冉茂良 高 環(huán) 尹 杰 陳 斌*
(1.湖南農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,長沙 410128;2.中國科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所,中國科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)過程重點(diǎn)實(shí)驗(yàn)室,湖南省畜禽健康養(yǎng)殖工程技術(shù)中心,農(nóng)業(yè)部中南動(dòng)物營養(yǎng)與飼料科學(xué)觀測實(shí)驗(yàn)站,長沙 410125;3.中國科學(xué)院研究生院,北京 100049)
人和動(dòng)物機(jī)體內(nèi)由于細(xì)胞呼吸和能量代謝時(shí)刻發(fā)生著有氧氧化,在細(xì)胞中產(chǎn)生活性氧分子(reactive oxygen species,ROS),如超氧陰離子(·O-2)和羥自由基(·OH)等自由基。當(dāng)細(xì)胞受到內(nèi)外環(huán)境的刺激后,ROS產(chǎn)生增多,從而破壞了機(jī)體氧化與抗氧化系統(tǒng)之間的平衡,最終導(dǎo)致氧化應(yīng)激(圖1)[1-3]。過多的ROS能夠激活核因子E2相關(guān)因子2(Nrf2)、核轉(zhuǎn)錄因子 -κB(NF-κB)、絲裂原活化蛋白激酶(MAPKs)等,從而調(diào)節(jié)許多氧化物質(zhì)和抗氧化物質(zhì)相關(guān)基因的表達(dá)[4-5]。不僅如此,蛋白質(zhì)和DNA也是ROS的攻擊靶標(biāo),ROS能夠造成蛋白質(zhì)結(jié)構(gòu)突變或喪失生物活性、DNA鏈斷裂、DNA位點(diǎn)突變、DNA雙鏈畸變和原癌基因與腫瘤抑制基因突變,最終導(dǎo)致機(jī)體產(chǎn)生氧化損傷[6-7]。DNA作為生物體最重要的遺傳物質(zhì)能夠保持其自身一定的穩(wěn)定性,但是DNA卻經(jīng)常發(fā)生內(nèi)在的自發(fā)性損傷和遭受X射線、紫外線、烷化劑、嵌入劑等外在刺激而發(fā)生損傷,據(jù)統(tǒng)計(jì)每個(gè)細(xì)胞內(nèi)的DNA在24 h內(nèi)出現(xiàn)10 000次損傷。而DNA損傷能夠加速細(xì)胞的衰老和凋亡、引起癌癥和腫瘤等疾病。不僅如此,有研究報(bào)道DNA損傷也可以誘導(dǎo)ROS的產(chǎn)生[8],且對(duì)細(xì)胞死亡和自救有重要的作用[9],其原因可能是由于ROS能調(diào)節(jié)p53基因(一種抗癌基因)的活性[10-11]。由此可見,ROS可引起DNA損傷,而DNA損傷也可以誘導(dǎo)產(chǎn)生ROS,因而氧化應(yīng)激和DNA之間存在著一定的聯(lián)系。
大量研究表明,ROS有2種來源:一種是內(nèi)源性,線粒體呼吸鏈氧化磷酸化過程活性氧泄漏、過氧化酶體和被激活的炎性細(xì)胞等[12];另一種是外源性,例如外源物、病原體、促炎細(xì)胞因子和重金屬等[13]。盡管細(xì)胞色素 p450氧化酶也能產(chǎn)生ROS,但線粒體仍是細(xì)胞ROS最重要的來源。研究表明,在線粒體呼吸鏈輔酶還原型輔酶Ⅰ(NADH)、泛醌氧化還原酶和泛醌細(xì)胞色素C氧化還原酶的作用下,0.15%的氧被轉(zhuǎn)化為ROS,其中主要是·,由于·能攻擊細(xì)胞內(nèi)許多大分子(如脂質(zhì)、蛋白質(zhì)和DNA)且能通過酶催化反應(yīng)產(chǎn)生其他 ROS,如·OH和過氧化氫(H2O2)等,因而·被視為“首要 ROS”[15]。·O2-在超氧化物歧化酶(SOD)的催化作用下被轉(zhuǎn)變?yōu)镠2O2,H2O2通過過氧化氫酶、谷胱甘肽過氧化物酶(GPx)和Fenton反應(yīng)被清除。其中過氧化氫酶能夠通過歧化反應(yīng)將2分子H2O2轉(zhuǎn)化為1分子O2和2分子H2O,GPx利用一些還原劑將H2O2轉(zhuǎn)化為2分子H2O,F(xiàn)enton反應(yīng)則是在Fe2+的催化下將H2O2分解生成·OH[1,16]。盡管·OH的半衰期(大約10-9s)非常短,但其活性很高,幾乎對(duì)所有大分子(如碳水化合物、核酸、脂質(zhì)和蛋白質(zhì))造成損傷[17](圖 2)。
