朱瑞豐,張 軍
(天津職業(yè)技術(shù)師范大學(xué)電子工程學(xué)院,天津 300222)
機動目標(biāo)跟蹤是當(dāng)前雷達目標(biāo)跟蹤研究的一個熱點,機動目標(biāo)跟蹤的實質(zhì)是要建立準(zhǔn)確的目標(biāo)運動模型,處理從傳感器得到的信息,并對其中的噪聲進行合理的濾除,然后實現(xiàn)對目標(biāo)位置及其高階導(dǎo)數(shù)(如,速度、加速度、加加速度等)進行估計和預(yù)測。近年來,由于機動目標(biāo)跟蹤技術(shù)在軍用以及民用領(lǐng)域特別是雷達檢測方面起到非常重要的作用,因此該技術(shù)的研究有了突飛猛進的發(fā)展,尤其在多目標(biāo)跟蹤算法的理論研究方面日趨成熟,常采用的方法有線性自回歸濾波、維納濾波、卡爾曼濾波等??柭鼮V波跟蹤算法是其中的代表,卡爾曼濾波算法及其推廣在多目標(biāo)跟蹤工程應(yīng)用中有著舉足輕重的地位,它采用了最小均方誤差準(zhǔn)則,利用狀態(tài)方程和量測方程來描述線性時變系統(tǒng),其獨特的遞推結(jié)構(gòu)非常適用于計算機計算。但從卡爾曼濾波算法的工作原理可知,其中的增益修正項計算需要協(xié)方差的一步預(yù)測、新息協(xié)方差和更新協(xié)方差,因此,增益計算耗費了大部分的工作量。為減少其計算量,人們尋求簡化增益矩陣的計算方法,于是提出了常增益濾波器。
α-β-γ濾波算法為常增益濾波器[1],它針對勻加速運動目標(biāo)模型。這種算法實現(xiàn)簡單,計算量小,濾波性能較好,適用于工程實踐應(yīng)用。本文在傳統(tǒng)的α-β-γ濾波算法基礎(chǔ)上進行了修正,使其適用于非均勻采樣時間情況下的狀態(tài)變量參數(shù)(速度、加速度、加加速度)的估計,并實現(xiàn)對多目標(biāo)的跟蹤處理。
α-β-γ濾波最常用的目標(biāo)運動模型是勻加速(CA)運動模型,在該模型中,目標(biāo)做勻加速直線運動,方程如下:
對應(yīng)的離散時間狀態(tài)方程[2]為:
本模型適用于勻加速直線運動或近似勻加速的運動,并且能夠達到比較好的跟蹤精度。
α-β-γ濾波是運動方程為勻加速的卡爾曼濾波的穩(wěn)態(tài)解形式[3],此時運動目標(biāo)的狀態(tài)參量中包含位置、速度和加速度3個分量,即
其中:量測矩陣H(k)=[1 0 0];量測噪聲W(k)為零均值高斯白噪聲。
狀態(tài)更新方程:
系數(shù)α、β、γ為常濾波增益(無量綱),代表目標(biāo)狀態(tài)的位置、速度、加速度分量,三者一旦確定,增益即為一個常值[4]。
在多目標(biāo)跟蹤的情況下,由于相鄰距離門之間的目標(biāo)沒有對應(yīng)的標(biāo)識,而且目標(biāo)對應(yīng)的時間間隔也不同,因此,做好目標(biāo)之間的數(shù)據(jù)關(guān)聯(lián)尤為重要[5]。改進后的跟蹤算法主要解決了非均勻采樣時間間隔情況下的多目標(biāo)之間的數(shù)據(jù)關(guān)聯(lián)問題。
整體雷達數(shù)據(jù)處理流程分為以下4個步驟:對目標(biāo)采集數(shù)據(jù)進行短時傅里葉變換;對處理后的數(shù)據(jù)進行恒虛警和目標(biāo)參數(shù)提取工作;進行彈跡起始判定及濾波跟蹤計算;進行目標(biāo)的初速計算。
假設(shè)多個目標(biāo)做加速度均勻遞增的減速運動,k時刻時其速度匹配測量值為Xest(k),加速度估計值為Xest(k),k時刻的時間值為t(k),對每個目標(biāo)進行如下運算:
式中:Xpre(k+1)為下一時刻的速度預(yù)測值;tori(k+1)為k+1時刻的測量時間值;torin(k)為k時刻的匹配時間值,由式(9)得到:
式中:Xori(k+1)為k+1時刻目標(biāo)的測量速度值;p為預(yù)測值與測量值的誤差,若p小于某個誤差門限,則將該預(yù)測值記錄下來,若有n個目標(biāo),則有n個p存在,選取p最小的對應(yīng)的速度預(yù)測值,此時對應(yīng)的目標(biāo)時刻與速度均為匹配值,再計算有加加速度存在的速度預(yù)測值:
關(guān)于增益系數(shù)的選擇方法,采用臨界阻尼選擇法[4],選擇合適的系數(shù),使之滿足系統(tǒng)臨界阻尼的暫態(tài)過程。對于α-β-γ濾波器,關(guān)系如下:
給定α值(在0到1之間)后,可求得根R的值,從而解出β、γ值。至此,已得出(k+1)時刻的濾波估計速度,加速度和加加速度,由于此算法為迭代算法,可以繼續(xù)進行上述運算,求出(k+2),(k+3),……時刻的參數(shù)估計值,從而便于求出最終目標(biāo)初速。
根據(jù)上述算法,進行10個目標(biāo)的仿真實驗,實驗中10個目標(biāo)做加速度大小不斷減小的減速運動,初速在1200 m/s左右,加速度起始為-295 m/s2,加加速度為100 m/s3,仿真時間為1 s。選取其中幾組濾波跟蹤后的“速度-時間”數(shù)據(jù),并根據(jù)最小二乘法擬合得到曲線,如圖1和圖2所示。
圖1 目標(biāo)1、目標(biāo)2的v-t圖像
圖2 目標(biāo)1、目標(biāo)2擬合后的v-t曲線
由仿真結(jié)果可以看出,在非均勻時間情況下,本算法可以對多個目標(biāo)進行跟蹤濾波,且估計效果較為接近真實速度。
本算法在傳統(tǒng)的α-β-γ算法基礎(chǔ)上進行了修正,使其在非均勻采樣時間條件下得以使用,并通過數(shù)據(jù)仿真進行了驗證。由于是在閉合的遞歸系統(tǒng)內(nèi),該算法連續(xù)使用的穩(wěn)定性大大增強,再加上運算簡便,適用于實際工程應(yīng)用。
[1]何友.雷達數(shù)據(jù)處理及應(yīng)用[M].2版.北京:電子工業(yè)出版社,2009.
[2]韓宏亮.基于IMM的雷達目標(biāo)跟蹤算法研究[D].南京:南京信息工程大學(xué),2011.
[3]王瑩.雷達目標(biāo)跟蹤算法研究[D].南京:南京理工大學(xué),2008.
[4]黃鶴,張會生.一種改進的α-β-γ濾波跟蹤算法[J].西北工業(yè)大學(xué)學(xué)報,2008(2):146-151.
[5]陳亮,吳小俊.基于常增益組合濾波器的目標(biāo)跟蹤算法[J].計算機應(yīng)用與軟件,2009(7):16-17.