• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氨和有機(jī)胺對羰基硫與α-Fe2O3非均相反應(yīng)的影響

    2013-09-21 09:00:22張拴勤孔令東羅蘭詹森陳建民
    物理化學(xué)學(xué)報 2013年9期
    關(guān)鍵詞:物理化學(xué)通報學(xué)報

    張拴勤 孔令東 趙 希 羅蘭·詹森 陳建民

    (復(fù)旦大學(xué)環(huán)境科學(xué)與工程系,上海市大氣顆粒物污染防治重點實驗室,上海200433)

    1 Introduction

    Carbonyl sulfide(COS)is a trace constituent of the earth's atmosphere,and it is one of the most abundant sulfur-containing species with a rather uniform mixing ratio of about 500×10?6(volume fraction)in the troposphere.1?4Because of its chemical inertness in the troposphere,the lifetime of carbonyl sulfide is longer than that of the other sulfur-containing gases.Once COS is transported into the stratosphere,it can be photodissociated and oxidized to form gaseous sulfur dioxide which can be finally converted into sulfate aerosol.5This sulfate-containing aerosol plays a significant role in atmospheric chemical processes,ozone depletion,and atmospheric radiation budget,6,7which is expected to have an impact on climate.Significant attentions have been paid to its sources and sinks in the atmosphere.It is estimated that the global sources of COS(about(1.31±0.25)Tg·a?1)were less than its sinks(about(1.66±0.79)Tg·a?1),8indicating that atmospheric chemistry of COS still have uncertainties.

    Recently,using infrared spectroscopy,some studies indicated that COS can be catalytically oxidized on the surfaces of single component aerosols as well as multiple component aerosols to produce C,and the components of aerosol can influence the reactivity of the aerosol.9?15Thus heterogeneous oxidation of COS is considered to be a potential sink for COS.However,previous studies mainly focus on the single component aerosol but not much on multiple component aerosols.In fact,real atmospheric aerosols are complex and many factors can influence the heterogeneous reactions of atmospheric trace gases.For example,a mineral dust particle may be covered by various chemical species during the transport process,then the outer layer of particle surface may be different from the mineralogy of the original particle,which can make the reactivity of the particle alter and finally enhance or suppress the reactivity of trace gases with the particle.16In our previous work,we found that the NaCl-containing hematite could decrease the reactivity of COS while the nitrate-containing hematite could enhance the reactivity,14,15which implied that the mixture aerosol had different influence on the heterogeneous oxidation of COS.So the heterogeneous oxidation of COS on multiple component aerosols is as important as that on single component aerosol.

    Atmospheric particulate matter comprises a large fraction of organic material.Yang et al.17has found that nitrogen-containing organic salts are widely present in aerosols in the urban atmosphere.Amines are major nitrogen-containing atmospheric organic compound.Low molecular weight alkylamines are emitted by a variety of widespread anthropogenic and biogenic sources including industry emissions,vehicles exhaust,animal husbandry,sewage treatment plants,and incinerators.18?20Field observations have detected the short chain alkylamines in marine,rural and urban atmospheres in the gas phase,particle phase,and aqueous fog and rain drops.21,22Because of their basicity,ammonia,and organic amines are often used as probe molecules to investigate the surface acidity on metal oxides.23?25It has been reported that amines can easily form amine salts with acids or react with O3,OH,or NO3to partition to the particle phase.For example,Qiu and Zhang26found that organic amines can react efficiently with the acidic aerosols(such as sulfuric acid)to form alkylaminium salts,promoting the particle growth.Ge et al.27have investigated the reaction of alkylamine with ozone,and found that the reaction rates of different alkylamines were different,which may explain the intriguing finding in several field studies where organic aerosol were detected in aerosol samples.Therefore,these organic amines may significantly contribute to the formation of atmospheric secondary aerosol.28Besides,ammonia and amines are easy to be absorbed onto atmospheric particles,29which would inevitably alter the surface properties of particles and finally influence the heterogeneous oxidations of COS with these particles.However,the research on how basic substances influence heterogeneous oxidation of COS is limited.In order to obtain information concerning the heterogeneous oxidation of COS on complicated mineral dust particles and to give a further understanding of reaction mechanism,the heterogeneous oxidation of COS on hematite with pre-adsorbed ammonia and amines were studied.

    In this paper,the heterogeneous oxidation of COS on hematite were studied using in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS),ammonia and several amines including methylamine,trimethylamine,triethylamine,phenylamine,pyridine,and pyrrole were selected.The effects of ammonia and amines on the heterogeneous oxidation of COS on hematite were also investigated.We found that ammonia and amines can enhance the reactivity of COS on hematite and the reactivity was different between basic substances.In addition,surface hydroxyl(M―OH)and oxygen ion(M―O?)had a significant influence on the reaction.Surface M―O?was the dominant active site in the conversion of COS in the presence of basic substances.Based on these observations,the reaction mechanism of COS onto hematite was discussed.

    2 Experimental

    2.1 Materials

    Hematite(99.999%purity)was purchased from Sigma-Aldrich.For comparison,hematite was also prepared according to the procedure reported previously.14Powder X-ray diffraction(XRD,Rigaku D/MAX-II X-ray diffractometer with Cu Kαradiation)was used to verify the crystalline structures of the commercial and synthesized samples.Fig.1 shows the X-ray diffraction(XRD patterns of the commercial and synthesized hematite,the characteristic peaks can be indexed according to the hematite crystalline phase(JCPDS,Card No.33-0664).The Brunauer-Emmett-Teller(BET)surface areas of the commercial hematite,determined using an ASAP 2010 automatic equipment at 77 K,was 14.2 m2·g?1.Therefore,the commercial hematite instead of synthesized were used in our experiment.The commercial hematite samples were kept in a desiccator with saturated sodium chloride solution for 48 h before in situ DRIFTS experiments.

    Gaseous oxygen(O2,99.999%purity,Shanghai Yunguang Specialty Gases Inc),argon(Ar,99.999%purity),carbonyl sulfide[1000×10?6(volume fraction),COS/N299.999%purity]were introduced through an air dryer before use.

    Ammonia(NH3/N2),methylamine(CH3NH2/N2),trimethylamine[(CH3)3N/N2],phenylamine(CH3CH2NH2/N2),triethylamine[(C2H5)3N/N2],pyridine(C5H5N/N2),and pyrrole(C4H5N/N2),the concentration of these basic substances were 100×10?6and were purchased from Shanghai Qingkuan Trade Co.,Ltd.The coverage of amine absorbing onto the hematite was obtained by titration using hydrochloric acid(HCl,5.15×10?4mol·L?1)as titrating solution.