圖1 促氧化和抗氧化系統(tǒng)間的平衡模型Fig.1 Balance model between pro-oxidative and anti-oxidative systems[1]
圖2 SOD將·轉(zhuǎn)化為H2O2后的已知途徑Fig.2 Clear pathways after· transformed into H2O2by SOD
UCPs是線粒體內(nèi)膜上的一種具有調(diào)節(jié)質(zhì)子跨膜作用的特殊蛋白質(zhì)。目前在哺乳動(dòng)物體內(nèi)已經(jīng)發(fā)現(xiàn) 5 種 UCPs,分別為:UCP1、UCP2、UCP3、UCP4 和 UCP5[18-19]。研 究 表 明,在 UCPs 家 族中,僅UCP2和UCP3能夠?qū)ρ趸瘧?yīng)激起反饋調(diào)節(jié)的作用。例如,UCP2基因敲除的小鼠較正常小鼠大腦線粒體在氧化應(yīng)激下能夠產(chǎn)生更多的ROS[20],此外,UCP3 基因的過度表達(dá)也能顯著降低細(xì)胞衰老誘導(dǎo)的ROS的產(chǎn)生[21]。UCPs反饋調(diào)節(jié)ROS的機(jī)制是:UCPs通過降低質(zhì)子電化學(xué)梯度,使呼吸作用中電子傳遞過程和ATP的合成解耦聯(lián),因此將儲(chǔ)存的能量以熱能的形式釋放,并提高靜息代謝率,其中UCPs通過調(diào)節(jié)質(zhì)子泄漏(proton leak)以降低 ROS 的產(chǎn)量(圖3)[22]。研究表明:呼吸鏈賦予質(zhì)子的高運(yùn)動(dòng)能力,使給氧分子提供1個(gè)電子而變成·的電子載體在穩(wěn)定狀態(tài)時(shí)的濃度升高,由此增加了·的量;·下游衍生物羥基壬烯酸激活電子漏,使膜電位降低,隨后通過呼吸鏈刺激電子流量,使得給氧提供1個(gè)電子而變成·的電子載體的在穩(wěn)定狀態(tài)時(shí)的濃度降低,因此UCPs對(duì)ROS的生成有一個(gè)負(fù)反饋機(jī)制,其功能是通過脂質(zhì)過氧化產(chǎn)物來抵抗氧化應(yīng)激,但是羥基壬烯酸在UCPs反饋調(diào)節(jié)ROS 的機(jī)制尚不清楚[23-24]。
氧化應(yīng)激能夠破壞細(xì)胞內(nèi)氧化還原平衡,從而激活或抑制許多信號(hào)通路和一些信號(hào)介導(dǎo)分子,如核因子 E2相關(guān)因子2-胞質(zhì)伴侶蛋白(Nrf2/Keap1)信號(hào)通道[4]、NF-κB 信號(hào)通道[5],MAPKs[25],激酶蛋白 mTOR(一個(gè)蛋白質(zhì)合成的關(guān)鍵調(diào)控子)[26]和蛋白激酶 C(PKC)[27]等,最終調(diào)節(jié)相關(guān)基因的表達(dá)。其中Nrf2/Keap1是細(xì)胞內(nèi)抵抗氧化應(yīng)激和保持氧化還原平衡的重要信號(hào)通道之一[28],Nrf2是一種氧化應(yīng)激基本表達(dá)的關(guān)鍵轉(zhuǎn)錄因子,存在于全身多個(gè)器官,它的缺失或激活障礙直接引起細(xì)胞對(duì)應(yīng)激源的敏感性變化。因此,本文主要綜述了ROS對(duì)Nrf2/Keap1信號(hào)通路的影響。
