王海華, 姜玉新, 高 欣, 閔志雪, 林 浩, 崔鳳娟
(皖南醫(yī)學院 1生理學教研室, 2醫(yī)學一系,安徽 蕪湖 241002)
急性心肌梗死大鼠缺血心肌中差異microRNA的表達譜分析*
王海華1△▲, 姜玉新1▲, 高 欣2, 閔志雪1, 林 浩2, 崔鳳娟1
(皖南醫(yī)學院1生理學教研室,2醫(yī)學一系,安徽 蕪湖 241002)
目的篩選急性心肌梗死(AMI)大鼠缺血心肌中差異表達的microRNAs(miRNAs),預測其靶基因并分析其可能的生物學功能。方法結扎冠狀動脈左前降支建立雄性Wistar大鼠AMI模型,同時檢測其心電圖和頸總動脈血壓變化,并用TTC法測定心肌梗死面積;假手術(sham)組除不結扎冠狀動脈左前降支外,其它實驗程序與AMI組相同。心肌缺血4 h后取梗死區(qū)心肌組織,提取總RNA進行microRNA芯片雜交檢測,并用real-time PCR進行驗證;生物信息學方法預測差異miRNAs的靶點并分析其生物學功能。結果心電圖、血壓檢測及病理切片證實AMI模型制備成功。Microarray檢測結果表明,與sham組相比,獲得11個與急性心肌梗死相關的miRNAs,其中6個miRNAs上調表達,5個miRNAs下調表達;已知3個miRNAs(rno-miR-181c、rno-miR-146b和rno-miR-208)參與了心血管功能的調節(jié),8個miRNAs(rno-miR-672*、rno-miR-743b、rno-miR-128、rno-miR-138-1*、rno-miR-336、rno-miR-138-2*、rno-miR-325-3p和rno-miR-3572)是否與心血管功能有關尚不清楚,可能是心肌梗死相關的新的生物標志物。預測的miRNA靶基因中的一部分亦與心血管功能相關。結論本研究獲得的與AMI相關的差異miRNAs,可能是急性心肌梗死新的生物標志物和潛在的治療靶點。
急性心肌梗死; 微小RNA; 表達譜; 生物信息學
冠心病、心肌缺血和心肌梗死,尤其是急性心肌梗死(acute myocardial infarction, AMI)是臨床的常見病和多發(fā)病,其發(fā)病率及致死率逐年升高。MicroRNAs (miRNAs)是一類高度保守的內源性非編碼單鏈小分子RNA,長度約為19~25個核苷酸,對蛋白表達起轉錄后調控作用,且其表達具有一定的組織特異性[1]。已有研究表明,miRNAs參與了心肌肥厚、心肌缺血、心律失常等多種病理生理過程[2-8],是一類重要的內源性調節(jié)因子。miRNAs在AMI的發(fā)生發(fā)展過程中其表達呈現(xiàn)出時序性。如miR-1和miR-206在心梗后1周、2周和4周的含量持續(xù)上升,心梗4周時miR-1上調20倍和miR-206上調15倍[5]。van Rooij等[9]亦觀察到此現(xiàn)象,在大鼠心梗后3 d和14 d梗死心肌邊緣區(qū)(border zone)和遠離區(qū)(remote zone)檢測到了不同數(shù)量的miRNAs的表達。這說明miRNAs在心肌梗死的發(fā)病過程具有多樣性與復雜性。但miRNAs在心肌缺血中的功能與機制研究尚處于起步階段,尤其是有關心肌缺血早期miRNAs改變的報道較少。本研究擬復制大鼠AMI模型,篩選梗死心肌差異表達的miRNAs,并通過生物信息學預測其靶基因,探討其與AMI的發(fā)生發(fā)展的關系,為防治心肌缺血性損傷提供新的實驗依據(jù)和可能的治療靶點。
1動物及分組
雄性清潔級Wistar大鼠[(200±20) g] 6只,由南京青龍山動物繁殖場提供,實驗動物合格證號為SCXK(蘇)2007-0001,隨機分為2組(n=3):AMI組和假手術(sham)組。AMI大鼠25%氨基甲酸乙酯(4 mL/kg,ip)麻醉后,仰臥固定于鼠臺上,記錄心電圖,通過插入氣管插管,連接動物呼吸機維持正常通氣(潮氣量3 mL/kg,呼吸比1.5∶1,呼吸頻率70min-1)。胸骨左側順第3~4肋肋間隙方向切開皮膚,逐層分離皮下組織、肌肉,開胸器于3~4肋間撐開進胸,暴露心臟,用6-0無損傷縫線在左心耳下緣1~2 mm處連同少量心肌組織縫扎左冠狀動脈前降支。穩(wěn)定10 min確定無出血后,逐層關胸。心電圖檢測可見ST段呈弓背向上型明顯抬高,血壓明顯下降。2, 3, 5-氯化三苯基四氮唑(2, 3, 5-triphenyltetrazolium chloride, TTC)染色法對冠狀動脈左前降支結扎4 h的大鼠心肌進行梗死面積測定,通過對比分析證實AMI模型成功。心肌缺血4 h后取梗死區(qū)心肌組織于液氮保存。Sham組除不結扎冠狀動脈左前降支外,其它處理與AMI組相同。