    2.2 In situ DRIFTS experiment

    Fig.1 X-ray diffraction patterns of commercial hematite and synthetic hematite

    The experiments reported here were performed by using in situ DRIFTS,similar to our previous work.15,16The DRIFTS spectra were recorded on the Nicolet Avatar 360 FTIR spectrometer,which equipped with a high-sensitivity mercury cadmium telluride(MCT)detector cooled by liquid N2and a Spectra-Tech Diffuse Reflectance Accessory.About 30 mg(±0.02 mg)hematite sample was placed into the ceramic crucible in the chamber(the volume of chamber is about 0.025×10?5m3)and the temperature in the chamber was kept at 298 K by using an automatic temperature controller.After being purged with Ar(100 mL·min?1)for 60 min,basic substance(20 mL·min?1)was introduced into the chamber to allow adsorption onto hematite for 15 min,afterwords,Ar(100 mL·min?1)was introduced into the chamber for 60 min again to blow off excess amines,and then a background spectrum was recorded.After collecting the background spectrum,a mixture of gases[COS(50%),O2(21%),and Ar(29%)]were introduced into the chamber at a total flow rate of 100 mL·min?1for 3 min,and the inlet and outlet of the chamber was then closed simultaneously,after which the IR spectra in the closed system were recorded automatically every 10 min for 4 h.All the IR spectra were recorded at a resolution of 4 cm?1for 100 scans.

    3 Results and discussion

    3.1 In situ DRIFTS monitoring of heterogeneous oxidation of COS on hematite with pre-adsorbed methylamine

    Fig.2 In situ DRIFT spectra of hematite pre-adsorbed by methylamine(MA)as a function of time after exposure to 5×10?4(volume fraction)COS at 298 K

    Fig.2 shows in situ DRIFT spectra of the heterogeneous oxidation of 5×10?4(volume fraction)COS on hematite pre-adsorbed by methylamine(MA)as a function of time at 298 K.As can be seen in Fig.2(A),a pair of peaks at 2071 and 2051 cm?1,which was the characteristic absorption peaks of gaseous COS,30decreased drastically in intensity as the reaction processed,indicating that COS can react on the surface of hematite in the presence of methylamine.The decrease of gaseous COS was accompanied with the increase of absorption at 2341 and 2360 cm?1by gaseous CO2.31In Fig.2(B),the bands observed at 1226,1385,and 1652 cm?1were the characteristics of the formation of adsorbed bicarbonate,corresponding to the δ(COH),ν3(OCO)s,and ν2(OCO)avibrational modes,respectively.32?35The bands at 1436 and 1326 cm?1were attributed to the ν(OCO)aand ν(OCO)svibrational modes of carbonate,and the bands at 1162,1077,and 965 cm?1arose from the surface.These results suggest that COS is converted into gas-phase CO2,surface HCO3?,surface,and surfacespecies on hematite with methylamine pre-adsorbed.

    Previous studies10,14had reported obvious negative peak of hydroxyl groups(OH)appeared in the higher wavenumber spectral region due to its consumption during the heterogeneous oxidation of COS.However,in our research,surface M―OH at 3650 cm?1remained very weak during the oxidation process(Fig.2(A)),which inferred that O2?(i.e.,F(xiàn)e―O?)might be the dominant active site for the conversion of COS in the presence of ammonia and amines.Fig.3 shows DRIFT spectra of hematite with only MA exposure before the introduction of COS.The loss of M―OH band in the region from 3704?3550 cm?1after adsorption of MA on hematitewas clearly observed.The band at 2953 cm?1arose from the asymmetric stretching of CH3in methylammonium salt,the band at 1418 cm?1from the C―H bending mode,and the band from 1586 to 1508 cm?1from N―H bond of primary ammonium salt.36These results indicated that the adsorbed MA could interact with M―OH on hematite to form methylammonium salt.Therefore,if methylamine was introduced in this system,M―OH would be converted to M―O?active site and consequently resulting in the reduced role of M―OH in the conversion of COS.

    3.2 Effects of different amines on the heterogeneous oxidations of COS on hematite

    Fig.3 In situ DRIFT spectrum of hematite with methylamine exposure at 298 K

    To compare the effects of different amines on the heterogeneous oxidation of COS,hematite samples pre-adsorbed by trimethylamine,triethylamine,phenylamine,pyridine,pyrrole,and ammonia were exposed to reactant gases.The pre-adsorption time of ammonia and different amines prior to the exposure of COS remained the same.The pre-adsorption capacities of ammonia and different amines on hematite surface may be different under the same pre-adsorption time.Here we compared their reactivity towards the COS heterogeneous conversion approximately.Spectral results showed oxidation of COS formed the similar products.The concentrations of COS can be obtained from the absorbance peak area of COS between 2092 and 2015 cm?1.The blank experiment showed that wall losses of COS were of no importance in this chamber.Fig.4 shows the concentration of COS against the reaction time with ammonia and amines pre-adsorbed onto hematite.It is evident that the discrepancies between these basic substances are large.The reaction rates influenced by these basic substances are in the order of methylamine>trimethylamine>ammonia>triethylamine>pyridine>pyrrole>phenylamine≈pure hematite.Affected by basic substances,the heterogeneous oxidation of COS occurs rapidly at the initial stage.With the consumption of the adsorbed COS,the surface products gradually occupied the active sites on hematite,resulting in the slower reaction with the increasing of reaction time.

    Although the concentration data show that the reactivity of COS on the surface of hematite depends on the properties of basic substances,it is worthwhile to discuss the kinetics of COS conversion.In order to determine the reaction order with respect to COS,three replication experiments were conducted for each sample.ln[COS]and[COS]?1were plotted in two different ways.The one is either ln[COS]or[COS]?1are plotted versus time,37and the other is the bilogarithmic plot.38,39For a first order reaction,a plot of ln[COS]versustime should be linear,while for a second order reaction,a plot of[COS]?1as function of time should be linear.We designated these plots as Type A plots,and Fig.5 shows the result described in this manner.As can be seen from Fig.5,the reaction is obviously second order for COS on pre-adsorbed sample.

