培養(yǎng)、擴(kuò)增和鑒定 臍帶和臍血標(biāo)本取自天津市中心婦產(chǎn)醫(yī)院足月剖宮產(chǎn)新生兒,均經(jīng)父母授權(quán)同意,母血檢測(cè)肝炎病毒、艾滋病病毒、巨細(xì)胞病毒、梅毒、衣原體等病原學(xué)均為陰性。臍帶用含青/鏈霉素的PBS充分沖洗去除殘留血液,剪碎至(1~2)mm×1 mm×1 mm大小,依次用0.1%膠原酶Ⅱ和0.125%的胰蛋白酶于37 ℃各消化30 min,10%的人AB血清終止消化。消化混合物經(jīng)細(xì)胞篩過(guò)濾,收集濾液至離心管,DMEM/F12培養(yǎng)基洗滌2次。最后將細(xì)胞重懸于含10%FBS的DMEM/F12完全培養(yǎng)基,按1×106/cm2的密度將其接種于T-75培養(yǎng)瓶中,37 ℃、5%CO2、飽和濕度培養(yǎng)箱內(nèi)培養(yǎng)。細(xì)胞貼壁生長(zhǎng)至80%~90%融合時(shí),胰酶消化傳代。收集80%~90%融合細(xì)胞,分別用FITC或PE標(biāo)記的小鼠抗人單克隆抗體CD34、CD29、CD11b、CD19、CD45、CD54、CD73、CD80、CD86、CD90、CD105、CD31、CD117、HLA-G和HLA-DR孵育hUC-MSCs,以FITC-IgG和PE-IgG作為同型對(duì)照抗體,流式細(xì)胞術(shù)檢測(cè)。
2.2hUC-MSCs條件培養(yǎng)液收集 復(fù)蘇第3~5代hUC-MSCs,待細(xì)胞80%~90%融合時(shí),胰酶消化細(xì)胞,臺(tái)盼藍(lán)計(jì)活細(xì)胞個(gè)數(shù),取2×106個(gè)細(xì)胞,用10 mL含10%FBS的DMEM/F12培養(yǎng)基,刺激組加入TNF-α(10 μg/L),接種于75 cm2培養(yǎng)瓶中,置于37 ℃、5% CO2、飽和濕度的恒溫箱中,培養(yǎng)48 h時(shí)后收集hUC-MSCs培養(yǎng)上清,用0.22 μm濾膜過(guò)濾,分裝并凍存于-80 ℃?zhèn)溆谩?/p>
2.3Real-time PCR檢測(cè)hUC-MSCs各類造血相關(guān)因子基因表達(dá) 收集上述刺激組與未刺激組hUC-MSCs,提取RNA并逆轉(zhuǎn)為cDNA,行real-time PCR檢測(cè)粒細(xì)胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)、巨噬細(xì)胞集落刺激因子(macrophage colony-stimulating factor, M-CSF)、GM-CSF、干細(xì)胞因子(stem cell factor, SCF)、基質(zhì)細(xì)胞衍生因子1(stromal-derived factor 1, SDF-1)和IL-6 mRNA表達(dá)量,反應(yīng)條件為95 ℃ 2 min激活熱啟動(dòng)酶,94 ℃ 15 s,60 ℃ 30 s,45個(gè)循環(huán),60 ℃收集熒光信號(hào)。引物序列見(jiàn)表1。
表1 Real-time PCR引物序列
2.4分離純化臍血CD34+細(xì)胞 收集足月妊娠臍血標(biāo)本,獲知情同意,病原學(xué)檢測(cè)后PBS按1∶2的比例稀釋,以2∶1的比例平鋪至人淋巴細(xì)胞分離液上,2 300 r/min離心20 min,抽取中間的白膜層(單個(gè)核細(xì)胞層),PBS溶液洗滌2次。用人臍血CD34陽(yáng)性分選試劑盒分選CD34+細(xì)胞。部分分選細(xì)胞CD34-FITC抗體標(biāo)記,流式細(xì)胞術(shù)檢測(cè)分選細(xì)胞純度,余細(xì)胞用DMEM/F12重懸,濃度1×107/L。