2缺血區(qū)心肌組織總RNA的提取
將約100 mg缺血區(qū)心肌組織用液氮研磨成粉末,加入1 mL TRIzol?(Invitrogen)混合,按TRIzol和miRNeasy Mini Kit(Qiagen)說明書進行總RNA提取,提取的RNA用ND-1000分光光度計(Nanodrop Technologies)檢測其質量和含量,用瓊脂糖凝膠電泳檢測RNA的完整性,兩者均合格后方可進行后續(xù)實驗。
3芯片雜交
3.1探針標記 RNA用miRCURYTMHy3TM/Hy5TMPower Labeling Kit(Exiqon)按說明書進行標記。用Hy3TM熒光標記液進行3’末端標記1 μg/樣本,并用T4 RNA連接酶按下列步驟進行連接:2.0 μL RNA溶液(0.5 g/L)和1.0 μL CIP緩沖液及CIP(Exiqon)混合后37 ℃孵育30 min,95 ℃終止反應5 min;然后加入3.0 μL標記緩沖液,1.5 μL Hy3TM熒光標記液(Exiqon),2.0 μL DMSO,2.0 μL標記酶,混勻后16 ℃孵育1 h,65 ℃終止反應15 min。
3.2miRNA芯片雜交 雜交用芯片為miRCURYTMLNA Array 18.0(Exiqon,包括miRBase 18.0注釋的覆蓋所有人、大鼠和小鼠的miRNAs及與這些物種相關的病毒miRNAs,共3 100個探針),雜交按照說明書進行。具體操作如下:取25 μL Hy3TM標記的樣本與25 μL雜交緩沖液混合,95℃變性2 min,冰上放置2 min,然后在12-Bay Hybridization System(NimbleGen)上進行芯片雜交,56 ℃雜交16~20 h,用Wash Buffer Kit(Exiqon)洗滌芯片3次,400 r/min離心5 min甩干。用Axon GenePix 4000B Microarray Scanner(Axon Instruments)進行圖像掃描。為保證結果的可重復性和可靠性,每組均用3張芯片進行3次獨立實驗。
3.3芯片結果的real-time PCR驗證
3.3.1引物設計 隨機挑取4個差異表達的miRNAs,用Primer 5.0進行特異性引物設計。同時以U6為內參照,見表1。引物由生工生物工程(上海)股份有限公司合成。
表1 Real-time PCR使用的引物
3.3.2Real-time PCR 反應體系為10 μL:5 μL 2×PCR master mix(Exiqon),0.5 μL PCR特異引物F(10 μmol/L),0.5 μL PCR特異引物R(10 μmol/L),2 μL H2O,加入2 μL cDNA后混勻。PCR反應條件為:95 ℃ 10 min;95 ℃ 10 s;60 ℃ 60 s(收集熒光),40個循環(huán)。為建立PCR產物的熔解曲線,擴增反應結束后,按 95 ℃ 10 s、60 ℃ 60 s、95 ℃ 15 s,并從60 ℃緩慢加熱到99 ℃(儀器自動進行-Ramp Rate為2%)。各樣品的目的miRNAs和U6分別進行real-time PCR反應。PCR反應在ABI PRISM7900 System(Applied Biosystems)進行。
3.4miRNA靶基因的預測和功能分析
3.4.1miRNA靶基因的預測 使用miRanda(http://microrna.org/microrna/home.do)、miRBase(http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/)和miRDB(http://mirdb.org/miRDB/)常用數(shù)據(jù)庫對差異表達的miRNAs進行靶基因預測。為了減少假陽性,同一miRNA的靶基因至少在2個以上的數(shù)據(jù)庫同時出現(xiàn),方可進行后續(xù)分析。