    Moreover,the oxidation of COS on hematiteis related to the active sites on the surface of hematite,and the kinetics of oxidation of COS with hematite may be described by the general equation:

    Fig.4 Concentrations of COS as a function of time with different pre-adsorbed basic substances

    Fig.5 First and second order Type Akinetics plots for the loss of COS with trimethylamine pre-adsorption

    where k is the rate constant,[hematite]is the concentration of active sites on hematite,[COS]is the concentration of COS at certain reaction time(we regarded the absorbance peak area of COS as its concentration),[amine]is the concentration of basic substance onto hematite,and m,n,p are the reaction orders for COS,hematite,and amine,respectively.As the concentration of active sites on hematiteisusually considered to be kept constant with respect to COS,[hematite](which is the case at the initial stage)can be assumed to be constant.39

    The second approach utilizes the rate law using Eq.(2)obtained from the logarithmic transformation of Eq.(1).In the Eq.(2),ln[amine]may be not a constant,which make more difficult to analyze the plot.In order to simplify this analysis,we assumed pln[amine]be constant and then analyzed the bilogarithmic plot.We designate this as Type B plot.Fig.6 shows the napierian logarithm of the initial rate of COS loss versus napierian logarithm of the initial COS concentration.As can be seen from Fig.6,the reaction order m for COS on hematite determined by the slope was m=1.89(±0.09),which confirmed that the reaction order for COS was second.Therefore,the assumption that pln[amine]as a constant is valid.Namely,either p=0 or the concentration of basic substance was constant.Similarly,the reaction order for COS was also verified to be second when pre-loaded by other basic substances.Therefore,basic substances can influence the reaction order of COS,resulting in great enhancement of the conversion reactivity of aerosol.

    Fig.6 Bilogarthnic plot of the initial rate of COS consumption onto hematite as a function of[COS]at 298 K with trimethylamine pre-adsorption

    As shown in Fig.4,the observed oxidation of COS occurred rapidly in 120 min,so the consumption reactivity of COS in 120 min were calculated and Fig.7 shows the effects of different basic substances on the reaction rates of COS oxidation.As can be seen from Fig.7,hematite pre-adsorbed by basic substances showed different reactivity.Hematitewith methylamine pre-adsorbed has the highest reactivity,about 4.5 times higher than that of pure hematite,while the effect of phenylamine and pyrrole is not obvious.Given the different nature of these basic substances themselves,the coverage,adsorption ability,basicity and other properties on the surface of hematite are not consistent even though being introduced for the same time period,thus the reactivity of COS is different(as shown in Fig.7).The differences in Fig.7 resulted from two possible conditions.If the final coverage of all the basic substances is approximately the same,the basicity of these amines will play the main role in the reactivity of conversion of COS.Higher basicity of the amine can facilitate the conversion of COS and the reactivity has positive correlation with the basicity of pre-adsorbed amines.Pyrrole and phenylamine have the weakest weak basicities and pyrrole is even a weak acid.Therefore,the reactivity affected by these two amines was closed to that of pure hematite.Meanwhile,the basicities of methylamine,trimethylamine and triethylamine are close to one another(pKa=10.66 for methylamine,9.81 for trimethylamine and 10.72 for triethylamine),but the order of heterogeneous reaction rates is methylamine>trimethylamine>triethylamine,for which the steric hindrance of amines may be another factor governing the reactivity.The large methyl groups in trimethylamine and the large ethyl groups in triethylamine may obstruct the interaction between COS and surface active sites distributed on the hematite,resulting in the decrease of the reactivity.If the coverage of these basic substances under the same pre-adsorption time is different the synergistic effect of coverage and basicity of basic substances will result in different reactivity of COS.Both can increase the surface basicity of hematite as well as the amount of M―O?,which enhances the reactivity of COS.

    Fig.7 Effects of basic substances on the rates of COS oxidation on the surface of hematite

    3.3 Effect of coverage of trimethylamine on heterogeneous oxidation of COS on hematite

    To study the coverage of amines,a series of experiments with different amines exposure time were carried.Titration by hydrochloric acid(HCl,5.15×10?4mol·L?1)was used to obtain the coverage of amine absorbing onto the hematite.40The coverages on hematite samples with trimethylamine pre-adsorption for 5,10,15,and 30 min were 1.24×1018,1.44×1018,1.72×1018,and 2.06×1018molecules·g?1,respectively.Obviously,the coverage of trimethylamine increased over time.Correspondingly,the conversion reactivity of COS increased with the coverage of trimethylamine(Fig.8).For different basic substance,this trend keeps the same.Therefore,the coverage of basic substances is also the factor that enhances the heterogeneous reactivity.

    3.4 Role of surface adsorbed water on

    heterogeneous oxidation of COS on hematite Surface water is an important determinant in atmospheric heterogeneous process and hydrolysis of COS on oxides,an effective way to remove COS in industrial tail gas,is strongly affected by the amount of adsorbed water.41Therefore,the role of surface water cannot be neglected.In order to study the role of surface water,experiments were performed at 298 K over a series of hematite samples.The hematite samples had been pre-evacuated for 60 min at 298,348,398,448,and 498 K for 60 min,and then trimethylamine pre-adsorbed on their surface of hematite sample.Results shown in Fig.9 suggest that the reactivity of hematite decrease with an increase in temperature,e.g.,the reactivity of COS at 498 K is about 2 times lower than that at 298 K.Pre-evacuation of hematite is known to mainly reduce the surface water adsorbed at low temperature,while surface dehydration occurs at higher temperature.The observed decrease in the conversion reactivity of COS was related to the decrease of some physisorbed water and the removal of some M―OH.At low temperature,the physisorbed water,which is not available to the re-generation of M―OH,desorbes as temperature increase.At high temperature,both surface adsorbed water and some M―OH were removed,leading to the decrease in trimethylamine adsorption and subsequently the decrease of surface Fe―O?formed from the interaction between Fe―OH and basic substances.Consequently,the reactivity decreases at higher temperatures.This result clearly indicates that the surface water plays a significant role in the conversion of COS with basic substance pre-adsorption.

