• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MgCl2 在LiCl-KCl熔 鹽中的電化學特性

    2013-09-17 06:59:00顏永得張密林張志儉杜衛(wèi)超
    物理化學學報 2013年8期
    關鍵詞:哈爾濱工程大學物理化學哈爾濱

    唐 浩 顏永得,,* 張密林 薛 云 張志儉 杜衛(wèi)超 何 輝

    (1哈爾濱工程大學材料科學與化學工程學院,超輕材料與表面技術教育部重點實驗室,哈爾濱150001;2哈爾濱工程大學核科學與技術學院,哈爾濱150001;3中國原子能科學研究院,北京102413)

    1 Introduction

    Magnesium,with a density of 1.74 g·cm?3,is the lightest structural metals used as engineering materials,known as“21st Century Green Engineering Materials”.Magnesium base materials have been widely used in the area of transportation,communication,electronic,aerospace,and sports industries,1-3because magnesium base materials exhibit a series of favorable properties,such as high specific strength and stiffness,superior machinability,and better electromagnetic shielding properties,etc.1,4Rare earth(RE)elements are often used as addition elements to improve alloys properties.The additions of small amount of RE elements to Mg alloys can improve castability,high temperature properties,mechanical properties,and corrosion resistance due to ageing,fine grain,dispersion,and solid solution strengthening.5-7In fact,high cost is the only one negative factor that limits the range of applications of Mg-RE alloys.

    Electrolysis in molten chlorides and fluorides is still the main method for industrial production of pure Mg and RE metals.This is an energy demanding process.To date,Mg-RE master alloys are mainly prepared by mixing pure Mg and RE metals directly at temperatures above their melting points.These production processes result in high energy waste.In recent years,electrochemical co-deposition has been widely used to prepare RE alloys in different mediums.Iida et al.8investigated the electrochemical co-deposition of Sm-Co alloys from Li-Cl-KCl-SmCl3-CoCl2melts.Liand co-workers9prepared Sm-Co films on copper substrate by electrodeposition in urea-acetamide-NaBr-KBr melt at 353K.Li et al.10prepared Er-Bi films by co-deposition from ErCl3-Bi(NO3)3-LiCl-DMSO on copper substrate at 305 K.Massot et al.11-13have prepared Al-RE alloys by co-reduction of RE ions with Al ions to recover REs from molten fluorides.The extraction efficiency was greater than 95%.RE have been also reclaimed from molten LiCl-KCl melts by co-reduction of Al,RE,and Li ions to form Al-Li-RE alloys.14-16Hence,the method of electrochemical co-deposition is possible to provide a unique opportunity,which can improve the energy efficiencies and achieve cost-competitive production,for the preparation of Mg-RE master alloys in molten salts.

    Electrolysis of magnesium in industry is a mature technology.In terms of production of pure magnesium metal,co-deposition process has adverse effect,which would introduce impurities to the products.To avoid the co-deposition reaction,the concentration of MgCl2in the electrolyte of industrial process is very high.However,this kind of electrolyte in industrial production is not suitable for preparation of Mg-RE alloys.Here,LiCl-KCl melts,which have low melting temperature,high conductivity,and low density,were selected to investigate the co-deposition process in our group.LiCl-KCl eutectic has the advantages of high conductivity,relatively low viscosity and operating temperature.The low operating temperature allows simpler design,with reduced energy consumption,salt volatility,and cell corrosion.Therefore,LiCl-KCl melts are promising molten salts for preparation of magnesium alloys at a temperature lower than the melting points of magnesium metal.Our group17-19already has abundant experience in preparation of Mg-Li-RE alloys.However,the content of REs is small in these materials prepared by electrolytic co-reduction.At present,our group wants to directly extract REs with the assistance of Mg ions in LiCl-KCl eutectic melts at a low temperature by fabrication of Mg-RE alloys which contain a large amount of REs.According to co-deposition theory,deposition potential and the ratio of the feeds determine the constitution of the products.Therefore,thorough understanding of the thermodynamic properties and electrochemical behavior of Mg ions in the melts is critical to their co-deposition process.Moreover,basic electrochemistry data can provide abundant information to design an effective deposition apparatus.

    In recent years,electrochemical behavior of rare earths in LiCl-KCl melts has been intensively studied because of pyro-metallurgical reprocessing technology.20These basic data give us abundant information to study how to extract REs from molten salts via electrolytic reduction.The electrochemical behavior of magnesium and the electrodeposition of pure magnesium have been studied in LiCl-KCl melts.21,22Cyclic voltammetry and chronopotentiometry have been employed to determine the diffusion coefficients of Mg(II)species(DMg(II))in LiCl-KCl eutectic melts in the temperature range of 673-773 K.The effect of the temperature on the value of DMg(II)has also been determined by plotting the lnD versus T-1.The activation energy for this diffusion process is 33.1 kJ·mol-1.Hamer et al.23have calculated the theoretical electromotive forces of Mg/MgCl2/Cl2according to the thermodynamic data.Laitinen and Liu24have measured Mg/MgCl2system in LiCl-KCl eutectic melts at 723 K.However,based on our knowledge,the standard apparent potentials of Mg(II)/Mg(0)system and the activity coefficients of Mg(II)ions in a wide temperature range have not been investigated in LiCl-KCl eutectic melts so far.On the basis of these backgrounds,we propose to systematacially investigate the electrochemical behavior and thermodynamic properties of Mg ions in LiCl-KCl eutectic melts.The results will help us to further study the co-deposition of Mg-RE alloys which contain large quantity of RE.