3.4.2miRNA靶基因的功能分類 根據(jù)Gene Ontology(http://www.geneontology.org)的分類原則對miRNA靶基因進行分類,同時分析了每一大類中的主要亞類(前10個亞類)。
4數(shù)據(jù)分析
掃描的圖片用GenePix Pro 6.0軟件(Axon)進行數(shù)據(jù)提取,并進行數(shù)據(jù)標準化處理。差異表達的miRNAs用volcano plot filtering鑒定,用MeV 4.6(TIGR)進行系統(tǒng)聚類。實時定量PCR數(shù)據(jù)采用2-ΔΔCt法進行分析。芯片雜交及數(shù)據(jù)分析均由上??党缮锕こ逃邢薰就瓿?。數(shù)據(jù)以均數(shù)±標準差(mean±SD)表示,組內比較用配對t檢驗,多組均數(shù)
比較用單因素方差分析(One-way ANOVA),兩兩比較用SNK法,以P<0.05為差異有統(tǒng)計學意義。
1各組大鼠心電圖及心肌梗死面積的示意圖
與sham組相比,AMI組大鼠II導聯(lián)心電圖ST段抬高,出現(xiàn)寬大的QRS波,T波倒置,同時其血壓明顯下降,見圖1。通過TTC法對冠狀動脈左前降支結扎4 h的大鼠心肌進行梗死面積測定,可明顯見到缺血未梗死區(qū)(紅色區(qū))和缺血梗死區(qū)(白色區(qū)),見圖2,通過對比分析證實AMI模型成功。
Figure 1. Representative changes of electrocardiogram and blood pressure in rats during acute myocardial infarction.
圖1急性心梗模型大鼠的心電圖和血壓變化
Figure 2. Observation of ischemic myocardium (TTC staining). A: sham; B~D: ischemic regions of myocardium.
圖2大鼠心肌梗死區(qū)示意圖
2差異表達的miRNAs篩選
與sham組相比,篩選出11個與急性心肌梗死相關的差異表達miRNAs(上調>1.3倍或下調<0.76倍),見表2。其中6個miRNAs表達上調,分別是rno-miR-672*、rno-miR-743b、rno-miR-128、rno-miR-138-1*、rno-miR-336和rno-miR-138-2*。5個miRNAs表達下調,分別是rno-miR-181c、rno-miR-146b、rno-miR-325-3p、rno-miR-208和rno-miR-3572。在火山圖中可見上調表達的6個miRNAs位于圖中右側,而下調表達的5個miRNAs則位于左側,見圖3A。系統(tǒng)聚類圖中可見差異表達的miRNAs的變化情況,見圖3B。
表2急性心肌梗死相關的差異表達的miRNAs
Table 2. Differentially expressed miRNAs in ischemic myocardium of rats after acute myocardial infarction
miRNAFoldchangePUp-regulationrno-miR-672*2.6431070.043074rno-miR-743b2.0781840.008223rno-miR-1281.5927020.040501rno-miR-138-1*1.4706660.045936rno-miR-3362.9711930.003887rno-miR-138-2*1.6222890.033825Down-regulationrno-miR-181c0.5717890.004967rno-miR-146b0.5414320.023792rno-miR-325-3p0.4381130.036996rno-miR-2080.7355030.031335rno-miR-35720.3908910.048627
Figure 3. Volcano plot (A) and hierarchical clustering (B) of differentially expressed miRNAs.