    Fig.8 Effect of coverage for trimethylamine(20 mL·min?1)on the reactivity of COS

    Fig.9 Second-order rate coefficients for COS conversion on hematite as a function of pre-treatment temperature

    3.5 Mechanism of heterogeneous oxidation of COS on surface of hematite

    The metal oxides with empty or half-empty d atom orbits,such as hematite,is apt to adsorbing O2and H2O(g)and to form the surface hydroxyl.9As proposed by He et al.,10?13the oxidation of COS involves the formation of intermediate product HSCO2?,and M―OH were the main active sites for the heterogeneous reaction of COS.Chen et al.14also verified M―OH and M―O?were main active sites and confirmed that M―O?played a dominant role in the loss of COS on hematite.As shown above,M―OH and M―O?on hematite are crucial to the conversion of COS.It was confirmed by our experiment that reactivity of hematite pre-adsorbed by basic substances was much higher than that of pure hematite.This discrepancy in reactivity can be related to the pre-adsorption of basic substances.Amines and ammonia adsorb onto the oxide surface,resulting in the conversion of active sites due to their interaction with Lewis and Br?nsted acid sites distributed on the surface.23Simmons and Beard42proposed that surface M―OH can interact with an organic base as follows:

    where X is atomic nitrogen and MO?is surface oxygen ions that can react with COS.When ammonia and amines were introduced into the reaction system,they can interact with M―OH,converting M―OH to M―O?active sites.Chen et al.14found that M―O?played a dominant role in the conversion of COS on hematite.Generally,metal oxide surface has a large number of M―OH and a small amount of M―O?.In this study,the role of each M―OH may be weaker than that of M―O?in the conversion of COS when on ammonia and amines were not introduced into the reaction system,but their overall reactivity was great because of their large number.When a small amount of ammonia or amine was introduced into the reaction system,more M―O?is generated,enhancing the reactivity of COS greatly due to its strong role in the conversion of COS.In addition,for the nucleophilic attack on the positively charged carbonyl carbon of COS,the negatively charged M―O?is easier than that of electrically neutral M―OH.Therefore,M―O?will play a major role in the conversion of COS when more M―O?is available.This may be the reason why the increase of the negative peaks of M―OH during the reaction is not obvious.Meanwhile,basic ammonia and amines on hematite can neutralize the H2CO3and acidic sulfate formed during the heterogeneous oxidation of COS,and make heterogeneous oxidation of COS proceed.For basic substances with strong basicity,its neutralization is easier,resulting in more high reactivity of COS.

    On the basis of the discussion above,we proposed the following mechanism of the heterogeneous oxidation of COS on hematite.Ammonia and amines pre-adsorbed onto hematite first reacted with Fe―OH to form more Fe―O?,F(xiàn)e―O?,and Fe―OH attacked the carbon of COS,forming HSCO2?species on the surface of hematite.Then HSCO2?species can be oxidized by oxygen,followed by the formation of surface HCO3?,surface SO42?species and gaseous CO2.The intermediate product(HSCO2?)can easily interact with O2.Therefore,the intermediate with low concentration were not observed in DRIFTS spectrum.Moreover,basic substances neutralized the acidic products and made heterogeneous oxidation of COS proceed,enhancing the reactivity.In addition,complex formation of COS with amine may also lead to other mechanism of the heterogeneous reaction and further studies are needed to clarify these aspects.

    4 Conclusions and atmospheric implications

    The heterogeneous oxidation of COS on hematite pre-adsorbed by ammonia and amines(here methylamine,trimethylamine,triethylamine,phenylamine,pyridine,and pyrrole)were investigated by using DRIFTS.Gaseous surfaceandspecies as final products were observed by DRIFTS.The study on kinetics showed that these pre-adsorbed basic substances on hematite can significantly enhance the heterogeneous reactivity and change the reaction order from first to second.The basicity and coverage of basic substances as well as surface water also played important roles in the heterogeneous oxidation of COS.As pointed out in the introduction section of COS,the global sources of COS were less than its sinks,which indicates the atmospheric process of COS still has uncertainties.Therefore,the oxidation of COS on multiple component aerosols is as important as that on signal component aerosol.These findings indicated that the multiple component aerosols may implicate a complicated chemical process and the heterogeneous reaction of trace gases on real atmospheric particles,which provided more data for atmospheric chemistry,should be considered.

    (1) Turco,R.P.;Whitten,R.C.;Toon,O.B.;Pollack,J.B.;Hamill,P.Nature 1980,283,283.doi:10.1038/283283a0

    (2) Sze,N.D.;Ko,M.K.W.Nature 1979,278,731.doi:10.1038/278731a0

    (3) Sze,N.D.;Ko,M.K.W.Nature 1979,280,308.doi:10.1038/280308a0

    (4) Sze,N.D.;Ko,M.K.W.Atmos.Environ.1980,14,1223.doi:10.1016/0004-6981(80)90225-5

    (5) Svoronos,P.D.N.;Bruno,T.J.Ind.Eng.Chem.Res.2002,41,5321.doi:10.1021/ie020365n

    (6) Torres,A.L.;Maroulis,P.J.;Goldberg,A.B.;Bandy,A.R.J.Geophys.Res.1980,85,7357.doi:10.1029/JC085iC12p07357

    (7) Rasmussen,R.A.;Khalil,M.A.K.;Hoyt,S.D.Atmos.Environ.1982,16,1591.doi:10.1016/0004-6981(82)90111-1

    (8) Watts,S.F.Atmos.Environ.2000,34,761.doi:10.1016/S1352-2310(99)00342-8

    (9)Wu,H.B.;Wang,X.;Chen,J.M.;Yu,H.K.;Xue,H.X.;Pan,X.X.;Hou,H.Q.Chin.Sci.Bull.2004,49,739.[吳洪波,王曉,陳建民,俞宏坤,薛華欣,潘循晳,侯惠奇.科學(xué)通報,2004,49,739.]doi:10.1360/03wb0132

    (10) He,H.;Liu,J.F.;Mu,Y.J.;Yu,Y.B.;Chen,M.X.Environ.Sci.Technol.2005,39,9637.doi:10.1021/es048865q

    (11) Liu,J.F.;Yu,Y.B.;Mu,Y.J.;He,H.J.Phys.Chem.B 2006,110,3225.doi:10.1021/jp055646y

    (12) Liu,Y.C.;He,H.;Xu,W.Q.;Yu,Y.B.J.Phys.Chem.A 2007,111,4333.doi:10.1021/jp069015v

    (13) Liu,Y.C.;He,H.J.Phys.Chem.A 2009,113,3387.doi:10.1021/jp809887c

    (14) Chen,H.H.;Kong,L.D.;Chen,J.M.;Zhang,R.Y.;Wang,L.Environ.Sci.Technol.2007,41,6484.doi:10.1021/es070717n

    (15) Yu,Y.J.;Zhang,S.Q.;Kong,L.D.;Lin,L.;Cheng,T.T.;Chen,J.M.Acta Phys.-Chim.Sin.2011,27,2275.[俞偐偼,張拴勤,孔令東,林 立,成天濤,陳建民.物理化學(xué)學(xué)報,2011,27,2275.]doi:10.3866/PKU.WHXB20110912

    (16) Usher,C.R.;Michel,A.E.;Grassian,V.H.Chem.Rev.2003,103,4883.doi:10.1021/cr020657y

    (17) Wang,X.F.;Gao,S.;Yang,X.;Chen,H.;Chen,J.M.;Zhuang,G.S.;Surratt,J.D.;Chan,M.N.;Seinfeld,J.H.Environ.Sci.Technol.2010,44,4441.doi:10.1021/es1001117

    (18) Cadle,S.H.;Mulawa,P.A.Environ.Sci.Technol.1980,14,718.doi:10.1021/es60166a011

    (19) Westerholm,R.;Li,H.;Almen,J.Chemosphere 1993,27,1381.doi:10.1016/0045-6535(93)90231-S

    (20) Chen,C.P.;Veregin,R.P.;Harbour,J.R.;Hair,M.L.Chin.Sci.Bull.1994,39,744.[陳次平,Veregin,R.P.,Harbour,J.R.,Hair,M.L.科學(xué)通報,1994,39,744.]