2.5造血祖細(xì)胞集落培養(yǎng) 按以下分組接種以上CD34+細(xì)胞至6孔板:TNF-α刺激hUC-MSC上清+不完全甲基纖維素培養(yǎng)基;hUC-MSC上清+不完全甲基纖維素培養(yǎng)基;TNF-α+DMEM/F12完全培養(yǎng)基+不完全甲基纖維素培養(yǎng)基;完全甲基纖維素培養(yǎng)基;DMEM/F12完全培養(yǎng)基+不完全甲基纖維素培養(yǎng)基。每組2個(gè)復(fù)孔,終體積2 mL,其中條件培養(yǎng)液與甲基纖維素比例為1∶4,CD34+細(xì)胞懸液與終培養(yǎng)基體積比例為1∶10,于37 ℃、5%CO2,飽和濕度孵箱中培養(yǎng),觀察集落形成單位的形態(tài)和種類,第10天記錄≥50個(gè)細(xì)胞組成的集落形成單位數(shù)量。
2.6流式細(xì)胞術(shù)檢測(cè)分析 分別取第10天實(shí)驗(yàn)組中形成集落形成單位的細(xì)胞孵育抗CD11b-PE、CD45-PE和CD14-PE鼠抗人抗體,流式細(xì)胞術(shù)分析,結(jié)果由CellQuest軟件處理,檢測(cè)集落形成單位細(xì)胞的免疫表型。
3統(tǒng)計(jì)學(xué)處理
數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,采用SPSS 13.0統(tǒng)計(jì)軟件進(jìn)行兩樣本t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1hUC-MSCs形態(tài)與表型特征
倒置顯微鏡觀察到hUC-MSCs在2~4 h內(nèi)即貼壁生長(zhǎng),紡錘形,2~3 d細(xì)胞增長(zhǎng)達(dá)高峰,呈旋渦狀排列。流式細(xì)胞術(shù)檢測(cè)發(fā)現(xiàn),細(xì)胞表面標(biāo)志CD11b、CD19、CD34、CD45、HLA-G、CD80、CD86、CD117、CD31和HLA-DR為陰性;CD29、CD54、CD73、CD90和CD105為陽(yáng)性,可認(rèn)為所分選細(xì)胞為臍帶間充質(zhì)干細(xì)胞。
2Real-timePCR檢測(cè)造血相關(guān)因子的表達(dá)
Real-time PCR檢測(cè)TNF-α(10 μg/L)刺激48 h后臍帶間充質(zhì)干細(xì)胞各類造血相關(guān)因子mRNA表達(dá)的變化,其中刺激后G-CSF和IL-6表達(dá)量上調(diào),差異有統(tǒng)計(jì)學(xué)意義;GM-CSF雖無(wú)統(tǒng)計(jì)學(xué)意義,主要是因?yàn)椴煌瑐€(gè)體間差異較大,導(dǎo)致方差較大,見(jiàn)圖1。
Figure 1. Quantitative analysis of G-CSF, M-CSF, GM-CSF, SCF, SDF-1 and IL-6 mRNA expression in control and TNF-α (10 μg/L)-stimulated hUC-MSCs. Mean±SD.n=3.*P<0.05,**P<0.01vscontrol group.
圖1TNF-α刺激組與未刺激組hUC-MSCs中G-CSF、M-CSF、GM-CSF、SCF、SDF-1和IL-6mRNA的相對(duì)表達(dá)量
3造血集落形成單位形態(tài)及集落數(shù)
流式細(xì)胞術(shù)檢測(cè)分選細(xì)胞中CD34+細(xì)胞比例大于95%,見(jiàn)圖2,符合后續(xù)實(shí)驗(yàn)要求。
Figure 2. The frequency of the umbilical cord blood-derived CD34+cells after isolation assayed by flow cytometry.