圖3差異表達的miRNAs的火山圖和系統(tǒng)聚類分析
3Real-timePCR檢測
隨機選取4個miRNAs(rno-miR-743b、rno-miR-336、rno-miR-146b和rno-miR-181c)進行real time-PCR 驗證,同時以U6為內參照,對數(shù)據(jù)進行歸一化處理,并與miRNA芯片數(shù)據(jù)進行比較發(fā)現(xiàn),兩者的結果相一致,見圖4,說明miRNA芯片結果的可靠性。
4miRNAs的功能分析
11個差異表達的miRNAs中,已報道的與心血管系統(tǒng)功能有關的有3個,分別是rno-miR-181c、rno-miR-146b 和rno-miR-208,見表3。其它的miRNAs在心血管中的功能尚不清楚。
5miRNAs靶基因的預測
通過miRanda、miRBase和miRDB 3個預測大鼠miRNA靶點的數(shù)據(jù)庫對11個差異miRNAs的靶點進行預測,這些靶基因在3個數(shù)據(jù)庫中分布的數(shù)量及重疊情況見圖5。由圖可見,在3個數(shù)據(jù)庫中均出現(xiàn)的共有61個,它們的具體靶點見表4。其它靶基因僅出現(xiàn)在1個或2個數(shù)據(jù)庫中(結果未顯示)。從表4中可見,僅4種miRNAs的靶基因在3個數(shù)據(jù)庫中均出現(xiàn),這些miRNAs分別是rno-miR-181c、rno-miR-208、rno-miR-336和rno-miR-743b。
對所有靶基因進行GO分類后,對生物過程(biological process, BP)、細胞組分(cellular component, CC)和分子功能(molecular function, MF)的前10亞類進行了初步分析,結果表明在BP大類中,參與細胞過程(cellular process)的靶基因最多,為543個;其次是代謝過程(metabolic process,411個)、主要代謝過程(primary metabolic process,369個)和細胞代謝過程(cellular metabolic process,350個),見圖6A;在CC大類中,胞內組分(intracellular)的靶基因最多,為520個,其次分別是胞內部分(intracellular part,513個)、細胞器(organelle,439個)和胞內細胞器(intracellular organelle,437個),見圖6B;而在MF大類中,這些靶基因主要參與了結合(binding,582個)、蛋白結合(protein binding,460個)、催化活性(catalytic activity,282個)和水解酶活性(hydrolase activity,113個)等功能,見圖6C。這些靶基因的分布展示了在急性心肌梗死發(fā)生過程中的基因表達變化。
Figure 4. Confirmation of differentially expressed miRNAs in rat ischemic myocardium by real-time PCR.A:rno-miR-743b;B:rno-miR-336;C:rno-miR-146b;D:rno-miR-181c. Meam±SD.n=3.*P<0.05vssham group.
圖4差異表達的miRNAs的real-timePCR驗證
表3 差異表達的miRNAs在心血管系統(tǒng)中的功能分析
Figure 5. Distribution of the target genes of differentially expressed miRNAs in ischemic myocardium from AMI rats in three databases, including miRanda, miRBase and miRDB.