    (21) Vanneste,A.;Duce,R.A.;Lee,C.Geophys.Res.Lett.1987,14,711.doi:10.1029/GL014i007p00711

    (22) Zhang,Q.;Anastasio,C.Atmos.Environ.2003,37,2247.doi:10.1016/S1352-2310(03)00127-4

    (23) Lavalley,J.C.Catal.Today 1996,27,377.doi:10.1016/0920-5861(95)00161-1

    (24) Lercher,J.A.;Grundling,C.;EderMirth,G.Catal.Today 1996,27,353.doi:10.1016/0920-5861(95)00248-0

    (25) Sarria,F(xiàn).R.;Blasin-Aube,V.;Saussey,J.;Marie,O.;Daturi,M.J.Phys.Chem.B 2006,110,13130.doi:10.1021/jp061729i

    (26) Qiu,C.;Zhang,R.Y.Environ.Sci.Technol.2012,46,4474.doi:10.1021/es3004377

    (27)Gai,Y.B.;Ge,M.F.;Wang,W.G.Acta Phys.-Chim.Sin.2010,26,1768.[蓋艷波,葛茂發(fā),王瑋罡.物理化學(xué)學(xué)報,2010,26,1768.]doi:10.3866/PKU.WHXB20100705

    (28)Yin,S.;Ge,M.F.;Wang,W.G.;Liu,Z.;Wang,D.X.Chin.Sci.Bull.2011,56,1241.[殷 實,葛茂發(fā),王煒罡,劉 澤,王殿勛.科學(xué)通報,2011,56,1241.]

    (29) Qiu,C.;Wang,L.;Lal,V.;Khalizov,A.F.;Zhang,R.Y.Environ.Sci.Technol.2011,45,4748.doi:10.1021/es1043112

    (30) Dohrmann,J.;Glebov,A.;Toennies,J.P.;Weiss,H.Surf.Sci.1996,368,118.doi:10.1016/S0039-6028(96)01038-2

    (31) Amenomiya,Y.;Morikawa,Y.;Pleizier,G.J.Catal.1977,46,431.doi:10.1016/0021-9517(77)90230-5

    (32) Turek,A.M.;Wachs,I.E.;Decanio,E.J.Phys.Chem.1992,96,5000.doi:10.1021/j100191a050

    (33) Lavalley,J.C.;Travert,J.;Chevreau,T.;Lamotte,J.;Saur,O.J.Chem.Sci.Chem.Commun.1979,146.

    (34) Morterra,C.;Zecchina,A.;Coluccia,S.;Chiorino,A.J.Chem.Soc.Faraday Trans I.1977,73,1544.doi:10.1039/f19777301544

    (35) Molina,R.;Centeno,M.A.;Poncelet,G.J.Phys.Chem.B 1999,103,6036.

    (36) The Sadtler Handbook of Infrared Spectra.Bio-Rad Laboratories,Inc.,Informatics Divison:Htercules,California,USA,1978?2004.

    (37) Finlayson-Pitts,B.J.;Wingen,L.M.;Sumber,A.L.;Syomin,D.;Ramazan,K.A.Phys.Chem.Chem.Phys.2003,5,223.doi:10.1039/b208564j

    (38) Xu,B.Y.;Zhu,T.;Tang,X.Y.;Ding,J.;Li,H.J.Chem.J.Chin.Univ.2006,27,1912.[徐冰燁,朱 彤,唐孝炎,丁 杰,李宏軍.高等學(xué)?;瘜W(xué)學(xué)報,2006,27,1912.]

    (39) Borensen,C.;Kirchner,U.;Scheer,V.;Vogt,R.;Zellner,R.J.Phys.Chem.A 2000,104,5036.doi:10.1021/jp994170d

    (40)Li,Q.X.;Hou,S.Z.;Xing,Y.Z.;Wei,H.W.;Li,M.China Surfactant Detergent&Consmetics 2000,30,50. [李秋小,侯素珍,邢英站,魏海威,李 明.日用化學(xué)工業(yè),2000,30,50.]

    (41) Rhodes,C.;Riddel,S.A.;West,J.;Williams,B.P.;Hutchings,G.J.Catal.Today 2000,59,443.doi:10.1016/S0920-5861(00)00309-6