    2 Experimental

    2.1 Preparation and purification of the melts

    All operations of the salts were carried out in a glove box under a high purity argon gas(99.999%)previously dehydrated by heating in a vacuum.Purchased anhydrous lithium chloride(99.0%)and potassium chloride(99.5%)were first dried under high vacuum for more than 72 h at 473 K to remove possible physical moisture.And then the mixture of eutectic LiCl-KCl(nLiCl:nKCl=58.8:41.2)was introduced to an alumina crucible placed in a cylindrical quartz cell located in an electric furnace.The electrolyte was melted under the dry argon gas and the temperature of the melts was monitored with a nickel-chromium thermocouple sheathed with an alumina tube.Magnesium element was introduced into the bath in the form of anhydrous MgCl2(99.0%)powder.

    2.2 Electrochemical apparatus and electrodes

    All electrochemical measurements were performed using Im6eX electrochemical workstation(Zahner Co.,Ltd.)with the THALES Z1.31 software package.The reference electrode was fabricated by a silver wire(d=1 mm,99.99%purity)dipped into a solution of AgCl(1%,mass fraction)in the LiCl-KCl eutectic contained in a Pyrex tube.All potentials were referred to this Ag/Ag+couple.The counter electrode was a spectral pure graphite rod(d=6 mm).The working electrodes were tungsten(W)wires(d=1 mm,99.99%purity),which were polished thoroughly using SiC paper,and then cleaned ultrasonically with ethanol prior to use.Between each measurement the W working electrode was cleaned by applying an anodic polarization.The active electrode surface area was determined after each experiment by measuring the immersion depth of the electrode in the molten salts.

    3 Results and discussion

    3.1 Cyclic voltammetry

    Fig.1 illustrates the cyclic voltammograms obtained on tungsten electrodes in LiCl-KCl eutectic melts before and after the addition of MgCl2at 723 K.The cyclic voltammogram of the purified melts is the dashed line in Fig.1.The sharp increase of cathodic current from about-2.44 V(vs Ag/Ag+)and the corresponding anodic current are considered to be the reduction of lithium metal and the reverse reaction,respectively.In the positive potential region,the quick rise of anodic current is observed from about 1.20 V,which is considered as the oxidation of chloride ions to chlorine gas.There are no other additional peaks within the electrochemical window,which indicates that the melts are suitable for investigations.The solid line in Fig.1 shows the cyclic voltammogram containing MgCl2in the LiCl-KCl eutectic melts.The reduction peak A,at approximately-1.90 V,shows a stepped rise and gradual decay associated with Mg(II)reduction,characteristic of deposition of a new insoluble phase on the inert electrode limited by diffusion.25The reverse anodic scan shows an oxidation peak A?of the depletion of the deposited Mg metal.The cathodic peak B at about-2.36 V is attributed to the underpotential deposition of Li on pre-deposited Mg film to form Mg-Li alloys,and the corresponding anodic peak B?is found at around-2.31 V.

    Fig.1 Cyclic voltammograms obtained on W electrodes(S=0.322 cm2)in the LiCl-KCl eutectic melts before and after the addition of 1.18%(mass fraction)MgCl2

    Fig.2 (a)Aseries of voltammograms related to the reduction of Mg(II)on a W electrode(S=0.322 cm2)in the LiCl-KCl eutectic melts containing 1.18%of MgCl2;(b)variation of the cathodic peak current with the square root of the scan rate;(c)variation of the cathodic peak potential with the logarithm of the scan rate

    The reversibility of Mg(II)/Mg(0)system was evaluated from 723 to 908 K and the results were similar.Fig.2(a)shows the voltammograms obtained upon deposition and dissolution of Mg(II)/Mg(0)system at different sweep rates at 823 K.In excess of about 0.30 V·s-1,peak potentials clearly shift toward more negative potentials with the increase of scan rate.This is characteristic of a reaction limited by electron transfer.Further-more,a further analysis of the recorded voltammograms is based on the measurement of the variation of peak potentials and peak currents as scan rates change,according to the methodology proposed in the literature.25-27Fig.2(b)illustrates that the plot of Ipcvs v1/2(Ipcis the cathodic peak current and v is the scan rate)is a line from the origin at low scan rates.Moreover,the peak potentials are almost constant until scan rate is greater than 0.30 V·s-1(Fig.2c).The behaviors revealed from Figs.2a to 2c are characteristic of a quasi-reversible system where the electrochemical reaction is controlled by the mass transfer rate at low scan rates.Nevertheless,for scan rates greater than 0.30 V·s-1,the electron transfer rate predominates the electrochemical reaction.

    3.2 Square wave voltammetry

    Square wave voltammetry has been carried out to calculate the number of electrons involved in the magnesium reduction process.According to the literature,28,29for a reversible system,the mathematical analysis of a square wave voltammogram yields a simple equation relating the width of the half peak(W1/2)and the number of exchanged electrons:

    where R is the universal gas constant,T is the absolute temperature,n is the number of exchanged electrons,and F is the Faraday?s constant.

    Eq.(1)also can be utilized to estimate the number of electrons involved in the reaction of Mg(II)/Mg when we apply this technique at low frequencies and small step potentials.Fig.3 shows a square wave voltammogram obtained at a step potential of 1 mV and frequency of 10 Hz in the LiCl-KCl-MgCl2system for the reduction of Mg(II)on a tungsten electrode at 823 K,in which the reaction was in the reversible range.A single peak at-1.79 V was observed and the computed value of n is 1.92±0.10,close to two electrons,which is related to the reaction of Mg(II)/Mg.