圖5miRNA靶點在miRanda、miRBase和miRDB3個數(shù)據(jù)庫中的分布
表4在miRanda、miRBase和miRDB3個數(shù)據(jù)庫中均出現(xiàn)的miRNA靶點列表
Table 4. Target genes of differentially expressed miRNAs from AMI rats listed in all three databases, including miRanda, miRBase and miRDB
miRNATargetrno-mir-181cACSL1,BTNL8,CBX7,CD4,CMTM8,CYR61,DNAJA1,DNAJA4,EHD4,EIF4A2,ESM1,HPGD,NCBP1,NNT,OAT,PDAP1,PI4K2B,PLEKHA3,PRKCD,PSIP1,RECQL,SYNPR,TIMP3,TINAG,TMEM27,TN-FRSF11B,VRK3rno-miR-208SLC39A3,SRRrno-miR-336EBP,EIF2AK3,ITIH4,LRRC33,RBMS1,TIMM23rno-miR-743bACCN5,ALG5,AMIGO2,BAG3,BBS7,BCAT1,BTRC,CAPN7,COPB1,CXCL1,DMGDH,ELAVL2,ERRFI1,EXOSC9,HSD3B1,LOC171573,MAPK9,MMP10,PTF1A,RGS14,SLC39A9,SMAD2,SUB1,TANC1,TM7SF3,TTC5
急性心肌梗死是臨床的常見病和多發(fā)病,其發(fā)病率逐年升高。miRNAs參與急性心肌梗死的病理生理過程[5-6,10],并受到高度關注。miRNAs在急性心肌梗死的發(fā)生發(fā)展過程中其表達呈現(xiàn)時序性。van Rooij等[9]用miRNA芯片分析了在冠狀動脈左前降支結扎所致大鼠心肌梗死模型中梗死心肌邊緣區(qū)和遠離區(qū)的miRNAs表達,發(fā)現(xiàn)在心梗后第3天,邊緣區(qū)有17個miRNAs上調,遠離區(qū)有12個miRNAs上調;而心梗后第14天則分別變?yōu)?9個和40個上調。本研究成功制備了AMI大鼠模型,并觀察了心梗后4 h的miRNAs表達譜,共獲得11個差異表達的miRNAs。其中有3個miRNAs(rno-miR-181c、rno-miR-146b和rno-miR-208)參與了心血管功能的調節(jié)。如miR-208是心梗特有的miRNA,可作為心肌損傷的分子標志物[19],在心梗病人中表達上調[18]。而我們發(fā)現(xiàn)rno-miR-208在心梗后4 h表達下調,該結果說明了miRNA在心梗的發(fā)生發(fā)展過程中呈現(xiàn)動態(tài)變化。
miRNAs是一類對蛋白表達具有轉錄后調控作用的內源性非編碼單鏈小分子RNA,分析心肌梗死相關的差異表達miRNAs對了解其功能非常重要。我們將獲得的11個差異miRNAs對miRanda、miRBase和miRDB 3個數(shù)據(jù)庫進行搜索后,獲得了共9 037個miRNA靶基因,通過對部分靶基因進行功能搜索后發(fā)現(xiàn),它們中有一些參與了心血管功能的調節(jié),如rno-miR-743b 的靶基因之一CXCL1在白細胞介素1刺激的心臟成纖維細胞中高表達[21],而心臟成纖維細胞在缺血心肌修復中具有重要的作用[22-23]。而本研究獲得的幾個miRNAs及其靶基因(數(shù)據(jù)未顯示)與心血管功能尤其是在AMI的相關性均未見報道,如rno-miR-672*、rno-miR-128、rno-miR-138-1*、rno-miR-336、rno-miR-138-2*、rno-miR-325-3p和rno-miR-3572,它們可能是AMI發(fā)生發(fā)展的早期的新的分子標志物,且其功能有待進一步研究。同時對所有靶基因進行了GO分類,這些靶基因主要參與了細胞過程、代謝過程和生物調節(jié)等生物過程,主要由胞內組分、胞內細胞器和膜結合組分等細胞組分構成,而其功能涉及到蛋白結合、催化和水解酶活性等,這從總體上反映了AMI過程中miRNAs及其調控的基因網(wǎng)絡的變化。
總之,本研究通過對AMI大鼠的缺血早期的心肌進行miRNA芯片篩選,獲得了11個差異表達miRNAs,除了已報道的參與了心血管功能的部分miRNAs外,我們還發(fā)現(xiàn)了幾個新的與AMI有關的miRNAs。但這些miRNAs的靶點是什么,它們在心肌缺血狀態(tài)下是如何影響靶蛋白的表達,繼而影響缺血心肌的結構和功能,我們將在細胞分子水平進一步闡明它們在心肌缺血中的作用及機制,為防治和減輕心肌缺血性損傷提供更多的實驗依據(jù)。
Figure 6. Distribution of the target genes of differentially expressed miRNAs in ischemic myocardium from AMI rats using Gene Ontology method. A:biological process;B:cellular component;C:molecular function.