    (42) Simmons,G.W.;Beard,B.C.J.Phys.Chem.1987,91,1143.doi:10.1021/j100289a025

    猜你喜歡
    物理化學(xué)通報學(xué)報
    WTO/TBT 通報
    WTO/TBT 通報
    WTO/TBT 通報
    WTO/TBT 通報
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學(xué)報40年
    Chemical Concepts from Density Functional Theory
    學(xué)報簡介
    學(xué)報簡介
    亚洲欧美激情在线| 91成年电影在线观看| 人人妻人人澡人人看| 美女高潮到喷水免费观看| 人人妻,人人澡人人爽秒播| 日韩免费高清中文字幕av| 午夜久久久在线观看| 亚洲人成电影观看| 五月开心婷婷网| 精品久久久久久,| 激情在线观看视频在线高清 | 一本大道久久a久久精品| 黑人欧美特级aaaaaa片| 99国产精品免费福利视频| 久久人人97超碰香蕉20202| 高清欧美精品videossex| 9191精品国产免费久久| 久久草成人影院| 欧美人与性动交α欧美精品济南到| 午夜亚洲福利在线播放| 成人免费观看视频高清| 亚洲精品美女久久久久99蜜臀| 久久人人97超碰香蕉20202| 久久婷婷成人综合色麻豆| 成年版毛片免费区| 99久久99久久久精品蜜桃| 50天的宝宝边吃奶边哭怎么回事| 丰满迷人的少妇在线观看| 久久久久国产一级毛片高清牌| 男女下面插进去视频免费观看| 久热这里只有精品99| 亚洲欧美色中文字幕在线| 99久久人妻综合| 自线自在国产av| 精品久久久精品久久久| 免费av中文字幕在线| 国产片内射在线| 人人妻人人澡人人看| 午夜福利在线观看吧| 国产男女超爽视频在线观看| 久久国产精品男人的天堂亚洲| 午夜免费成人在线视频| 欧美+亚洲+日韩+国产| 韩国精品一区二区三区| 久久国产精品影院| av国产精品久久久久影院| 久久人妻av系列| 亚洲情色 制服丝袜| 看免费av毛片| 日本vs欧美在线观看视频| 一边摸一边抽搐一进一小说 | 免费久久久久久久精品成人欧美视频| 视频区图区小说| 久久精品成人免费网站| 欧美黑人欧美精品刺激| 中文字幕制服av| 麻豆乱淫一区二区| 高清欧美精品videossex| 免费av中文字幕在线| 无人区码免费观看不卡| 中亚洲国语对白在线视频| 女人久久www免费人成看片| 在线永久观看黄色视频| 国产野战对白在线观看| 少妇粗大呻吟视频| 亚洲自偷自拍图片 自拍| 丝袜美足系列| 国产成人精品久久二区二区免费| 高潮久久久久久久久久久不卡| 一级作爱视频免费观看| 久久久久久久精品吃奶| 亚洲性夜色夜夜综合| 午夜亚洲福利在线播放| 欧美日韩乱码在线| 国产精品久久视频播放| 高清视频免费观看一区二区| 丰满的人妻完整版| 1024香蕉在线观看| 老汉色av国产亚洲站长工具| 欧美激情 高清一区二区三区| 激情视频va一区二区三区| 无限看片的www在线观看| 亚洲专区字幕在线| 日韩免费高清中文字幕av| 超碰成人久久| 国产在视频线精品| √禁漫天堂资源中文www| 欧美国产精品一级二级三级| 国产精品 欧美亚洲| 午夜久久久在线观看| 精品国产一区二区久久| 老司机福利观看| 99热网站在线观看| 国产单亲对白刺激| 国产成人啪精品午夜网站| 丰满人妻熟妇乱又伦精品不卡| 丰满人妻熟妇乱又伦精品不卡| 欧美中文综合在线视频| 国产精品一区二区免费欧美| 免费在线观看日本一区| 色综合婷婷激情| 成人精品一区二区免费| 黑人欧美特级aaaaaa片| 国产高清国产精品国产三级| 亚洲avbb在线观看| 久久久国产一区二区| 最新在线观看一区二区三区| 国产精品秋霞免费鲁丝片| 精品久久久久久电影网| 一进一出抽搐动态| 中出人妻视频一区二区| 一级片'在线观看视频| 操美女的视频在线观看| 黄色片一级片一级黄色片| 国产精华一区二区三区| 亚洲精品自拍成人| 亚洲一码二码三码区别大吗| 在线观看午夜福利视频| 欧美亚洲 丝袜 人妻 在线| 大型av网站在线播放| 成在线人永久免费视频| 五月开心婷婷网| 亚洲精品美女久久av网站| 欧美黄色片欧美黄色片| 一进一出好大好爽视频| 久热这里只有精品99| 丰满的人妻完整版| 日韩三级视频一区二区三区| 免费观看人在逋| 亚洲一区二区三区欧美精品| 国产成人精品久久二区二区91| 天堂中文最新版在线下载| 又大又爽又粗| 国产熟女午夜一区二区三区| 在线av久久热| 亚洲情色 制服丝袜| 亚洲成人手机| 国产成+人综合+亚洲专区| 欧美乱色亚洲激情| 老熟妇乱子伦视频在线观看| 亚洲三区欧美一区| ponron亚洲| 亚洲少妇的诱惑av| 久久久久久人人人人人| 999久久久精品免费观看国产| 在线观看66精品国产| 999久久久国产精品视频| 亚洲国产看品久久| 中文字幕人妻丝袜一区二区| 日韩熟女老妇一区二区性免费视频| 女性生殖器流出的白浆| 18禁美女被吸乳视频| 精品国产乱码久久久久久男人| 精品国产一区二区三区久久久樱花| 黄色视频,在线免费观看| 成人亚洲精品一区在线观看| 久久精品国产亚洲av高清一级| 中国美女看黄片| 久久香蕉激情| 十分钟在线观看高清视频www| 亚洲第一欧美日韩一区二区三区| 欧美成人免费av一区二区三区 | 我的亚洲天堂| 99国产精品一区二区三区| 中文字幕高清在线视频| 亚洲午夜理论影院| 老司机亚洲免费影院| 久热爱精品视频在线9| 国产一区二区三区视频了| 好男人电影高清在线观看| 亚洲成人免费av在线播放| 亚洲美女黄片视频| a级片在线免费高清观看视频| 亚洲精品美女久久av网站| 成人亚洲精品一区在线观看| 成在线人永久免费视频| 91av网站免费观看| 日本a在线网址| 天天操日日干夜夜撸| 最近最新免费中文字幕在线| 麻豆av在线久日| 成人手机av| 欧美日韩福利视频一区二区| 日本wwww免费看| 首页视频小说图片口味搜索| 精品欧美一区二区三区在线| 日韩欧美在线二视频 | 精品亚洲成国产av| 啦啦啦免费观看视频1| 成年动漫av网址| 黄片小视频在线播放| 久久久水蜜桃国产精品网| 一本一本久久a久久精品综合妖精| 欧美黑人欧美精品刺激| 