方鐘波,孫 璐
(中國(guó)海洋大學(xué)數(shù)學(xué)科學(xué)學(xué)院,山東 青島266100)
本文考慮帶奇異系數(shù)擬線性?huà)佄镄筒坏仁娇挛鲉?wèn)題
非負(fù)非平凡整體弱解在某些帶參數(shù)的函數(shù)空間中的非存在性,其中加權(quán)函數(shù)a(x,
上述雙重退化拋物型不等式(1)出現(xiàn)于流體力學(xué)、人口動(dòng)力學(xué)及生物群體力學(xué)等諸多領(lǐng)域中[1-2]。從流體力學(xué)角度來(lái)說(shuō),描述多孔體介質(zhì)中非牛頓滲流現(xiàn)象,可描述氣體或液體在多孔體介質(zhì)中的流動(dòng),其中a(x,t)up為正時(shí)叫“熱源”項(xiàng),負(fù)時(shí)叫“冷源”項(xiàng)。
Fujita[3]研究半線性?huà)佄镄头匠蘵t=Δu+up柯西問(wèn)題的整體解的非存在性時(shí)提出了臨界指數(shù)pc=1+(稱(chēng)為Fujita臨界指數(shù)),并受到許多學(xué)者的高度重視。非線性偏微分方程整體解的不存在性是一類(lèi)非線性Liouville定理,可以用它證明有界域上的解的某些性質(zhì),還是爆破理論或奇點(diǎn)理論的一種本質(zhì)體現(xiàn)[4]。
近年來(lái),圓錐區(qū)域及整體空間上帶變系數(shù)或不帶變系數(shù)的橢圓型方程、不等式(組)的Liouville型定理及整體解的非存在性方面有許多結(jié)論,見(jiàn)[5-10]等相關(guān)文獻(xiàn)。比如,文獻(xiàn)[5]中,Gidas and Spruck(在無(wú)窮遠(yuǎn)處沒(méi)有任何條件的情況下)證明了次臨界橢圓型方程解的Liouville定理(不存在非平凡C2解)且用它得到了先驗(yàn)估計(jì)。
最近,拋物型方程或不等式(組)中Liouville定理的研究也引起了許多學(xué)者的興趣。方程(1)中,當(dāng)σ=0,m=0且加權(quán)函數(shù)為a(x,t)≥ (|x|2+t)-γ時(shí)魏公明等[11]利用試驗(yàn)函數(shù)法得到了非負(fù)非平凡整體弱解的非存在性結(jié)論。Fang Z B等[12]利用試驗(yàn)函數(shù)法得到了變系數(shù)慢擴(kuò)散不等式柯西問(wèn)題
在圓錐區(qū)域中的非線性Liouville型定理。其它關(guān)于帶加權(quán)函數(shù)的慢擴(kuò)散方程柯西問(wèn)題中解的非存在性結(jié)論方面參考了文獻(xiàn)[13]。
由此啟發(fā),本文研究帶變系數(shù)和加權(quán)函數(shù)的擬線性?huà)佄镄筒坏仁剑?)的非負(fù)非平凡整體弱解在帶參數(shù)的函數(shù)空間中的非線性Liouville定理。目的在于找到變系數(shù)指數(shù)與加權(quán)函數(shù)的指數(shù)對(duì)非負(fù)非平凡整體弱解的非存在性影響,且具有無(wú)窮遠(yuǎn)處無(wú)任何條件、對(duì)初始值沒(méi)有作任何正則性假設(shè)(導(dǎo)致初值在超平面t=0上可能沒(méi)有很好的‘跡’)、不用比較原理和極值原理等特點(diǎn)。通過(guò)適當(dāng)構(gòu)造試驗(yàn)函數(shù)來(lái)建立Universal估計(jì)值(不依賴(lài)于初始值),從而得出在適當(dāng)?shù)呐R界指數(shù)范圍內(nèi)非負(fù)非平凡整體弱解非存在性結(jié)論。詳細(xì)結(jié)論如下:定理1(Liouville定理)成立,且
在(18)式兩端令R→∞就得到
因?yàn)棣鞘侨我獾模栽赟上幾乎處處成立u=0。
[1] Bebernes J,Eberly D.Mathematical Problems from Combustion Theory[M].New York:Springer-Verlag,1989.
[2] Wu Z,Zhao J,Yin J.Nonlinear Diffusion Equations[M].Singapore:World Scientific,2001.
[3] Fujita H.On the blowing up of solutions to the Cauchy problem for ut=Δu+u1+α[J].J Fac Sci Univ Tokyo Sect 1AMath,1966,13:119-124.
[4] Galaktionov V A,Vazquaez J L.Continuation of blowup solutions of nonlinear heat equations in several space dimensions [J].Comm on Pure and Appl Mat,1997,50(1):1-67.
[5] Gidas B,Spruck J.Global and local behavior of positive solutions of nonlinear elliptic equations[J].Comm on Pure and Appl Mat,1981,24:525-598.
[6] Gidas B,Spruck J.A priori bounds for positive solutions of nonlinear elliptic equations[J].Comm in P D E,1981,6(8):883-901.
[7] Kondrat’ev V A.Boundary value problems for elliptic equations in domains with conic and angular points[J].Trans Moscow Math.Soc,1967,16:209-292.
[8] Hayakawa K.On nonexistence of global solution of some semilinear parabolic differential equations[J].Proc Japan Acad Ser A,1979,49:503-505.
[9] Mitidieri E,Pohozaev S L.A priori estimates and blow-up of solutions to non-linear partial differential equations and inequalities[J].Proc Steklov Inst Math,2001,234:3-383.
[10] Laptev G G.The absence of global positive solutions of systems of semilinear elliptic inequalities in cones[J].Izv Math,2000,64(6):1197-1215.
[11] 魏公明.具奇系數(shù)發(fā)展型p-laplace不等方程整體解的不存在性[J].數(shù)學(xué)年刊 A輯,2007,28A(2):387-394.
[12] Fang ZhongBo,F(xiàn)u Chao,Zhang LinJie.Liouville theorems of slow diffusion differential inequalities with variable coefficients in cone[J].J.of KSAIM,2011,15(1):43-55.
[13] Lian Songzhe,Liu Changchun.On the existence and nonexistence of global solutions for the porous medium equation with strongly nonlinear sources in a cone[J].Arch Math,2010,94:245-253.
[14] Kartsatos A G,Kurta V V.On a comparison principle and the critical Fujita exponents for solutions of semilinear parabolic inequalities[J].J London Math Soc,2002,66(2):351-360.