    3.3 Diffusion coefficient

    Diffusion coefficient of Mg(II)in LiCl-KCl eutectic was determined in the temperature range of 723-908 K by cyclic voltammetry.For Mg(II)/Mg(0)system,at low scan rates,the Berzins and Delahay equation30can be used to estimate the diffusion coefficient from the following formula:

    Fig.3 Net-current square wave voltammogram for the reduction of Mg(II)at a W electrode(0.322 cm2)at 823 K

    where Ipis the peak cathodic current(A),S is the electrode surface area(cm2),C0is the bulk concentration of Mg ion(mol·cm-3),D is the diffusion coeffcient(cm2·s-1),v is the potential sweep rate(V·s-1).

    The obtained diffusion coefficient values at different temperatures are listed in Table 1.The influence of the temperature on the value of D was determined by plotting the lgD versus T-1,as shown in Fig.4.The trend shown in Fig.4 is described by

    The results obey theArrhenius?s law expressed as

    where D0is the coefficient of the Arrhenius equation and EAthe activation energy for diffusion.From the relationship(3),the value of the activation energy for diffusion of Mg(II),was computed to be(39.0±2.5)kJ·mol-1.It is slightly higher than the value obtained by St?re22who found EAto be 33.1 kJ·mol-1.This discrepancy may be attributed to the different temperature ranges.

    3.4 Equilibrium potential and apparent standard potential

    EMF measurements were performed to determine equilibrium potential for calculating the apparent standard potential.31For each temperature,the tungsten electrode was coated with Mg film by applying a cathodic potential for 60 s,and the open-circuit potential(OCP)was recorded versus the Ag/Ag+reference electrode(Fig.5).A very stable plateau was obtained each time,allowing the measurement of the corresponding equilibrium potential Eeq.The measured potential for a metal in equilibrium with its metal chloride,in this case the Mg(II)/Mg(0)couple,is determined by the Nernst relationship.

    Table 1 Diffusion coefficient of Mg(II)ions in a molten LiCl-KCl eutectic at different temperatures

    Fig.4 Variation of diffusion coefficient of Mg(II)with temperature in the LiCl-KCl eutectic melts

    Fig.5 Typical open-circuit potential transient curve for a Welectrode after electrodepositing at-2.00 V(vsAg/Ag+)for 60 s in the LiCl-KCl eutectic melts containing 1.18%MgCl2at 823 K

    The apparent standard potential,E*0Mg(II)/Mg(0)of the Mg redox couple is defined as

    where γMg(II)=aMg(II)/XMg(II),is the activity coefficient of Mg(II),and XMg(II)is the molar fraction of Mg(II)in the salt.Combining Eq.(5)and Eq.(6),can be expressed as

    The potential data have been calculated versus the Cl2/Clreference electrode,according to the following equation:

    Based on extrapolation to infinite dilution of the data of Yang and Hudson32at low AgCl concentrations in the LiCl-KCl eutectic and other references,31,33the potential of the reference electrode used in this work(0.0039 mole fraction AgCl)versus Cl2/Cl-is given by the expression

    Table 2 summarizes the experimental data obtained from Mg deposited on a tungsten wire by open circuit potentiometry.Fig.6 shows the variation of standard potential with temperature computed from the experimental data of Table 2.The experimental data of the present study(shown by the line)can be described by

    Table 2 Experimental data for apparent standard potential and standard potential of Mg(II)/Mg(0)in the LiCl-KCl eutectic melts

    Fig.6 Variation of the standard potential of Mg(II)/Mg(0)with temperature in the LiCl-KCl eutectic melts

    3.5 Gibbs free energy and activation coefficient

    The standard potential relationship of Eq.(10)can be used to compute the Gibbs free energy of formation and subsequent dissolution of the reaction

    according to the relationship

    where ΔG*0MgCl2is the Gibbs free energy(kJ·mol-1)of the dissolved metal chloride,calculated from the experimentally-determined standard potential,E*0Mg(II)/Mg(0),Gibbs free energy is also a function of temperature,following the form

    from which the enthalpy and entropy can be obtained.The values from the present study were plotted versus temperature,and the relationship was drawn to be

    The activity coefficient of MgCl2in LiCl-KCl eutectic melts was determined from the difference between the Gibbs energy of formation derived from the electrochemical measurements and the Gibbs energy of formation for pure compounds in the supercooled state,according to the equation:

    Where ΔGM0gCl2(sc)is the Gibbs energy of formation from reaction of the pure compounds in the supercooled(sc)state.The Gibbs energy of formation of MgCl2in the supercooled state was calculated according to Eqs.(16,17),in which the thermochemical data of Mg,Cl2,and MgCl2in 298 K were obtained from literature.34The thermodynamic data are summarized in Table 3.

    Table 3 Activity coefficient for MgCl2(XMg(II)=7.002×10?3)in the LiCl-KCl eutectic melts

    4 Conclusions

    Electrochemical properties of MgCl2were studied using cyclic voltammetry and square wave voltammetry in the eutectic LiCl-KCl mixture in the temperature range of 723-908 K on a W electrode.The reduction of Mg(II)to Mg metal is a quasireversible system and occurs with two electrons exchange.The diffusion coefficients of the Mg(II)ions were calculated at several temperatures.At 903 K(a suitable temperature to co-reduction of Mg-RE alloys),the diffusion coefficient is 3.58×10-5cm2·s-1,and the data reveal that a temperature dependence complies with Arrhenius law.Moreover,by using EMF measurements the standard apparent potential of Mg(II)/Mg(0)redox systems is found to beE*0Mg(II)/Mg(0)=-2.742V(vs Cl2/Cl-).According to the standard apparent potentials at different temperatures,the valuesofenthalpy and entropy changes are-674.3 and 0.1608 kJ·mol-1,respectively.Furthermore,we have established the method to calculate the activity coefficient of MgCl2in the LiCl-KCl eutectic melts at different temperatures.