Keap1是Nrf2在細(xì)胞質(zhì)中的富含半胱氨酸的結(jié)合蛋白,主要通過結(jié)合Nrf2使之無法進(jìn)入細(xì)胞核,從而抑制Nrf2的活性,避免引起細(xì)胞對(duì)應(yīng)激源的敏感性升高,例如敲除Keap1的基因?qū)е翹rf2信號(hào)非?;钴S[29-30]。在無應(yīng)激條件下,Nrf2在細(xì)胞質(zhì)中通過與Keap1結(jié)合而被抑制,而當(dāng)在氧化應(yīng)激或過量ROS刺激時(shí),半胱氨酸在Keap1中的殘留量會(huì)增加,隨后Keap1作為E3連接酶的活性變?nèi)酰?1],Nrf2和 Keap1之間的連接被打亂,導(dǎo)致Nrf2泛化和衰退減少,細(xì)胞質(zhì)中自由的Nrf2增多,轉(zhuǎn)移進(jìn)細(xì)胞核的Nrf2增多[32-33],進(jìn)入細(xì)胞核的Nrf2與小Maf蛋白形成異源二聚體,并且和抗氧化反應(yīng)元件(ARE)連接在一起。隨后,ARE被激活并啟動(dòng)抗氧化基因的轉(zhuǎn)錄[34],從而使得抗氧化基因得以表達(dá)。但是Li等[32]研究報(bào)道:細(xì)胞內(nèi)存在2種Nrf2蛋白,一種是游離Nrf2(f Nrf2),另一種是與Keap1結(jié)合的Nrf2(kNrf2),在無應(yīng)激狀態(tài)下細(xì)胞質(zhì)內(nèi)絕大多數(shù)Nrf2是處于與Keap1結(jié)合的狀態(tài),只有少量fNrf2進(jìn)入細(xì)胞核以保持氧化還原平衡;在ROS過量時(shí),由于Keap1的自我泛素化使得Keap1與Nrf2的結(jié)合量達(dá)到飽和或減少[35-36],從而f Nrf2的量增多,進(jìn)入細(xì)胞核強(qiáng)化抗氧化基因的表達(dá)[32]。這2種 Nrf2/Keap1信號(hào)通道機(jī)制的關(guān)鍵不同之處是:前一種認(rèn)為氧化還原信號(hào)是從Keap1到Nrf2的,而后一種認(rèn)為Keap1和Nrf2都對(duì)氧化還原信號(hào)有高度的敏感性[32]。但是如前面敘述的細(xì)胞內(nèi)在無應(yīng)激狀態(tài)下也時(shí)刻都產(chǎn)生ROS,因而細(xì)胞要保持氧化還原狀態(tài),也必須時(shí)刻都有fNrf2進(jìn)入細(xì)胞核促使抗氧化基因表達(dá),所以認(rèn)為 Li等[32]對(duì) Nrf2/Keap1信號(hào)通道機(jī)制的研究更為合理。
動(dòng)物體內(nèi)DNA經(jīng)常受到來自體內(nèi)外各種因素的刺激,例如:外源性的高溫高壓、紫外線、射線、重金屬、強(qiáng)氧化劑、強(qiáng)酸和強(qiáng)堿等物理化學(xué)因素和內(nèi)源性ROS、酸堿不平衡及DNA在復(fù)制和傳遞過程中出現(xiàn)的錯(cuò)誤等,這些因素都將導(dǎo)致DNA損傷。DNA損傷的形式有多種,如DNA雙鏈結(jié)構(gòu)破壞(DSBs)[37]、DNA 鏈斷裂、堿基或堿基對(duì)被切除或替換等。此外,DNA損傷會(huì)引發(fā)多種細(xì)胞反應(yīng),包括DNA修復(fù)、細(xì)胞周期延遲或阻滯、細(xì)胞凋亡[38]等。由于DNA損傷的形式有多種,因而其損傷反應(yīng)的機(jī)理也各不相同,由于DSBs出現(xiàn)在多種原因?qū)е碌腄NA損傷中[39],本文主要介紹了DSBs誘發(fā)的反應(yīng)。
DSBs是DNA損傷中最具有致命性作用的損傷之一,若DSBs沒有被成功修復(fù),不僅危及細(xì)胞的自我更新和分化能力,而且導(dǎo)致染色體組不穩(wěn)定和疾?。?9]。在哺乳動(dòng)物細(xì)胞內(nèi),當(dāng)MRN復(fù)合體(由 Mre11、Rad50和 Nbs1組成)感應(yīng)到 DSBs時(shí),立即激活運(yùn)動(dòng)失調(diào)性毛細(xì)血管擴(kuò)張癥突變蛋白(ataxia telangiectasia mutated,ATM),磷脂酰肌醇-3-激酶 β(phosphoinositide 3-kinaseβ,PI3Kβ)也是感應(yīng)染色體結(jié)構(gòu)完整性的一個(gè)重要感受器[40],PI3K相關(guān)激酶(PIKK)家族的成員參與組織DNA損傷反應(yīng)[41-42]。