圖2臍血分選CD34+細(xì)胞純度分析
倒置顯微鏡觀察實(shí)驗(yàn)組、陽(yáng)性對(duì)照組和陰性對(duì)照組集落形成情況。(1)陽(yáng)性對(duì)照組與實(shí)驗(yàn)組均有集落形成,但各集落形成單位的種類和數(shù)量不同;只加入TNF-α組及陰性對(duì)照組未見(jiàn)集落形成單位。(2)實(shí)驗(yàn)組中可見(jiàn)粒系集落形成單位(granulocyte colony-forming unit,CFU-G)、巨噬系集落形成單位(macrophage colony-forming unit,CFU-M)和粒-巨噬集落形成單位(granulocyte-macrophage colony-forming unit,CFU-GM),未見(jiàn)紅系爆式集落形成單位 (erythroid burst-forming unit,BFU-E)、紅系集落形成單位(erythroid colony-forming unit,CFU-E)和粒-紅-巨噬-巨核集落形成單位(granulocyte-erythroid-macrophage-megakaryocyte colony-forming unit,CFU-GEMM),陽(yáng)性對(duì)照各系集落形成單位均可見(jiàn),見(jiàn)圖3。(3)計(jì)數(shù)刺激組與未刺激組各類集落數(shù),差異有統(tǒng)計(jì)學(xué)意義,見(jiàn)圖4。由此可見(jiàn),hUC-MSC條件培養(yǎng)基單獨(dú)作用能促進(jìn)CD34+細(xì)胞的分化,即促進(jìn)造血干細(xì)胞主要向除紅細(xì)胞以外的髓系細(xì)胞分化,加入TNF-α后該作用加強(qiáng)。
Figure 3. CFU-M(A),CFU-G(B),CFU-GM (C),BFU-E(D) and CFU-GEMM(E) after cultured for 10 d in conditioned culture medium and positive control(×40).
圖3條件培養(yǎng)基及陽(yáng)性對(duì)照組培養(yǎng)第10天各類集落形態(tài)
Figure 4. The numbers of CFU formed by umbilical cord blood derived-CD34+cells in control and TNF-α stimulation group. Mean±SD.n=3.*P<0.05vscontrol.
圖4刺激組與未刺激組條件培養(yǎng)基中集落細(xì)胞數(shù)比較
4集落形成單位的細(xì)胞免疫表型檢測(cè)結(jié)果
收集第10天集落形成細(xì)胞,流式細(xì)胞術(shù)檢測(cè)CD11b-PE、CD45-PE和CD14-PE,刺激組與未刺激組相比無(wú)明顯差異,均高表達(dá)髓系標(biāo)志CD45,見(jiàn)表2。
表2集落形成細(xì)胞表型分析
Table 2. Phenotypic characteristics of the colony-forming cells (%.Mean±SD.n=3)
GroupCD45CD14CD11bControl99.01±0.4640.16±5.1841.88±8.28TNF-α98.20±1.0337.57±2.4952.51±6.99
骨髓造血微環(huán)境一般定義為基質(zhì)干細(xì)胞、造血因子及細(xì)胞外基質(zhì),而其中主要的基質(zhì)干細(xì)胞即BM-MSCs。BM-MSCs主要通過(guò)細(xì)胞-細(xì)胞接觸及分泌各類造血相關(guān)蛋白因子發(fā)揮其造血支持作用,其中包括維持HSCs的穩(wěn)定性,促進(jìn)其自我更新及多向分化[6-7]。本實(shí)驗(yàn)主要收集TNF-α刺激48 h后hUC-MSC培養(yǎng)上清,體外檢測(cè)其對(duì)CD34+細(xì)胞集落形成的影響,從分泌因子的角度考慮其造血支持能力。