    (1)Alam,M.E.;Han,S.;Nguyen,Q.B.;Hamouda,A.M.S.;Gupta,M.J.Alloy.Compd.2011,509,8522.doi:10.1016/j.jallcom.2011.06.020

    (2) Hassan,S.F.;Gupta,M.J.Alloy.Compd.2006,419,84.doi:

    10.1016 /j.jallcom.2005.10.005

    (3) Kojima,Y.Mater.Trans.2001,42,1154.doi:10.2320/matertrans.42.1154

    (4) Nguyen,Q.B.;Gupta,M.J.Alloy.Compd.2008,459,244.doi:10.1016/j.jallcom.2007.05.038

    (5)Lü,Y.;Wang,Q.;Zeng,X.;Ding,W.;Zhai,C.;Zhu,Y.Mater.Sci.Eng.2000,A278,66.

    (6) Sanschagrin,A.;Tremblay,R.;Angers,R.Mater.Sci.Eng.1996,A220,69.

    (7)Wu,R.Z.;Qu,Z.K.;Zhang,M.L.Rev.Adv.Mater.Sci.2010,24,35.

    (8) Iida,T.;Nohira,T.;Ito,Y.Electrochim.Acta 2003,48,2517.doi:10.1016/S0013-4686(03)00293-7

    (9)Li,J.X.;Lai,H.;Zhang,Z.C.;Zhuang,B.;Huang,Z.G.Acta Phys.-Chim.Sin.,2007,23(8),1301.[李加新,賴 恒,張志城,莊 彬,黃志高.物理化學學報,2007,23(8),1301.]doi:10.3866/PKU.WHXB20070832

    (10) Li,G.R.;Tong,Y.X.;Liu,G.K.Acta Phys.-Chim.Sin.2003,19(7),630.[李高仁,童葉翔,劉冠昆.物理化學學報,2003,19(7),630.]doi:10.3866/PKU.WHXB20030713

    (11) Gibilaro,M.;Massot,L.;Chamelot,P.;Taxil,P.Electrochim.Acta 2009,54,5300.doi:10.1016/j.electacta.2009.01.074

    (12) Gibilaro,M.;Massot,L.;Chamelot,P.;Taxil,P.J.Nucl.Mater.2008,382,39.doi:10.1016/j.jnucmat.2008.09.004

    (13) Gibilaro,M.;Massot,L.;Chamelot,P.;Cassayre,L.;Taxil,P.Electrochim.Acta 2009,55,281.doi:10.1016/j.electacta.2009.08.052

    (14)Yan,Y.D.;Tang,H.;Zhang,M.L.;Xue,Y.;Han,W.;Cao,D.X.;Zhang,Z.J.Electrochim.Acta 2012,59,531.doi:10.1016/j.electacta.2011.11.007

    (15)Yan,Y.D.;Xu,Y.L.;Zhang,M.L.;Xue,Y.;Han,W.;Huang,Y.;Chen,Q.;Zhang,Z.J.J.Nucl.Mater.2013,433,152.doi:10.1016/j.jnucmat.2012.09.008

    (16)Tang,H.;Yan,Y.D.;Zhang,M.L.;Li,X.;Huang,Y.;Xu,Y.L.;Xue,Y.;Han,W.;Zhang,Z.J.Electrochim.Acta 2013,88,457.doi:10.1016/j.electacta.2012.10.045

    (17)Cao,P.;Zhang,M.L.;Han,W.;Yan,Y.D.;Wei,S.Q.;Zheng,T.J.Rare Earths 2011,29,763.doi:10.1016/S1002-0721(10)60538-8

    (18)Han,W.;Tian,Y.;Zhang,M.L.;Ye,K.;Yan,Y.D.;Zhao,Q.Y.;Wei,S.Q.J.Rare Earths 2010,28,227.doi:10.1016/S1002-0721(09)60085-5

    (19)Xue,Y.;Yan,Y.D.;Zhang,M.L.;Han,W.;Zhang,Z.J.J.Rare Earths 2012,30,1048.doi:10.1016/S1002-0721(12)60177-X

    (20) Castrillejo,Y.;Hernández,P.;Rodriguez,J.A.;Vega,M.;Barrado,E.Electrochim.Acta 2012,71,166.doi:10.1016/j.electacta.2012.03.124

    (21) Martínez,A.M.;B?rresen,B.;Haarberg,G.M.;Castrillejo,Y.;Tunold,R.J.Appl.Electrochem.2004,34,1271.doi:10.1007/s10800-004-1761-6

    (22) St?re,T.;Haarberg,G.M.;Tunold,R.J.Electroanal.Chem.2000,30,1351.

    (23)Hamer,W.J.;Malmberg,M.S.;Rubin,B.J.Electrochem.Soc.1956,103,8.doi:10.1149/1.2430236

    (24) Laitinen,H.A.;Liu,C.H.J.Am.Chem.Soc.1958,80,1015.doi:10.1021/ja01538a001

    (25) Pletcher,D.;Greef,R.;Peat,R.;Peter,L.;Robinson,J.Instrumental Methods in Electrochemistry;Southampton Electrochemistry Group,University of Southampton,Horwood:London,2001.

    (26) Bard,A.J.;Faulkner,L.R.Electrochemical Methods,Fundamental and Applications;Wiley:New York,2001.