99国产精品一区二区蜜桃av | 不卡一级毛片| 91字幕亚洲| videos熟女内射| 久久精品熟女亚洲av麻豆精品| 久久久久精品人妻al黑| 亚洲av熟女| 精品无人区乱码1区二区| 高清在线国产一区| 黄色a级毛片大全视频| 一本大道久久a久久精品| 中文字幕制服av| 国产不卡av网站在线观看| 国产有黄有色有爽视频| 免费看十八禁软件| 久久久国产成人免费| 日韩有码中文字幕| 高清av免费在线| 丁香六月欧美| 亚洲欧美激情在线| 国产精品久久久av美女十八| 十八禁网站免费在线| 国产亚洲精品久久久久5区| 国产精品成人在线| 亚洲成国产人片在线观看| 国产激情久久老熟女| 国产成人免费无遮挡视频| 一边摸一边做爽爽视频免费| 欧美av亚洲av综合av国产av| 宅男免费午夜| 大型av网站在线播放| 性少妇av在线| 人人妻人人添人人爽欧美一区卜| av免费在线观看网站| 波多野结衣av一区二区av| 99国产精品免费福利视频| av网站免费在线观看视频| 女警被强在线播放| 国产精品免费大片| 色播在线永久视频| 亚洲精品国产区一区二| 两个人免费观看高清视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产野战对白在线观看| 在线免费观看的www视频| 国产精品av久久久久免费| 在线观看免费日韩欧美大片| 老司机福利观看| 真人做人爱边吃奶动态| 精品国产超薄肉色丝袜足j| 午夜福利视频在线观看免费| 一进一出好大好爽视频| 人人妻人人澡人人爽人人夜夜| 欧美在线一区亚洲| 后天国语完整版免费观看| 国产97色在线日韩免费| 成人18禁高潮啪啪吃奶动态图| netflix在线观看网站| 下体分泌物呈黄色| 国产精品综合久久久久久久免费 | videosex国产| 亚洲五月天丁香| 美女 人体艺术 gogo| 国产精品永久免费网站| 精品卡一卡二卡四卡免费| 在线观看66精品国产| 老熟女久久久| 亚洲熟妇中文字幕五十中出 | 色94色欧美一区二区| 成人手机av| 亚洲精品国产色婷婷电影| 午夜91福利影院| 国产精品免费视频内射| 午夜免费成人在线视频| 人人妻人人爽人人添夜夜欢视频| 1024视频免费在线观看| 成熟少妇高潮喷水视频| 亚洲自偷自拍图片 自拍| 午夜精品国产一区二区电影| 宅男免费午夜| 男女下面插进去视频免费观看| 少妇的丰满在线观看| 亚洲一区二区三区不卡视频| 亚洲专区中文字幕在线| 精品视频人人做人人爽| 女人久久www免费人成看片| 人成视频在线观看免费观看| 国产成人免费观看mmmm| 窝窝影院91人妻| 国产成人欧美| 91精品三级在线观看| 99riav亚洲国产免费| av网站在线播放免费| 亚洲专区字幕在线| 久久久国产欧美日韩av| 国产欧美亚洲国产| 亚洲中文av在线| 免费人成视频x8x8入口观看| 国产精品美女特级片免费视频播放器 | 亚洲黑人精品在线| 日本vs欧美在线观看视频| 夜夜躁狠狠躁天天躁| 黄色成人免费大全| 精品国产一区二区三区四区第35| 亚洲成人手机| 久久久久久久国产电影| 午夜免费观看网址| av网站免费在线观看视频| 性少妇av在线| 国产1区2区3区精品| 妹子高潮喷水视频| 国产欧美日韩一区二区三| 亚洲av熟女| 国产成人欧美在线观看 | 男女床上黄色一级片免费看| 国产精品成人在线| 亚洲精品国产色婷婷电影| 久久香蕉精品热| 久久精品国产清高在天天线| 大型av网站在线播放| 久久这里只有精品19| 精品国内亚洲2022精品成人 | 丁香欧美五月| 久久国产精品大桥未久av| 久久香蕉激情| 黑人欧美特级aaaaaa片| 九色亚洲精品在线播放| 天天影视国产精品| 久久国产精品大桥未久av| av福利片在线| 精品久久久久久久久久免费视频 | 亚洲成国产人片在线观看| 亚洲中文日韩欧美视频| 飞空精品影院首页| 欧美黑人欧美精品刺激| bbb黄色大片| 在线国产一区二区在线| 老汉色∧v一级毛片| 91麻豆精品激情在线观看国产 | 久久久久久久精品吃奶| 十分钟在线观看高清视频www| 一本综合久久免费| 国产精品影院久久| 午夜亚洲福利在线播放| www.精华液| 超碰成人久久| 亚洲精品在线观看二区| 日韩熟女老妇一区二区性免费视频| x7x7x7水蜜桃| 日韩免费高清中文字幕av| 精品一品国产午夜福利视频| 在线观看午夜福利视频| 91老司机精品| 午夜精品国产一区二区电影| 大香蕉久久网| 在线av久久热| 香蕉久久夜色| 国产xxxxx性猛交| 免费看十八禁软件| 一级毛片精品| 天天躁夜夜躁狠狠躁躁| 亚洲中文av在线| 午夜精品久久久久久毛片777| 久久人妻av系列| 丰满饥渴人妻一区二区三| a级片在线免费高清观看视频| 亚洲熟女精品中文字幕| 亚洲午夜理论影院| 国产xxxxx性猛交| 18禁裸乳无遮挡免费网站照片 | 日本a在线网址| 国产精品秋霞免费鲁丝片| 中文字幕av电影在线播放| 嫩草影视91久久| 黄色视频,在线免费观看| 老司机午夜福利在线观看视频| 亚洲午夜精品一区,二区,三区| 日韩欧美一区二区三区在线观看 | av天堂久久9| 久久久久久久国产电影| 国产免费现黄频在线看| 别揉我奶头~嗯~啊~动态视频| 久久人妻av系列| 国产欧美日韩一区二区三区在线| 国产精品av久久久久免费| 久久久久国产一级毛片高清牌| 亚洲五月色婷婷综合| 中文字幕人妻丝袜一区二区| 久9热在线精品视频| 国精品久久久久久国模美| 丝瓜视频免费看黄片| 免费观看人在逋| 美女扒开内裤让男人捅视频| 又紧又爽又黄一区二区| 精品人妻熟女毛片av久久网站| 99精品久久久久人妻精品| av不卡在线播放| 久久久精品免费免费高清| 一边摸一边抽搐一进一小说 | 波多野结衣av一区二区av| 狠狠狠狠99中文字幕| 亚洲综合色网址| 亚洲精品一卡2卡三卡4卡5卡| 91麻豆精品激情在线观看国产 | 国产精品 国内视频| 国产高清videossex| 精品一区二区三区视频在线观看免费 | 久久精品国产99精品国产亚洲性色 | 91精品国产国语对白视频| 国产精品影院久久| 51午夜福利影视在线观看| 午夜久久久在线观看| 少妇 在线观看| 亚洲成av片中文字幕在线观看| 精品熟女少妇八av免费久了| 亚洲av片天天在线观看| 村上凉子中文字幕在线| 99国产精品一区二区蜜桃av | 