其中ATM 能使細(xì)胞周期控制、DNA修復(fù)和染色體結(jié)構(gòu)調(diào)節(jié)中的700多種蛋白質(zhì)磷酸化,包括p53、細(xì)胞周期檢測點(diǎn)激酶 2(Chk2)和組蛋白家族成員 X(H2AX)[43],并且有研究表明,ATM在氧化應(yīng)激反應(yīng)中也起到關(guān)鍵的作用[44]。被激活的ATM導(dǎo)致H2AX快速磷酸化形成γ-H2AX,從而在損傷處標(biāo)定DNA損傷信號(hào)和積累修復(fù)蛋白,γ-H2AX能被小腦癥蛋白(MCPH1)和DNA損傷調(diào)節(jié)蛋白1(MDC1)識(shí)別,MDC1通過磷酸酶和組蛋白交換因子的活動(dòng)擴(kuò)大依賴ATM的信號(hào),與此同時(shí)也促進(jìn)了其他DSBs信號(hào)和修復(fù)蛋白的積累,最終DNA損傷信號(hào)導(dǎo)致檢查點(diǎn)蛋白激酶細(xì)胞周期檢測點(diǎn)激酶1(Chk1)和Chk2被激活,Chk1和Chk2能修改細(xì)胞周期的部分機(jī)制使得細(xì)胞周期停止[45]。細(xì)胞在長期進(jìn)化過程中產(chǎn)生細(xì)胞周期檢測點(diǎn)(探測器包括Rad9和Rad17等)以保證細(xì)胞周期中DNA復(fù)制和染色體質(zhì)量的機(jī)制,由于DNA損傷可以發(fā)生在細(xì)胞周期的任何時(shí)相,因而DNA損傷檢查點(diǎn)又可分為:G1期、M 期和 S2期檢查點(diǎn)[46]。若 G1期發(fā)生 DNA損傷,激活后的Chk1和Chk2可以磷酸化細(xì)胞分裂周期蛋白25A(Cdc25A),使其降解,即沒有足夠的Cdc25A清除細(xì)胞周期素依賴性激酶2(CDK2)上抑制其活性位點(diǎn)的磷酸基團(tuán),使得Cdc25A不能被激活,從而不能推動(dòng)G1期向S期轉(zhuǎn)換,引起細(xì)胞周期停滯[40];若S期發(fā)生DNA損傷,Chk1和Chk2抑制了CDK2活性,Cdc45不能組裝到染色質(zhì)上,Cdc45可以召集DNA聚合酶α,從而大大降低了DNA合成速度以延緩細(xì)胞周期[40,47];若 G2 期發(fā)生 DNA 損傷,Cdc25A 被泛素降解而不能激活細(xì)胞周期素依賴性激酶1(CDK1),且G2期檢查點(diǎn)還會(huì)激活一條依賴p53的途徑以停滯細(xì)胞周期[40,48]。細(xì)胞周期停滯或延緩后,通過堿基切除修復(fù)、核酸切除修復(fù)、重組修復(fù)和錯(cuò)配修復(fù)等方式修復(fù)受損DNA,如損傷不能修復(fù)或不能正確完成,則啟動(dòng)凋亡或非凋亡性死亡程序,清除有損傷或病變傾向的細(xì)胞[49]。值得注意的是,有研究報(bào)道,表皮生長因子受體(EGFR)與細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)和蛋白激酶B(PKB)串聯(lián)的信號(hào)對(duì)依賴ATM修復(fù)DNA損傷的反應(yīng)有積極影響[50-51],并且修復(fù)DSBs有2條主要的途徑,分別是同源重組(HR)和末端加入的非同源(non-homologous end-joining,NHEJ),這 2 條途徑見的平衡是保持基因組穩(wěn)定所必需的[52]。
大量研究表明,ROS能夠引起氧化損傷,并攻擊蛋白質(zhì)和DNA,會(huì)引起包括DNA鏈斷裂、DNA位點(diǎn)突變、DNA雙鏈畸變和原癌基因與腫瘤抑制基因突變等形式的DNA損傷[6],例如,嗜中性粒細(xì)胞和巨噬細(xì)胞引起的ROS能直接導(dǎo)致DNA脫氨基和堿基氧化[53]。不僅如此,DNA損傷可以提升細(xì)胞內(nèi)ROS水平[8],且 DNA損傷誘導(dǎo)的 ROS在調(diào)節(jié)細(xì)胞的死亡和自救中起到很重要的作用[9]。由此說明DNA損傷和ROS引起的氧化應(yīng)激之間存在著一定的聯(lián)系。