    (27) Nicholson,M.M.J.Am.Soc.1954,76,2539.doi:10.1021/ja01638a072

    (28) Osteryoung,J.;Osteryoung,R.A.Anal.Chem.1985,57,101.doi:10.1021/ac00279a004

    (29)Ramaley,L.;Krasue,M.S.Anal.Chem.1969,41,1362.doi:10.1021/ac60280a005

    (30) Berzins,T.;Delahay,P.J.Am.Chem.Soc.1953,75,555.doi:10.1021/ja01099a013

    (31) Cassayre,L.;Serp,J.;Soucek,P.;Malmbeck,R.;Rebizant,J.;Glatz,J.P.Electrochim.Acta 2007,52,7432.doi:10.1016/j.electacta.2007.06.022

    (32) Yang,L.;Hudson,R.G.J.Electrochem.Soc.1959,106,986.doi:10.1149/1.2427195

    (33) Fusselman,S.P.;Roy,J.J.;Grimmett,D.L.;Grantham,L.F.;Krueger,C.L.;Nabelek,C.R.;Storvick,T.S.;Inoue,T.;Hijikata,T.;Kinoshita,K.;Sakamura,Y.;Uozumi,K.;Kawai,T.;Takahashi,N.J.Electrochem.Soc.1999,146,2573.doi:10.1149/1.1391974

    (34) Barin,I.;Knacke,O.Thermochemical Properties of Inorganic Substances;Springer:Berlin,1973,Supplement,1997.