一般認(rèn)為TNF-α單獨(dú)作用于造血集落是一種造血負(fù)調(diào)控因子,在體外實(shí)驗(yàn)中從1~100 U/mL的濃度,TNF-α對(duì)CFU-E、CFU-G、CFU-M、CFU-GM和CFU-GEMM表現(xiàn)出不同的抑制作用[8-10],然而動(dòng)物實(shí)驗(yàn)中,直接注射TNF-α到正常及白血病小鼠體內(nèi),小鼠骨髓及脾臟CFU-M、CFU-GM及BFU-E表現(xiàn)為促進(jìn),僅CFU-E表現(xiàn)為抑制[11]??梢?jiàn)TNF-α對(duì)造血干/祖細(xì)胞的影響不能單獨(dú)定論,其作用方向與其作用環(huán)境相關(guān)。G-CSF、M-CSF、GM-CSF、SCF、SDF-1和IL-6均為公認(rèn)的造血相關(guān)因子,且在過(guò)去的研究中證實(shí)MSCs主要通過(guò)分泌造血相關(guān)因子,結(jié)合其基質(zhì)成分調(diào)節(jié)造血功能[12-13]。本實(shí)驗(yàn)real-time PCR 結(jié)果顯示hUC-MSCs本身表達(dá)上述各類因子,經(jīng)TNF-α刺激48 h后G-CSF、M-CSF、GM-CSF和IL-6表達(dá)量上調(diào)或具有上調(diào)趨勢(shì),這與集落形成中對(duì)照組與刺激組均形成集落且刺激組CFU-GM較未刺激組大約兩倍的結(jié)果相符。由此可見(jiàn),hUC-MSCs單獨(dú)具有促進(jìn)CD34+細(xì)胞分化為造血祖細(xì)胞形成造血集落的功能,而TNF-α刺激后通過(guò)上調(diào)其造血因子的表達(dá)加強(qiáng)此作用,且此加強(qiáng)作用遠(yuǎn)遠(yuǎn)超過(guò)了TNF-α本身對(duì)上述集落形成的抑制作用。此外,TNF-α刺激hUC-MSCs后,其表達(dá)SCF下調(diào),我們認(rèn)為這是間充質(zhì)干細(xì)胞置身于類似炎癥微環(huán)境中,表現(xiàn)出與各類血細(xì)胞類似的分化成熟趨勢(shì),但并未改變其基本性狀,相反有可能激發(fā)了其它因子的分泌。同時(shí)刺激前后hUC-MSCs均未檢測(cè)到促紅細(xì)胞生成素(erythropoietin, EPO),這可能與MSCs本身特性有關(guān),在以往實(shí)驗(yàn)中BM-MSCs同樣未檢測(cè)到EPO表達(dá),有報(bào)道顯示BM-MSCs與CD34+共培養(yǎng)體系集落形成實(shí)驗(yàn)中可形成BFU-E,但其數(shù)量相對(duì)于粒系集落則少之又少。且Roodman等[9]在體外實(shí)驗(yàn)中證實(shí)TNF-α刺激15 min后即表現(xiàn)出對(duì)CFU-E和BFU-E形成的抑制效果,同時(shí)不同個(gè)體紅系集落對(duì)TNF-α的敏感性差異達(dá)上百倍。本實(shí)驗(yàn)最后收集記錄形成在流式細(xì)胞術(shù)中CD45的近乎全陽(yáng)性表達(dá)的結(jié)果與上述RT-PCR結(jié)果是相符的。因此我們認(rèn)為本實(shí)驗(yàn)中無(wú)紅系集落形成可能與hUC-MSCs本身支持紅系分化較弱[14]及TNF-α對(duì)CFU-E的抑制作用有關(guān)[15]。綜合來(lái)看,我們可以認(rèn)為TNF-α在體內(nèi)實(shí)驗(yàn)中出現(xiàn)與體外實(shí)驗(yàn)相反結(jié)果可以用其在體內(nèi)與MSCs相互作用來(lái)解釋,即與本實(shí)驗(yàn)結(jié)果相符。
鑒于本實(shí)驗(yàn)僅收集培養(yǎng)上清而無(wú)hUC-MSCs與CD34+細(xì)胞共培養(yǎng),即無(wú)細(xì)胞間直接接觸作用,其中hUC-MSCs對(duì)造血干細(xì)胞的作用僅限其分泌的因子,與經(jīng)典的LTC-IC實(shí)驗(yàn)結(jié)果可能有出入,但足以說(shuō)明hUC-MSCs間接對(duì)造血干/祖細(xì)胞的作用,即hUC-MSCs能通過(guò)分泌造血相關(guān)因子促進(jìn)造血集落形成,TNF-α通過(guò)上調(diào)hUC-MSCs的G-CSF、M-CSF、GM-CSF和IL-6表達(dá)量加強(qiáng)其造血支持作用,而深入、更全面的TNF-α對(duì)hUC-MSCs造血支持能力的影響有待于體內(nèi)試驗(yàn)的開(kāi)展。
[1] Sutherland HJ, Eaves CJ, Eaves AC, et al. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesisinvitro[J]. Blood,1989,74(5):1563-1570.