過多的ROS引起的氧化損傷會(huì)導(dǎo)致包括DNA鏈斷裂、DNA位點(diǎn)突變、DNA雙鏈畸變等形式的DNA損傷,但是與核DNA(nDNA)相比,線粒體DNA(mtDNA)更容易遭受氧化傷害[54]。有報(bào)道稱,ROS對(duì) mtDNA突變影響更大[55]。大多數(shù)mtDNA突變的形式是:胸腺嘧啶(T)轉(zhuǎn)變?yōu)榘奏?C),鳥嘌呤(G)轉(zhuǎn)變?yōu)橄汆堰?A)[56]。而ROS可使G氧化為8-氧鳥嘌呤(8-oxoG),而8-oxoG不再與C配對(duì),反而與A配對(duì),使得G轉(zhuǎn)變?yōu)锳[57]。此外,F(xiàn)enton反應(yīng)分解H2O2生成的高活性·OH能高效地?fù)p傷DNA,包括:DNA鏈斷裂、DNA位點(diǎn)突變、DNA雙鏈畸變。并且線粒體呼吸鏈產(chǎn)生的ROS導(dǎo)致的mtDNA損傷和突變能反過來使呼吸鏈功能失效,從而進(jìn)一步促進(jìn)ROS的產(chǎn)生[58]。由此說明,ROS引起的氧化應(yīng)激與 DNA損傷之間有相互促進(jìn)作用。
在細(xì)胞培養(yǎng)中,DNA損傷已被證明可以刺激細(xì)胞中 ROS 產(chǎn)生[59],如·、H2O2和·OH[60]。DNA損傷后的2 h內(nèi)ROS量迅速增加,2.0~3.5 h逐漸減少,3.5~5.0 h內(nèi)出現(xiàn)第2次迅速增加[61],但其機(jī)制仍不清楚。有研究表明,DNA損傷通過H2AX-還原型輔酶Ⅱ氧化酶1(Nox1)/Rac1通道誘導(dǎo)ROS產(chǎn)生,H2AX的超量表達(dá)和基因敲除都證明H2AX能調(diào)節(jié)ROS的產(chǎn)生[61],其原因可能是由于DNA損傷后導(dǎo)致H2AX被磷酸化的量增加,H2AX通過掩蔽14-3-3zeta[14-3-3zeta蛋白是14-3-3家族的一個(gè)成員,通常以二聚體的形式存在,在真核細(xì)胞中普遍存在,它能同時(shí)接受2個(gè)配體(如受體蛋白和激酶等),是信號(hào)傳導(dǎo)通路中的重要接頭蛋白[60]],激活 Rac1、GTP 酶和Nox1,從而引起細(xì)胞內(nèi) ROS的量增加。其中,Nox1是gp91(phox)(一個(gè)NADPH氧化酶的亞單位)的同源分子,其基因可在非噬細(xì)胞(上皮細(xì)胞和內(nèi)皮細(xì)胞等)內(nèi)表達(dá),能被Rac1(細(xì)胞內(nèi)重要的信號(hào)轉(zhuǎn)導(dǎo)分子)激活。研究表明,減少Rac1的生成能減少依賴Nox1產(chǎn)生的ROS量[62]。
綜上所述,若ROS引起的氧化應(yīng)激和各種原因誘導(dǎo)的DNA損傷超過了動(dòng)物機(jī)體細(xì)胞自我修復(fù)的能力,將會(huì)對(duì)動(dòng)物機(jī)體造成各種損傷,如腫瘤、癌癥、細(xì)胞衰老甚至凋亡等,并且DNA損傷和氧化應(yīng)激之間存在著必然的聯(lián)系。但是一些細(xì)胞自我修復(fù)和抵抗各種應(yīng)激與ROS和DNA損傷的機(jī)制尚不清楚,并且氧化應(yīng)激和DNA損傷對(duì)機(jī)體細(xì)胞造成損傷的廣泛性及其在動(dòng)物生產(chǎn)中產(chǎn)生的影響需要做進(jìn)一步的研究。
[1]REUTER S,GUPTA S C,CHATURVEDI M M,et al.Oxidative stress,inflammation,and cancer:how are they linked?[J].Free Radical Biology and Medicine,2010,49(11):1603-1616.