一级a爱片免费观看的视频| 国产精品久久久久久人妻精品电影| 日韩欧美在线二视频 | 国产成人欧美| 天堂动漫精品| 麻豆国产av国片精品| 黑人操中国人逼视频| 亚洲精品久久成人aⅴ小说| 久久香蕉激情| 久久久久国产精品人妻aⅴ院 | 成人18禁高潮啪啪吃奶动态图| 亚洲成人免费电影在线观看| 岛国毛片在线播放| 女人被狂操c到高潮| 欧美成人午夜精品| 午夜福利在线免费观看网站| 夫妻午夜视频| 亚洲av成人不卡在线观看播放网| av超薄肉色丝袜交足视频| 成人精品一区二区免费| 久久国产精品男人的天堂亚洲| 在线观看免费日韩欧美大片| 咕卡用的链子| 高清视频免费观看一区二区| 精品一区二区三区四区五区乱码| 一二三四在线观看免费中文在| 国产欧美日韩一区二区三| 一夜夜www| 成人18禁高潮啪啪吃奶动态图| 精品久久久精品久久久| 国产亚洲精品第一综合不卡| av网站免费在线观看视频| 精品第一国产精品| 精品亚洲成a人片在线观看| 国产精华一区二区三区| 国产成+人综合+亚洲专区| 亚洲成av片中文字幕在线观看| 精品无人区乱码1区二区| 一本大道久久a久久精品| 精品乱码久久久久久99久播| 久久久久久亚洲精品国产蜜桃av| 精品福利观看| 精品一品国产午夜福利视频| 很黄的视频免费| 国产欧美日韩一区二区精品| 国产高清国产精品国产三级| 国产精品久久视频播放| 国产精品免费大片| 国产高清视频在线播放一区| 天天操日日干夜夜撸| 日日夜夜操网爽| av欧美777| 99久久精品国产亚洲精品| 日本黄色视频三级网站网址 | 国产成人一区二区三区免费视频网站| 老司机深夜福利视频在线观看| 久久中文看片网| e午夜精品久久久久久久| 亚洲欧美精品综合一区二区三区| 岛国毛片在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久久精品古装| 狠狠婷婷综合久久久久久88av| 久久影院123| 亚洲国产精品sss在线观看 | 在线永久观看黄色视频| 国产精品秋霞免费鲁丝片| 麻豆成人av在线观看| 亚洲七黄色美女视频| 国产精品电影一区二区三区 | 国产精品 国内视频| 国产99久久九九免费精品| 在线观看一区二区三区激情| 后天国语完整版免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲九九香蕉| 啦啦啦视频在线资源免费观看| 国产蜜桃级精品一区二区三区 | 黄网站色视频无遮挡免费观看| а√天堂www在线а√下载 | 国产一卡二卡三卡精品| 国产成人欧美在线观看 | 国产av又大| 侵犯人妻中文字幕一二三四区| 国产亚洲精品久久久久5区| 黄色怎么调成土黄色| 午夜福利欧美成人| 日本一区二区免费在线视频| 老熟妇乱子伦视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 99香蕉大伊视频| 久久国产精品影院| 精品国产一区二区三区久久久樱花| xxx96com| 无遮挡黄片免费观看| 国产欧美日韩综合在线一区二区| 国产亚洲av高清不卡| 亚洲av电影在线进入| 国产高清videossex| 亚洲第一av免费看| 亚洲人成伊人成综合网2020| 国产一区二区三区视频了| 国产成人精品久久二区二区91| 中文字幕精品免费在线观看视频| 日韩熟女老妇一区二区性免费视频| 精品一区二区三区av网在线观看| 精品人妻在线不人妻| 成年女人毛片免费观看观看9 | 午夜免费观看网址| 大码成人一级视频| 亚洲全国av大片| 一边摸一边抽搐一进一小说 | 久久久国产精品麻豆| 精品国内亚洲2022精品成人 | 中国美女看黄片| 国产亚洲精品一区二区www | 大片电影免费在线观看免费| 中文字幕制服av| 男人的好看免费观看在线视频 | 女人高潮潮喷娇喘18禁视频| 69精品国产乱码久久久| 女同久久另类99精品国产91| 亚洲黑人精品在线| 老司机深夜福利视频在线观看| 一个人免费在线观看的高清视频| 啦啦啦在线免费观看视频4| 精品人妻熟女毛片av久久网站| 久久午夜综合久久蜜桃| 啦啦啦免费观看视频1| 夜夜夜夜夜久久久久| 日韩免费av在线播放| 国产精华一区二区三区| av免费在线观看网站| 一夜夜www| 韩国av一区二区三区四区| 岛国毛片在线播放| 国产在线精品亚洲第一网站| 黄色女人牲交| 美女扒开内裤让男人捅视频| 新久久久久国产一级毛片| 免费在线观看黄色视频的| 日本黄色视频三级网站网址 | 在线观看舔阴道视频| 亚洲中文av在线| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三| 亚洲国产中文字幕在线视频| 日韩成人在线观看一区二区三区| 人人妻人人澡人人看| 久久久久久人人人人人| 如日韩欧美国产精品一区二区三区| 一级黄色大片毛片| 精品福利永久在线观看| 在线十欧美十亚洲十日本专区| 久久中文字幕人妻熟女| 久久国产亚洲av麻豆专区| 国产欧美日韩精品亚洲av| 久久人人爽av亚洲精品天堂| 国产不卡av网站在线观看| 成人18禁在线播放| 两个人免费观看高清视频| 午夜成年电影在线免费观看| 精品国产一区二区三区四区第35| 首页视频小说图片口味搜索| 在线视频色国产色| 少妇的丰满在线观看| 久久亚洲精品不卡| 黑人欧美特级aaaaaa片| 亚洲,欧美精品.| 人妻丰满熟妇av一区二区三区 | 久久久久久久精品吃奶| av免费在线观看网站| 大型av网站在线播放| 亚洲专区字幕在线| 欧美激情高清一区二区三区| 一区二区三区国产精品乱码| 日韩三级视频一区二区三区| 亚洲欧美日韩高清在线视频| 黄色视频不卡| 亚洲中文日韩欧美视频| 亚洲性夜色夜夜综合| 成人永久免费在线观看视频| 男女之事视频高清在线观看| 国产精品国产高清国产av | 99精品在免费线老司机午夜| 男女床上黄色一级片免费看| 窝窝影院91人妻| 国产成人精品在线电影| av电影中文网址| 在线看a的网站| 亚洲专区国产一区二区| 国产精华一区二区三区| 国产精品久久久久久精品古装| 中文字幕人妻熟女乱码| 久久人人97超碰香蕉20202| 亚洲欧美激情综合另类| 新久久久久国产一级毛片| 99热网站在线观看| 国产野战对白在线观看| 久久久国产成人精品二区 | 91成人精品电影| 人妻久久中文字幕网| 久久久精品免费免费高清|