[3] Kadereit S, Deeds LS, Haynesworth SE, et al. Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34+/CD38-early progenitors cultured over human MSCs as a feeder layer[J]. Stem Cells,2002,20(6):573-582.
[4] Noort WA, Kruisselbrink AB, in’t Anker PS, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+cells in NOD/SCID mice[J]. Exp Hematol,2002,30(8):870-878.
[5] Satomi N, Haranaka K, Kunii O. Research on the production site of tumor necrosis factor (TNF)[J]. Jpn J Exp Med,1981,51(6):317-322.
[6] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147.
[7] Mendez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J]. Nature,2010,466(7308):829-834.
[8] Broxmeyer HE, Williams DE, Lu L, et al. The suppressive influences of human tumor necrosis factors on bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: synergism of tumor necrosis factor and interferon-gamma[J]. J Immunol,1986,136(12):4487-4495.
[9] Roodman GD, Bird A, Hutzler D, et al. Tumor necrosis factor-alpha and hematopoietic progenitors: effects of tumor necrosis factor on the growth of erythroid progenitors CFU-E and BFU-E and the hematopoietic cell lines K562, HL60, and HEL cells[J]. Exp Hematol,1987,15(9):928-935.
[10] Beran M, O’Brien S, Gutterman JU, et al. Tumor necrosis factor and human hematopoiesis: I. Kinetics and diversity of human bone marrow cell response to recombinant tumor necrosis factor alpha in short-term suspension culturesinvitro[J]. Hematol Pathol,1988,2(1):31-42.
[11] Johnson CS, Chang MJ, Furmanski P.Invivohematopoietic effects of tumor necrosis factor-alpha in normal and erythroleukemic mice: characterization and therapeutic applications[J]. Blood,1988,72(6):1875-1883.
[12] Sze SK, De Kleijn DP, Lai RC, et al. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells[J]. Mol Cell Proteomics,2007,6(10):1680-1689.
[13] 毛文哲, 許 超, 李揚(yáng)秋, 等. 長(zhǎng)期培養(yǎng)人臍帶間充質(zhì)干細(xì)胞PCNA、IL-6、IL-11和galectin-3的表達(dá)[J]. 中國(guó)病理生理雜志,2012,28(6):1051-1056.
[14] 莫世靜, 童秀珍, 鐘 茜, 等. 骨髓間充質(zhì)干細(xì)胞通過(guò)上調(diào)EPO表達(dá)減輕缺氧損傷引起的PC12細(xì)胞凋亡[J]. 中國(guó)病理生理雜志,2013,29(1):62-69.