[2]PI J B,ZHANG Q,F(xiàn)U JQ,et al.ROS signaling,oxidative stress and Nrf2 in pancreatic beta-cell function[J].Toxicology and Applied Pharmacology,2010,244(1):77-83.
[3]KANNINEN K,WHITE A R,KOISTINAHO J,et al.Targeting glycogen synthase kinase-3βfor therapeutic benefit against oxidative stress in Alzheimer’s disease:involvement of the Nrf2-ARE Pathway[J].International Journal of Alzheimer’s Disease,2011,2011:985085.
[4]SYKIOTIS G P,HABEOS I G,SAMUELSON A V,et al.The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation[J].Current Opinion in Clinical Nutrition and Metabolic Care,2011,14(1):41-48.
[5]PANTANO C,REYNAERT N L,VAN DER VLIET A,et al.Redox-sensitive kinases of the nuclear factorκB signaling pathway[J].Antioxidants & Redox Signaling,2006,8(9/10):1791-1806.
[6]MEIRA L B,BUGNI J M,GREEN S L,et al.DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice[J].The Journal of Clinical Investigation,2008,118(7):2516-2525.
[7]DAS P M,SINGAL R.DNA methylation and cancer[J].Journal of Clinical Oncology,2004,22(22):4632-4642.
[8]ROWE L A,DEGTYAREVA N,DOETSCH P W.DNA damage-induced reactive oxygen species(ROS)stress response in Saccharomyces cerevisiae[J].Free Radical Biology and Medicine,2008,45:1167-1177.
[9]HAMANAKA R B,CHANDEL N S.Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes[J].Trends Biochemical Sciences,2010,35:505-513.
[10]BRAGADO P,ARMESILLA A,SILVA A,et al.Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation[J].Apoptosis,2007,12:1733-1742.
[11]LIU B,CHEN Y M,ST CLAIR D K.ROSand p53:a versatile partnership[J].Free Radical Biology and Medicine,2008,44:1529-1535.
[12]KLAUNIG JE,KAMENDULISL M.The role of oxidative stress in carcinogenesis[J].Annual Review of Pharmacology and Toxicology,2004,44:239-267.
[13]JOMOVA K,BAROS S,VALKO M.Redox active metal-induced oxidative stress in biological systems[J].Transition Metal Chemistry,2012,37(2):127-134.
[14]ST-PIERRE J,BUCKINGHAM J A,ROEBUCK S J,et al.Topology of superoxide production from different sites in the mitochondrial electron transport chain[J].The Journal of Biological Chemistry,2002,277(47):44784-44790.
[15]VALKO M,RHODES C J,MONCOL J,et al.Free radicals,metals and antioxidants in oxidative stress-in-duced cancer[J].Chemico-Biological Interactions,2006,160(1):1-40.
[16]KLAUNIG J E,WANG Z,PU X,et al.Oxidative stress and oxidative damage in chemical carcinogenesis[J].Toxicology and Applied Pharmacology,2011,254(2):86-99.
[17]VALKO M,IZAKOVIC M,MAZUR M,et al.Role of oxygen radicals in DNA damage and cancer incidence[J].Molecular and Cellular Biochemistry,2004,266:37-56.
[18]RICQUIER D,BOUILLAUD F.The uncoupling protein homologues:UCP1,UCP2,UCP3,StUCPand At-UCP[J].The Biochemical Journal,2000,345:161-179.
[19]NEDERGAARD J,RICQUIER D,KOZAK L P.Uncoupling proteins:current status and therapeutic prospects[J].EMBO Reports,2005,6(10):917-921.