    猜你喜歡
    哈爾濱工程大學物理化學哈爾濱
    我平等地嫉妒每一個去哈爾濱的人
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Research on Real Meaning of American Dream in Great Gatsby
    速讀·中旬(2021年2期)2021-07-23 22:33:04
    Research on Uranium Mining
    Chemical Concepts from Density Functional Theory
    奇妙的哈爾濱之旅
    An Analysis of Mood System of Narrative Rock Song Lyrics and Its Interpersonal Functions
    《老哈爾濱的回憶》國畫
    新聞傳播(2016年13期)2016-07-19 10:12:05
    感受哈爾濱的冬天
    小主人報(2016年2期)2016-02-28 20:46:43
    亚洲人成网站在线播| av在线观看视频网站免费| 最新中文字幕久久久久| 一个人观看的视频www高清免费观看| 久久久色成人| 成人欧美大片| 亚洲熟妇中文字幕五十中出| 日韩 亚洲 欧美在线| 12—13女人毛片做爰片一| 很黄的视频免费| 亚洲欧美日韩高清专用| 色视频www国产| 国产精品乱码一区二三区的特点| 久久久久久久午夜电影| 午夜福利在线观看吧| 淫妇啪啪啪对白视频| 深夜精品福利| 日本一本二区三区精品| 国产私拍福利视频在线观看| 国产大屁股一区二区在线视频| 一本精品99久久精品77| 亚洲成人精品中文字幕电影| 国产亚洲欧美98| 亚洲国产精品sss在线观看| 最新在线观看一区二区三区| 神马国产精品三级电影在线观看| 美女 人体艺术 gogo| av中文乱码字幕在线| 两人在一起打扑克的视频| 人人妻,人人澡人人爽秒播| 十八禁人妻一区二区| 欧美三级亚洲精品| 1024手机看黄色片| 免费在线观看影片大全网站| 好男人在线观看高清免费视频| av在线蜜桃| 亚洲成人久久爱视频| 久久亚洲精品不卡| 波多野结衣高清无吗| 欧美日韩亚洲国产一区二区在线观看| 99国产精品一区二区三区| 国内揄拍国产精品人妻在线| 亚洲久久久久久中文字幕| 热99在线观看视频| 久久久久精品国产欧美久久久| 亚洲激情在线av| 高潮久久久久久久久久久不卡| 免费高清视频大片| a级一级毛片免费在线观看| 亚洲av日韩精品久久久久久密| 真人做人爱边吃奶动态| 露出奶头的视频| 色5月婷婷丁香| 成人午夜高清在线视频| 老熟妇乱子伦视频在线观看| 国模一区二区三区四区视频| 亚洲最大成人手机在线| 国产麻豆成人av免费视频| 男人狂女人下面高潮的视频| 99久久精品国产亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| av在线老鸭窝| 无人区码免费观看不卡| 亚洲欧美日韩卡通动漫| 十八禁网站免费在线| 一级a爱片免费观看的视频| 国产 一区 欧美 日韩| a级毛片免费高清观看在线播放| 久久精品国产亚洲av涩爱 | 亚洲色图av天堂| 欧美成狂野欧美在线观看| 亚洲av成人不卡在线观看播放网| 成年女人毛片免费观看观看9| 国产高清有码在线观看视频| 亚洲最大成人手机在线| 毛片一级片免费看久久久久 | 国产探花极品一区二区| 国产色爽女视频免费观看| 欧美色欧美亚洲另类二区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品三级大全| 少妇高潮的动态图| 最近在线观看免费完整版| 久久国产乱子免费精品| 天堂网av新在线| 少妇裸体淫交视频免费看高清| 亚洲专区国产一区二区| 国产人妻一区二区三区在| 中文字幕人成人乱码亚洲影| 淫妇啪啪啪对白视频| 一个人免费在线观看电影| 欧美一区二区亚洲| 欧美区成人在线视频| 少妇人妻精品综合一区二区 | bbb黄色大片| 男人舔女人下体高潮全视频| 脱女人内裤的视频| 最近中文字幕高清免费大全6 | 国产淫片久久久久久久久 | 国产精品一及| 亚洲无线观看免费| 一边摸一边抽搐一进一小说| 97碰自拍视频| 精品久久久久久久久久久久久| 丰满乱子伦码专区| 亚洲精品一卡2卡三卡4卡5卡| 久99久视频精品免费| 久久这里只有精品中国| 看黄色毛片网站| 18美女黄网站色大片免费观看| 国产精品影院久久| 精品久久久久久久久久久久久| 嫩草影院精品99| 午夜两性在线视频| 国产69精品久久久久777片| www.999成人在线观看| 国产精品乱码一区二三区的特点| 99精品久久久久人妻精品| 婷婷六月久久综合丁香| 免费av观看视频| 午夜免费激情av| 久久国产乱子免费精品| 国产精品野战在线观看| 亚洲精品影视一区二区三区av| 免费看a级黄色片| 亚洲av成人精品一区久久| 狠狠狠狠99中文字幕| 成人国产一区最新在线观看| 天堂影院成人在线观看| 舔av片在线| 亚洲一区二区三区色噜噜| 亚洲国产精品久久男人天堂| 一级毛片久久久久久久久女| 99久久久亚洲精品蜜臀av| 又爽又黄a免费视频| 国产伦人伦偷精品视频| 91字幕亚洲| 夜夜躁狠狠躁天天躁| 亚洲精华国产精华精| 午夜免费成人在线视频| 日日夜夜操网爽| a在线观看视频网站| 午夜a级毛片| 国产精品乱码一区二三区的特点| 在线免费观看不下载黄p国产 | 午夜两性在线视频| 亚洲av电影不卡..在线观看| 亚洲av电影在线进入| 超碰av人人做人人爽久久| 别揉我奶头 嗯啊视频| 51午夜福利影视在线观看| 国产爱豆传媒在线观看| 久久久精品大字幕| 在线观看午夜福利视频| 一a级毛片在线观看| 久久久久久久久久成人| 直男gayav资源| av在线老鸭窝| 九色国产91popny在线| 日本三级黄在线观看| 99热这里只有是精品在线观看 | 波多野结衣巨乳人妻| 午夜激情欧美在线| a级毛片免费高清观看在线播放| 两个人的视频大全免费| 高潮久久久久久久久久久不卡| 国产成人影院久久av| 亚洲av.av天堂| 亚洲人成网站在线播放欧美日韩| 亚洲av电影不卡..