[15] Chen HW, Chen HY, Wang LT, et al. Mesenchymal stem cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through growth-regulated oncogene chemokines[J]. J Immunol,2013,190(10):5065-5077.
TNF-αenhanceshematopoiesis-supportiveeffectofconditionedculturemediumfromhumanumbilicalcord-derivedMSCsinvitro
HU Cai-dong1, HAN Zhi-bo2,3, YANG Zhou-xin3, LI Li-na1, LUO Wei-feng1, JI Yue-ru3, WANG You-wei3, LI Yang-qiu1, HAN Zhong-chao1, 2, 3
(1InstituteofHematology,theFirstClinicalMedicalCollege,JinanUniversity,Guangzhou510632,China;2TEDALifeScienceandTechnologyResearchCenter,InstituteofHematology,ChineseAcademyofMedicalSciences,Tianjin300457,China;3StateKeyLaboratoryofExperimentalHematology,InstituteofHematology,ChineseAcademyofMedicalSciencesandPekingUnionMedicalCollege,Tianjin300020,China.E-mail:hanzhongchao@hotmail.com)
AIM: To study the influence of tumor necrosis factor-alpha (TNF-α)-stimulated conditioned culture medium from human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on the colony-forming ability of umbilical cord blood CD34+cells in semisolid medium.METHODSThe hUC-MSCs were cultured in 75-cm2culture flasks at a concentration of 2×106cells per flask, with or without TNF-α (10 μg/L), and their culture supernatants were harvested as the conditioned culture medium 48 h later. The hUC-MSCs were collected and their RNA was extracted. Real-time PCR was performed to detect the mRNA expression of hematopoietic factors. Umbilical cord blood mononuclear cells were isolated by Ficoll-Paque density gradient centrifugation, and then CD34+cells were isolated using Human Cord Blood CD34 Positive Selection Kit. The CD34+cells were divided into the following five groups: TNF-α group (TNF-α-stimulated hUC-MSC culture supernatant added into incomplete methylcellulose medium), control group (unstimulated hUC-MSC culture supernatant added into incomplete methylcellulose medium), positive group (complete methylcellulose medium with recombinant human cytokines), TNF-α+DMEM/F12 group (TNF-α and DMEM/F12 medium with 10% FBS added into incomplete methycellulose medium) and DMEM/F12 group (DMEM/F12 medium with 10% FBS added into incomplete methycellulose medium). Ten days later, the number of the colony-forming units (CFU) was counted, and the cells were collected to detect the surface markers by flow cytometry.RESULTS(1) TNF-α stimulation significantly up-regulated the mRNA expression of granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) in hUC-MSCs. (2) Granulocyte CFU (CFU-G), macrophage CFU (CFU-M) and granulocyte-macrophage CFU (CFU-GM) were observed in both TNF-α and control groups. The numbers of CFU-G and CFU-M in TNF-α group were 1.5 times as large as those in control group, and the number of CFU-GM in TNF-α group was even twice as large as that in control group. Granulocyte-erythroid-macrophage-megakaryocyte CFU (CFU-GEMM) and erythroid burst-forming units (BFU-E) were only observed in positive group, and no CFU was observed in TNF-α+DMEM/F12 and DMEM/F12 groups. (3) Flow cytometry showed no differences of CD14, CD45 and CD11b expression on the colony-forming cells between TNF-α and control groups.CONCLUSIONTNF-α can enhance the hematopoiesis-supportive effect of conditioned culture medium from hUC-MSCsinvitro.
Mesenchymal stem cells; Tumor necrosis factor-alpha; Hematopoiesis
R363
A
1000- 4718(2013)09- 1679- 06
2013- 05- 10
2013- 07- 15
國(guó)家重大科學(xué)計(jì)劃“973計(jì)劃”(No.2011CB964800)
△通訊作者 Tel:022-23909172;E-mail:hanzhongchao@hotmail.com
10.3969/j.issn.1000- 4718.2013.09.025