[20]SUSKI J M,SCHüNFELD P,BONORA M,et al.Uanosine diphosphate exerts a lower effect on superoxide release from mitochondrial matrix in the brains of uncoupling protein-2 knockout mice:new evidence for a putative novel function of uncoupling proteins as superoxide anion transporters[J].Biochemical and Biophysical Research Communications,2012,428(2):234-238.
[21]NABBEN M,HOEKSJ,BRIEDé JJ,et al.The effect of UCP3 overexpression on mitochondrial ROS production in skeletal muscle of young versus aged mice[J].FEBS Letters,2008,582(30):4147-4152.
[22]BRAND M D,ESTEVEST C.Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3[J].Cell Metabolism,2005,2(2):85-93.
[23]AFFOURTIT C,CRICHTON PG,PARKER N,et al.Novel uncoupling proteins[J].Novartis Foundation Symposium,2007,287:70-80.
[24]AZZU V,BRAND M D.The on-off switches of the mitochondrial uncoupling proteins[J].Trends in Biochemical Sciences,2010,35(5):298-307.
[25]MCCUBREY J A,LAHAIR M M,F(xiàn)RANKLIN R A.Reactive oxygen species-induced activation of the MAP kinase signaling pathways[J].Antioxidants &Redox Signaling,2006,8(9/10):1775-1789.
[26]BYUN Y J,KIM SK,KIM Y M,et al.Hydrogen peroxide induces autophagic cell death in C6 glioma cells via BNIP3-mediated suppression of the mTOR pathway[J].Neuroscience Letters,2009,461(2):131-135.
[27]KANTHASAMY A G,KITAZAWA M,KANTHASAMY A,et al.Role of proteolytic activation of protein kinase Cδin oxidative stress-induced apoptosis[J].Antioxidants & Redox Signaling,2003,5(5):609-620.
[28]STEPKOWSKI T M,KRUSZEWSKI M K.Molecular cross-talk between the NRF2/KEAP1 signaling pathway,autophagy,and apoptosis[J].Free Radical Biology and Medicine,2011,50(9):1186-1195.
[29]WAKABAYASHI N,DINKOVA-KOSTOVA A T,HOLTZCLAW W D,et al.Protection against electrophile and oxidant stress by induction of the phase 2 response:fate of cysteines of the Keap1 sensor modified by inducers[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(7):2040-2045.
[30]OKAWA H,MOTOHASHI H,KOBAYASHI A,et al.Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity[J].Biochemical and Biophysical Research Communications,2006,339(1):79-88.
[31]LEVONEN A L,LANDAR A,RAMACHANDRAN A,et al.Cellular mechanisms of redox cell signalling:role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products[J].Biochemical Journal,2004,378:373-382.
[32]LI W G,KONG A N.Molecular mechanisms of Nrf2-mediated antioxidant response[J].Molecular Carcinogenesis,2009,48(2):91-104.
[33]PURDOM-DICKINSON S E,SHEVELEVA E V,SUN H P,et al.Translational control of nrf2 protein in activation of antioxidant response by oxidants[J].Molecular Pharmacology,2007,72(4):1074-1081.
[34]YAMAMOTO T,KYO M,KAMIYA T,et al.Predictive base substitution rules that determine the binding and transcriptional specificity of Maf recognition elements[J].Genes to Cells,2006,11(6):575-591.
[35]ZHANG D D,LO S C,SUN Z,et al.Ubiquitination of Keap1,a BTB-Kelch substrate adaptor protein for Cul3,targets Keap1 for degradation by a proteasomeindependent pathway[J].The Journal of Biological Chemistry,2005,280(34):30091-30099.
[36]YUAN X L,XU C J,ZUI P,et al.Butylated hydroxyanisole regulates ARE-mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells[J].Molecular Carcinogene-sis,2006,45(11):841-850.
[37]NAGARIA P,ROBERT C,RASSOOL F V.DNA double-strand break response in stem cells:mechanisms to maintain genomic integrity[J].Biochimica et Biophysica Acta(BBA):General Subjects,2013,1830(2):2345-2353.
[38]蔣滿榮.DNA損傷對(duì)哺乳動(dòng)物細(xì)胞周期和凋亡的影響[D].博士學(xué)位論文.上海:中國科學(xué)院研究生院,2006.