圖6miRNA靶基因的GO分類
[1] Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse [J]. Curr Biol, 2002, 12(9): 735-739.
[2] van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure [J]. Proc Natl Acad Sci U S A, 2006, 103(48): 18255-18260.
[3] van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA [J]. Science, 2007, 316(5824): 575-579.
[4] Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2 [J]. Cell, 2007, 129(2): 303-317.
[5] Shan ZX, Lin QX, Fu YH, et al. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction [J]. Biochem Biophys Res Commun, 2009, 381(4): 597-601.
[6] Shi B, Guo Y, Wang J, et al. Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction [J]. BMC Cardiovasc Disord, 2010, 10: 11.
[7] 魏 聰,胡 兵,申 鍔. MicroRNAs 在心臟發(fā)育和疾病中的作用[J].中國病理生理雜志,2011,27(3): 611-615.
[8] 唐 艷,王夢洪. microRNA-21 轉染的心肌細胞移植對低溫條件下心力衰竭大鼠的影響[J].中國病理生理雜志,2013,29(1): 1-8.
[9] van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis [J]. Proc Natl Acad Sci U S A, 2008, 105(35): 13027-13032.
[10] 王 玨,黃偉聰,鄭亮承,等. MicroRNA-24 對心肌梗死后心肌細胞凋亡的調控作用[J].中國病理生理雜志,2013,29(4): 590-596.
[11] Seeger T, Haffez F, Fischer A, et al. Immunosenescence-associated microRNAs in age and heart failure [J]. Eur J Heart Fail, 2013,15(4): 385-393.
[12] Vogel B, Keller A, Frese KS, et al. Refining diagnostic microRNA signatures by Whole-miRNome kinetic analysis in acute myocardial infarction [J]. Clin Chem, 2013, 59(2): 410-418.
[13] Das S, Ferlito M, Kent OA, et al. Nuclear miRNA regulates the mitochondrial genome in the heart [J]. Circ Res, 2012, 110(12): 1596-1603.
[14] Mishra PK, Metreveli N, Tyagi SC. MMP-9 gene ablation and TIMP-4 mitigate PAR-1-mediated cardiomyocyte dysfunction: a plausible role of dicer and miRNA [J]. Cell Biochem Biophys, 2010, 57(2-3): 67-76.
[15] Barjaktarovic Z, Anastasov N, Azimzadeh O, et al. Integrative proteomic and microRNA analysis of primary human coronary artery endothelial cells exposed to low-dose gamma radiation [J]. Radiat Environ Biophys, 2013, 52(1): 87-98.
[16] Jiang X, Ning Q, Wang J. Angiotensin II induced differentially expressed microRNAs in adult rat cardiac fibroblasts [J]. J Physiol Sci, 2013, 63(1): 31-38.
[17] Zile MR, Mehurg SM, Arroyo JE, et al. Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction [J]. Circ Cardiovasc Genet, 2011, 4(6): 614-619.