在线观看| 性色av乱码一区二区三区2| 久久久久亚洲av毛片大全| 天堂av国产一区二区熟女人妻| 精品一区二区三区人妻视频| 精品国产三级普通话版| 欧美黄色片欧美黄色片| 久久九九热精品免费| 天堂影院成人在线观看| 精品不卡国产一区二区三区| 婷婷六月久久综合丁香| 欧美日韩乱码在线| 免费电影在线观看免费观看| 精品久久国产蜜桃| 亚洲欧美日韩高清专用| 成人欧美大片| 国产高清视频在线播放一区| 天堂动漫精品| 日韩亚洲欧美综合| 午夜精品一区二区三区免费看| 亚洲精品在线美女| 91九色精品人成在线观看| 男人舔奶头视频| 日韩欧美国产一区二区入口| 色哟哟·www| 午夜老司机福利剧场| 一本精品99久久精品77| 亚洲av二区三区四区| 久久这里只有精品中国| 黄片小视频在线播放| 国产伦人伦偷精品视频| 国产麻豆成人av免费视频| 国内精品久久久久久久电影| 国产精品久久电影中文字幕| 三级男女做爰猛烈吃奶摸视频| ponron亚洲| 久久这里只有精品中国| 久久热精品热| 亚洲自偷自拍三级| 国产淫片久久久久久久久 | 黄色一级大片看看| 亚洲自拍偷在线| 嫩草影院新地址| 精品久久久久久成人av| 看十八女毛片水多多多| 日韩欧美一区二区三区在线观看| a在线观看视频网站| 国产高清三级在线| 在线播放无遮挡| 久久久久亚洲av毛片大全| 欧美午夜高清在线| 久久久久九九精品影院| 国产在视频线在精品| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| 在线观看美女被高潮喷水网站 | 国产探花在线观看一区二区| 黄色配什么色好看| 日本 av在线| 久久久久国内视频| 日韩大尺度精品在线看网址| 好男人电影高清在线观看| 深爱激情五月婷婷| 国产69精品久久久久777片| 在线十欧美十亚洲十日本专区| 日韩中字成人| 久久亚洲真实| 欧美黄色淫秽网站| 亚洲欧美日韩东京热| 热99在线观看视频| 搡老妇女老女人老熟妇| 婷婷丁香在线五月| 久久久久久久久久成人| 亚洲欧美日韩无卡精品| 亚洲aⅴ乱码一区二区在线播放| 欧美色视频一区免费| 观看免费一级毛片| 在线观看免费视频日本深夜| 高清日韩中文字幕在线| 亚洲精华国产精华精| 国产av一区在线观看免费| 亚洲va日本ⅴa欧美va伊人久久| 国产真实伦视频高清在线观看 | 黄色视频,在线免费观看| 如何舔出高潮| 又紧又爽又黄一区二区| 国产国拍精品亚洲av在线观看| 国产人妻一区二区三区在| 18+在线观看网站| 丁香欧美五月| 啪啪无遮挡十八禁网站| 中文字幕免费在线视频6| 成人一区二区视频在线观看| 一区二区三区高清视频在线| 国产一区二区激情短视频| 一进一出抽搐动态| 国产精品一区二区免费欧美| 变态另类成人亚洲欧美熟女| 黄片小视频在线播放| 国产欧美日韩一区二区精品| 国产精品野战在线观看| 亚洲真实伦在线观看| 天美传媒精品一区二区| 亚洲久久久久久中文字幕| 网址你懂的国产日韩在线| www.色视频.com| 最后的刺客免费高清国语| 亚洲人成网站高清观看| 国产一区二区三区视频了| 色综合站精品国产| 悠悠久久av| 久久精品综合一区二区三区| 中文字幕精品亚洲无线码一区| 国产熟女xx| 国产精品av视频在线免费观看| 国产成人av教育| 亚洲中文字幕日韩| 中国美女看黄片| 亚洲中文日韩欧美视频| 有码 亚洲区| 天堂影院成人在线观看| 久久精品国产亚洲av香蕉五月| 国内精品久久久久久久电影| 久久久久久九九精品二区国产| 久久午夜福利片| 欧美乱色亚洲激情| 精品久久久久久久久av| 夜夜夜夜夜久久久久| 成人av一区二区三区在线看| 欧美乱妇无乱码| 成人永久免费在线观看视频| 午夜影院日韩av| 成熟少妇高潮喷水视频| 国产aⅴ精品一区二区三区波| 免费在线观看影片大全网站| 国产精品一区二区三区四区久久| 男人和女人高潮做爰伦理| 亚洲av中文字字幕乱码综合| 99国产极品粉嫩在线观看| 69人妻影院| 国产 一区 欧美 日韩| 日韩欧美 国产精品| av在线天堂中文字幕| 国产精品久久电影中文字幕| 国产一级毛片七仙女欲春2| 欧美一区二区国产精品久久精品| 美女高潮的动态| 波野结衣二区三区在线| 床上黄色一级片| 欧美丝袜亚洲另类 | 亚洲欧美日韩高清在线视频| 丰满人妻一区二区三区视频av| 亚洲人成网站在线播| 日本与韩国留学比较| 别揉我奶头~嗯~啊~动态视频| 亚洲成人免费电影在线观看| 日韩欧美精品免费久久 | 一本久久中文字幕| 中文字幕av在线有码专区| 在线国产一区二区在线| 99热精品在线国产| 国产精品98久久久久久宅男小说| 一进一出好大好爽视频| 一进一出抽搐动态| 亚洲国产精品合色在线| 88av欧美| 久久99热6这里只有精品| 日本成人三级电影网站| 长腿黑丝高跟| 国内精品久久久久久久电影| 在线观看舔阴道视频| 97碰自拍视频| 国产一区二区三区在线臀色熟女| 非洲黑人性xxxx精品又粗又长| 欧美精品啪啪一区二区三区| 精品久久久久久久久亚洲 | 日韩欧美精品v在线| 午夜福利在线观看吧| 美女被艹到高潮喷水动态| 日韩成人在线观看一区二区三区| 精品久久久久久久末码| 丁香六月欧美| 最好的美女福利视频网| 男女视频在线观看网站免费| 欧美一级a爱片免费观看看| 国产男靠女视频免费网站| 天天躁日日操中文字幕| 国产色婷婷99| 少妇人妻一区二区三区视频| 国产精华一区二区三区| 午夜免费男女啪啪视频观看 | 国产主播在线观看一区二区| 亚洲人成网站在线播| 精华霜和精华液先用哪个| 国产成人欧美在线观看| 丁香欧美五月| 亚洲avbb在线观看| 久久精品夜夜夜夜夜久久蜜豆| 色综合欧美亚洲国产小说| 亚洲精品日韩av片在线观看| 欧美成人免费av一区二区三区| 成人三级黄色视频| 老司机福利观看| 亚洲欧美日韩无卡精品| 亚洲av不卡在线观看| 少妇人妻一区二区三区视频| 欧美3d第一页| 亚洲成人中文字幕在线播放| 校园春色视频在线观看| 日本 av在线| 欧美日韩亚洲国产一区二区在线观看| 午夜福利欧美成人| 日韩欧美在线二视频| 热99在线观看视频| 午夜久久久久精精品| 久久久成人免费电影| 久久精品国产亚洲av天美| 久久精品夜夜夜夜夜久久蜜豆| 99热这里只有精品一区| 久久久成人免费电影| 久久久久精品国产欧美久久久| www.