[39]KHALIL A,MORGAN R N,ADAMS B R,et al.ATM-dependent ERK signaling via AKT in response to DNA double-strand breaks[J].Cell Cycle,2011,10(3):481-491.
[40]KUMAR A,F(xiàn)ERNANDEZ-CAPETILLO O,CARRERA A C.Nuclear phosphoinositide 3-kinaseβcontrols double-strand break DNA repair[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(16):7491-7496.
[41]BARTEK J,LUKAS J.DNA damage checkpoints:from initiation to recovery or adaptation[J].Current Opinion in Cell Biology,2007,19:238-245.
[42]HARRISON JC,HABER JE.Surviving the breakup:the DNA damage checkpoint[J].Annual Review of Genetics,2006,40:209-235.
[43]MATSUOKA S,BALLIF B A,SMOGORZEWSKA A,et al.ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage[J].Science,2007,316:1160-1166.
[44]SHILOH Y.ATM(ataxia telangiectasia mutated):expanding roles in the DNA damage response and cellular homeostasis[J].Biochemical Society Transactions,2001,29:661-666.
[45]YEUNG M,DUROCHER D.Engineering a DNA damage response without DNA damage[J].Genome Biology,2008,9(7):227.
[46]AGAMI R,BERRARDS R.Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage[J].Cell,2000,102:55-66.
[47]BUSINO L,DONZELLI M,CHIESA M,et al.Degradation of Cdc25A byβ-TrCP during S phase and in response to DNA damage[J].Nature,2003,426:87-91.
[48]LUKAS J,LUKAS C,BARTEK J.Mammalian cell cycle checkpoints:signalling pathways and their organization in space and time[J].DNA Repair,2004,3(8/9):997-1007.
[49]NOWSHEEN S,YANG E S.The intersection between DNA damage response and cell death pathways[J].Experimental Oncology,2012,34(3):243-254.
[50]GOLDING S E,MORGAN R N,ADAMS B R,et al.Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvⅢenhances DNA double-strand break repair in human glioma cells[J].Cancer Biology &Therapy,2009,8:730-738.
[51]MUKHERJEE B,MCELLIN B,CAMACHO C V,et al.EGFRvⅢand DNA double-strand break repair:a molecular mechanism for radioresistance in glioblastoma[J].Cancer Research,2009,69:4252-4259.
[52]BRANDSMA I,VAN GENT D C.Pathway choice in DNA double strand break repair:observations of a balancing act[J].Genome Integrity,2012,3(1):9.
[53]COUSSENS L M,WERB Z.Inflammation and cancer[J].Nature,2002,420:860-867.
[54]LIANG F Q,GODLEY B F.Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells:a possible mechanism for RPE aging and age-related macular degeneration[J].Experimental Eye Research,2003,76(4):397-403.
[55]ISHIKAWA K,TAKENAGA K,AKIMOTO M,et al.ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis[J].Science,2008,320:661-664.
[56]LI H,HONG Z H.Mitochondrial DNA mutations in human tumor cells[J].Oncology Letters,2012,4(5):868-872.
[57]WANG D,KREUTZER D A,ESSIGMANN J M.Mutagenicity and repair of oxidative DNA damage:insights from studies using defined lesions[J].Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1998,400:99-115.
[58]SHOKOLENKO I,VENEDIKTOVA N,BOCHKAREVA A,et al.Oxidative stress induces degradation of mitochondrial DNA[J].Nucleic Acids Research,2009,37(8):2539-2548.
[59]EVERT B A,SALMON T B,SONG B W,et al.Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells[J].Journal of Biological Chemistry,2004,279:22585-22594.
[60]吳東明.14-3-3zeta蛋白多克隆抗體的制備與鑒定[D].碩士學(xué)位論文.合肥:安徽大學(xué),2007.
[61]KANG M A,SO E Y,SIMONS A L,et al.DNA damage induces reactive oxygen species generationthrough the H2AX-Nox1/Rac1 pathway[J].Cell Death and Disease,2012,3:e249.
[62]CHENG G J,DIEBOLD B A,HUGHES Y,et al.Nox1-dependent reactive oxygen generation is regulated by Rac1[J].Journal of Biological Chemistry,2006,281(26):17718-17726.
動(dòng)物營養(yǎng)學(xué)報(bào)2013年10期