[18] Bostjancic E, Zidar N, Stajer D, et al. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction [J]. Cardiology, 2010, 115(3): 163-169.
[19] Ji X, Takahashi R, Hiura Y, et al. Plasma miR-208 as a biomarker of myocardial injury [J]. Clin Chem, 2009, 55(11): 1944-1949.
[20] Xu CC, Han WQ, Xiao B, et al. Differential expression of microRNAs in the aorta of spontaneously hypertensive rats [J]. Sheng Li Xue Bao, 2008, 60(4): 553-560.
[21] Turner NA, Das A, O’Regan DJ, et al. Human cardiac fibroblasts express ICAM-1, E-selectin and CXC chemokines in response to proinflammatory cytokine stimulation [J]. Int J Biochem Cell Biol, 2011, 43(10): 1450- 1458.
[22] Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling [J]. Pharmacol Ther, 2009, 123(2): 255-278.
[23] Turner NA. Therapeutic regulation of cardiac fibroblast function: targeting stress-activated protein kinase pathways [J]. Future Cardiol, 2011, 7(5): 673-691.
MicroRNAprofileanalysisofischemicmyocardialtissuesfromratswithacutemyocardialinfarction
WANG Hai-hua1, JIANG Yu-xin1, GAO Xin2, MIN Zhi-xue1, LIN Hao2, CUI Feng-juan1
(1DepartmentofPhysiology,2theFirstDepartmentofClinicalMedicine,WannanMedicalCollege,Wuhu241002,China.E-mail:wanghaihua9972@sina.com)
AIM: To identify differentially expressed microRNAs (miRNAs) in ischemic myocardial tissues from the rats with acute myocardial infarction (AMI) by miRNA array technique, and to predict their targets and analyze their functions using bioinformatics.METHODSThe rat models of AMI (n=3) were prepared by ligaturing the left anterior descending coronary artery (LAD) of Wistar rats. Electrocardiogram and blood pressure were detected during the operation, and the myocardial infarct size was measured by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Ischemic myocardial tissues were isolated from the infarct area 4 h after ischemia. The same procedure in sham group (n=3) was performed except for ligaturing LAD. Total RNA was extracted from ischemic and normal myocardial tissues. miRNA was isolated from total RNA, labeled with Cy3 and hybridized on miRNA array. Real-time PCR was applied to verify the reliability of miRNA array results. The targets of differentially expressed miRNAs were predicted and their functions were analyzed by bioinformatics.RESULTSRat model of AMI was successfully prepared and verified by electrocardiogram detection, blood pressure measurement and pathological observation. Compared with sham group, microarray screening showed that total 11 AMI-related miRNAs were selected, including 6 up-regulated and 5 down-regulated. Three of them (rno-miR-181c, rno-miR-146b and rno-miR-208) were related to the cardiovascular functions, while the functions of the others (rno-miR-672*, rno-miR-743b, rno-miR-128, rno-miR-138-1*, rno-miR-336, rno-miR-138-2*, rno-miR-325-3p and rno-miR-3572) were unknown and might be novel AMI-related biomarkers. Parts of the miRNA targets were also related to the cardiovascular functions.CONCLUSIONDifferentially expressed miRNAs in AMI rats may serve as novel biomarkers for diagnosis of AMI and potential targets for treatment of AMI.
Acute myocardial infarction; MicroRNA; Expression profiles; Bioinformatics
R363
A
1000- 4718(2013)09- 1546- 08
2013- 05- 09
2013- 07- 12
國家自然科學基金資助項目(No.81172790);安徽省自然科學研究重點項目(No.KJ2013A251);皖南醫(yī)學院重點科研項目培育基金資助項目(No.WK2012Z01)
△通訊作者 Tel: 0553-3932473; E-mail: wanghaihua9972@sina.com
▲并列第1作者
10.3969/j.issn.1000- 4718.2013.09.002