色视频.com| 尤物成人国产欧美一区二区三区| 精品人妻视频免费看| 成人无遮挡网站| АⅤ资源中文在线天堂| 如何舔出高潮| 波多野结衣高清无吗| 亚洲精品影视一区二区三区av| 人人妻人人看人人澡| av福利片在线观看| 国产成人福利小说| 国产av一区在线观看免费| 波多野结衣高清无吗| 亚洲av日韩精品久久久久久密| 99久久成人亚洲精品观看| 美女大奶头视频| 麻豆成人午夜福利视频| 在线a可以看的网站| 搡老妇女老女人老熟妇| 人人妻人人看人人澡| 深夜精品福利| 一级黄片播放器| 91九色精品人成在线观看| 最好的美女福利视频网| 黄色视频,在线免费观看| 亚洲一区高清亚洲精品| .国产精品久久| 久久中文看片网| 极品教师在线视频| 大型黄色视频在线免费观看| 在线观看午夜福利视频| 赤兔流量卡办理| 美女高潮喷水抽搐中文字幕| 97超级碰碰碰精品色视频在线观看| 特级一级黄色大片| 久久精品夜夜夜夜夜久久蜜豆| 成人无遮挡网站| 夜夜躁狠狠躁天天躁| 精品人妻偷拍中文字幕| 国产亚洲精品综合一区在线观看| 亚洲精品在线观看二区| 欧美一区二区亚洲| 午夜精品一区二区三区免费看| 国内揄拍国产精品人妻在线| 我要搜黄色片| 三级毛片av免费| 人妻丰满熟妇av一区二区三区| 国语自产精品视频在线第100页| 国产av在哪里看| 变态另类丝袜制服| 亚洲欧美清纯卡通| 亚洲av不卡在线观看| 欧美日本视频| 午夜福利高清视频| 国产高清视频在线观看网站| 一个人观看的视频www高清免费观看| 亚洲人成伊人成综合网2020| 免费在线观看日本一区| 欧美日韩综合久久久久久 | 欧美性感艳星| 久99久视频精品免费| 一本精品99久久精品77| 伦理电影大哥的女人| 午夜影院日韩av| 久久久久久大精品| 久9热在线精品视频| 日韩欧美国产在线观看| 老熟妇乱子伦视频在线观看| 国产午夜精品久久久久久一区二区三区 | 青草久久国产| 色尼玛亚洲综合影院| 伦理电影大哥的女人| 美女大奶头视频| 一区福利在线观看| 精品一区二区免费观看| 亚洲中文字幕一区二区三区有码在线看| 日本免费一区二区三区高清不卡| 他把我摸到了高潮在线观看| 久久6这里有精品| 一级av片app| 91狼人影院| 亚洲精品一区av在线观看| 丰满乱子伦码专区| 久9热在线精品视频| 精品一区二区三区av网在线观看| av天堂中文字幕网| 草草在线视频免费看| 丝袜美腿在线中文| 久久精品国产99精品国产亚洲性色| 人人妻人人看人人澡| 成人国产一区最新在线观看| 精品久久国产蜜桃| 亚洲成人久久爱视频| 美女被艹到高潮喷水动态| 两个人的视频大全免费| 国产精品一区二区三区四区久久| 18禁裸乳无遮挡免费网站照片| 亚洲不卡免费看| 一个人看的www免费观看视频| 少妇丰满av| 色播亚洲综合网| 国产久久久一区二区三区| 免费无遮挡裸体视频| 亚洲美女视频黄频| 欧美在线一区亚洲| 色综合欧美亚洲国产小说| 欧美日韩瑟瑟在线播放| 免费观看人在逋| 久久久久久久久久成人| 久久久久久国产a免费观看| 国产精品一区二区免费欧美| 亚洲,欧美精品.| 亚洲天堂国产精品一区在线| 亚洲成人久久性| 久久久久久国产a免费观看| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添小说| 91字幕亚洲| 舔av片在线| 国产精品亚洲av一区麻豆| 一个人看视频在线观看www免费| 美女免费视频网站| 老鸭窝网址在线观看| 日本在线视频免费播放| 伦理电影大哥的女人| 色综合亚洲欧美另类图片| 亚洲五月婷婷丁香| 窝窝影院91人妻| 国产av在哪里看| а√天堂www在线а√下载| 欧美日韩亚洲国产一区二区在线观看| 婷婷精品国产亚洲av| 宅男免费午夜| 99精品久久久久人妻精品| 亚洲成av人片在线播放无| 搡老岳熟女国产| 97热精品久久久久久| 成人欧美大片| 国产乱人视频| 日本免费a在线| 亚洲美女搞黄在线观看 | 久久久成人免费电影| 国产亚洲精品久久久com| 国产欧美日韩精品一区二区| 国产野战对白在线观看| 免费搜索国产男女视频| 久久久精品大字幕| av在线观看视频网站免费| 超碰av人人做人人爽久久| 欧美高清性xxxxhd video| 日韩中文字幕欧美一区二区| 九色成人免费人妻av| 国产日本99.免费观看| 欧美精品啪啪一区二区三区| 国产免费av片在线观看野外av| 一本一本综合久久| 好看av亚洲va欧美ⅴa在| 少妇被粗大猛烈的视频| 免费观看的影片在线观看| 国产精品人妻久久久久久| 男人舔女人下体高潮全视频| 成年人黄色毛片网站| 亚洲成av人片在线播放无| 婷婷六月久久综合丁香| 简卡轻食公司| 国产毛片a区久久久久| 天堂动漫精品| 亚洲精品456在线播放app | 国产精品人妻久久久久久| 18禁在线播放成人免费| 色5月婷婷丁香| 女人十人毛片免费观看3o分钟| 黄色一级大片看看| a级毛片免费高清观看在线播放| x7x7x7水蜜桃| 人妻夜夜爽99麻豆av| 九色国产91popny在线| 亚洲真实伦在线观看| 一本久久中文字幕| 亚洲一区二区三区不卡视频| 精品乱码久久久久久99久播| 国产视频内射| 亚洲中文字幕一区二区三区有码在线看| 美女xxoo啪啪120秒动态图 | 在线观看av片永久免费下载| 69av精品久久久久久| 婷婷亚洲欧美| 18美女黄网站色大片免费观看| 午夜两性在线视频| 简卡轻食公司| 国产乱人视频| 狂野欧美白嫩少妇大欣赏| 欧美一区二区精品小视频在线| 亚洲最大成人手机在线| 国产精品一区二区免费欧美| 搡女人真爽免费视频火全软件 | 三级男女做爰猛烈吃奶摸视频| 久久久久亚洲av毛片大全| av中文乱码字幕在线| 老司机午夜十八禁免费视频| 欧美在线黄色| 国产综合懂色| 亚洲av成人av| 在线十欧美十亚洲十日本专区| 国产精华一区二区三区| 此物有八面人人有两片| av黄色大香蕉| 亚洲内射少妇av| 欧美绝顶高潮抽搐喷水| 午夜福利视频1000在线观看| 精品人妻1区二区| 中文在线观看免费www的网站| 久久久久久久午夜电影| 国产精品一区二区三区四区免费观看 | 欧美日韩亚洲国产一区二区在线观看| 久久精品影院6| 一个人看视频在线观看www免费| 欧美成狂野欧美在线观看| eeuss影院久久| 亚洲av中文字字幕乱码综合| 色精品久久人妻99蜜桃| 又粗又爽又猛毛片免费看| 直男gayav资源| 国内毛片毛片毛片毛片毛片| 精品一区二区三区视频在线观看免费|